填料塔流体力学特性解读
3-3填料塔

28
二、填料塔工艺尺寸的计算
1)贝恩-霍根关联式
2 uF V 0.2 wL V lg 3 L A K wV L g L 1/4 1/8
式中:A、K ——关联式常数,由有关手册查出。 2)埃克特(Eckert)通用关联图 散装填料的泛点气速可用埃克特通用关联图计算。
5
2.填料塔操作特性
2)液泛 在泛点气速下,持液量的增多使液相由分散相 变为连续相,而气相则由连续相变为分散相,此时 气体呈气泡形式通过液层,气流出现脉动,液体被 带出塔顶,塔的操作极不稳定,甚至被破坏,此种 情况称为液泛。 液泛时的空塔气速 泛点气速 uF
6
液
分析 填料特性 影响液泛 的因素
泛
8
3)液体喷淋密度和填料表面的润湿
2.最小液体喷淋密度 为保证填料层的充分润湿,必须保证液体喷淋 密度大于某一极限值 ——最小液体喷淋密度。
U min ( LW )min
最小喷淋密 度计算式
式中:Umin ——最小液体喷淋密度,m3/(m2· h);
Lmin—— 最小润湿速率,m3/(m· h)。
ρL
流体物性
μL
ρV
液气比
wL/wV
~ uF ~ uF ~ uF ~ uF ~ uF
7
3)液体喷淋密度和填料表面的润湿
a)液体喷淋密度 单位塔截面积上单位时间内喷淋的液体体积 ——液体喷淋密度。
Lh U Ω
m3/(m2· h)
式中: Lh —— 液体体积流量,m3/h;
Ω ——填料塔的截面积,m2。
31
二、填料塔工艺尺寸的计算
2.填料层高度的计算 (1)传质单元高度法
流体力学与传热:第三章 塔设备第二次课

3)环矩鞍填料
(3)球形填料
共轭环 华南理工大学化工学院研制
双鞍环 RICTM填料
Impac填料
规整填料
规整填料是按一定的几何构形排列,整齐堆砌的填料。 规整填料根据其几何结构可分为格栅填料、波纹填料、 脉冲填料等。
波纹填料
格栅型填料
规 整 波 纹 填 料 塔 示 意 图
塔填料的发展趋势
1、散堆填料:
散堆填料是一个个具有一定几何形状和尺寸的颗粒体, 一般以随机的方式堆积在塔内,又称为乱堆填料或颗 粒填料。材料通常为陶瓷、金属、塑料、玻璃、石墨 等。
按基本构形:环形填料、鞍形填料和球形填料三个 系列
在每一系列中,基于减少压强降、增大比表面积、 增加气、液扰动和改善表面润湿性能的要求,形成 了各自的发展序列。
第二节 填料塔
3.2.1 填料塔的结构特点
填料塔是以塔内的填料作为气液两相间接触构件的传 质设备。
优点:生产能力大,分离效率高,压降小,持液量 小,操作弹性大。
缺点:填料造价高;当液体负荷较小时不能有效地 润湿填料表面;不能直接用于有悬浮物或容易聚合 的物料;对侧线进料和出料等复杂精馏不太适合等。
3.2.2 填料
压强降的大小决定了填料塔 的动力消耗,是设计过程的 重要参数。
常将不同喷淋量(包括LS=0) 下,随气速变化的Δp分别 画在同一个坐标上
恒定喷淋量下:
①气速较低,填料表面液膜厚∝(液固间摩擦力 和LS),与u几乎无关;但比无喷淋量时阻力要大。
②气速增至一定值后,气液间பைடு நூலகம்力不容忽视,液 膜加厚→出现拦液现象,载液线斜率>2;但载点 难测。
③再增大气速至液体不能顺利下流,此时填料层 中的持液量增加迅速,往往可以看到填料层的某 个高度上出现“积液层”。
填料塔流体力学特性

空塔气速
液体喷淋量 L3>L2>L1
【现象】两个拐点;三个区域。
【特点】三个区域内的 压降与空塔气速之间的 关系不同。
2017/2/7
(3)恒持液量区
【原因】当气速低于载点时,气
体流动对液膜的曳力很小,液体
流动不受气流的影响,填料表面 上覆盖的液膜厚度基本不变,因 而填料层的持液量不变。 【特点】此时△P/Z~u为一直线
,位于干填料压降线的左侧,且
基本上与干填料压降线平行。
2017/2/7
(4)载液区
当气速超过载点时,气体
【有关规律】载点气速随喷
对液膜的曳力较大,对液膜流 淋量增大而减小。
动产生阻滞作用,使液膜增厚
,填料层的持液量随气速的增 加而增大,此现象称为拦液。 开始发生拦液现象时的空塔气 速称为载点气速,曲线上的转
横坐标
L V 0.5 ( ) V L
纵坐标
2 uF F V 0.5 ( ) L g L
埃克特通用关联图
H 2O L
4、填料塔的返混
在填料塔内,气液两相的逆流并不呈理想的 活塞流状态,而是存在着不同程度的返混。 返混的影响 传质推动力变小,传质效率降低放大效应。 造成返混现象原因
吸收设备——填料塔
吸 收
一、填料塔的结构与填料性能 二、填料塔的流体力学性能 三、填料塔的附件
2017/2/7
二、填料层内气液两相的流体力学特性
填料塔的流体力学性能主要包括填料层的持液量 、填料层的压降、液泛等。 1、填料层的持液量 在一定操作条件下,由于液膜与填料表面的摩擦
以及液膜与上升气体的摩擦,有部分液体停留在填
【影响液泛的因素】影响因素很多,如填料的特性、
填料塔流体力学性能实验报告

填料塔流体力学性能实验报告填料塔是一种常用的化工设备,用于气体和液体的传质和传热过程。
本文将以填料塔流体力学性能实验为主题,探讨其在化工工艺中的重要性和实验结果。
一、填料塔的流体力学性能填料塔是一种用于气体和液体传质传热的设备,其内部填充了大量填料,形成了大量的表面积,提高了传质传热效率。
填料塔的流体力学性能是指在不同操作条件下,气体和液体在填料层中的流动特性,包括压降、液滴分布、气液接触等。
二、实验目的本次实验旨在研究填料塔在不同操作条件下的流体力学性能,以便优化填料塔的设计和操作参数。
具体实验目的包括:测量填料塔的压降、液滴分布和气液接触情况,分析填料塔的传质传热效率。
三、实验装置和方法实验装置包括填料塔、气体供给系统、液体供给系统和数据采集系统。
实验方法为在不同操作条件下,通过改变气体和液体的流量和温度,观察填料塔内气液流动情况,并记录实验数据。
四、实验结果与分析1. 压降测量通过实验得到了不同操作条件下的压降数据。
结果显示,随着气体和液体流量的增加,压降逐渐增大。
这是因为气体和液体在填料层中的摩擦和阻力增加导致的。
同时,随着填料层的高度增加,压降也会增大。
2. 液滴分布实验中观察到了填料塔内液滴的分布情况。
结果显示,液滴在填料层中呈现出较好的分散状态,且随着液体流量的增加,液滴的分布更加均匀。
这是因为液体在填料层中受到填料的阻力,导致液滴分散。
3. 气液接触实验中还观察到了气液接触情况。
结果显示,在填料塔内,气体和液体之间发生了充分的接触和混合。
这是因为填料层提供了大量的表面积,增加了气液间的接触机会。
五、实验结论通过本次实验,我们得到了填料塔在不同操作条件下的流体力学性能数据。
根据实验结果分析,我们可以得出以下结论:1. 填料塔的压降随着气体和液体流量的增加而增大。
2. 填料塔内液滴呈现出较好的分散状态,液滴分布更均匀。
3. 填料塔提供了充分的气液接触和混合。
六、实验意义和应用价值填料塔作为一种常用的化工设备,在化工工艺中起着重要的作用。
填料塔内的流体力学特性

(1) 填料塔内的流体力学特性填料塔内气液两种流体逆向流动时具有一定的特性,即假定给液量保持不变,在逆流情况下,气体的流速达到一定值时,就发生所谓液体的泛滥现象,此时液体停止下降,且开始随同上逸的气体被吹出塔外,此时气体的流速称为“泛点”。
若在对数坐标上标出压强降△P 对气体空塔速度U 的关系,并以不同的液体喷淋量(L )作为第三参数,可以画出如图8-5所示的各种不同的曲线。
当喷淋量L =0,即所谓干塔情况,所得关系为一条直线,其斜率为1.8~2.0,即 1.8 2.0P U ∆=,这时阻力与气速的关系如同气体高度湍流状态流过真空管道时的情况。
当有液体喷淋时,所得的关系就不再是一条直线,而是由三条线段组成的一条曲线。
当气速达到A 点时,液体向下游动受逆向气流的牵制开始明显起来,表现在填料上的滞留液量剧增,气流通过截面不断减小,因此从A 点之后,压强降随空塔气速有较大的增加,图8-6中曲线斜率不断加大,A 点称为“载点”。
当气速增加到B 点时,压强降几乎直线上升,表示塔内发生了气泛,称之为“泛点”,此时气体托住液滴,逐渐使液滴形成连续相,气体反变成分散相,吸收操作无法正常进行。
填料塔只能在泛点下操作。
有的学者认为开始拦液之点(载点)为吸收填料塔的最大可允许的操作情况。
而实际最经济的操作速度,最好相当于载点速度的80%左右或泛点速度的50%~70%。
(2)泛液速度(f v )通过上面分析,不难了解在决定吸收塔的操作情况或塔径的设计上,都必须首先确定可允许的最大气流速度,即在泛点时的空塔气速。
从实验数据刊出,泛点时的空塔气速f v 与流体物性、液气流量比、填料充填方式和填料特性有关。
实验结果一般用通用关联图的形式把有关因素关联起来。
当前工程设计中最常用的关联图如8-7。
填料塔吸收实验_2

实验填料塔吸收实验一、实验目的1. 了解吸收过程的流程、设备结构,并掌握吸收操作方法。
2. 在不同空塔气速下,观察填料塔中流体力学状态。
测定气体通过填料层的压降与气速的关系曲线。
3. 掌握总传质系数的测定方法,测定在一定喷淋量下水吸收氨的体积传质系数T。
4.通过实验了解ΔP—u曲线和传质系数对工程设计的重要意义。
二、实验原理1. 填料塔的流体力学特性吸收塔中填料的作用主要是增加气液两相的接触面积,而气体在通过填料层时,由于有局部阻力和摩擦阻力而产生压强降。
填料塔的流体力学特性是吸收设备的重要参数,它包括压强降和液泛规律。
测定填料塔的流体力学特性是为了计算填料塔所需动力消耗和确定填料塔的适宜操作范围,选择适宜的气液负荷,因此填料塔的流体力学特性是确定最适宜操作气速的依据。
气体通过干填料(L=0)时,其压强降与空塔气速之间的函数关系在双对数坐标上为一直线,如图中AB线,其斜率为1.8~2。
当有液体喷淋时,在低气速时,压强降和气速间的关联线与气体通过干填料时压强降和气速间的关联线AB线几乎平行,但压降大于同一气速下干填料的压降,如图中CD段。
随气速的进一步增加出现载点(图中D点),填料层持液量开始增大,压强降与空塔气速的关联线向上弯曲,斜率变大,如图中DE 段。
当气速增大到E点,填料层持液量越积越多,气体的压强几乎是垂直上升,气体以泡状通过液体,出现液泛现象,此点E称为泛点。
2.传质实验总体积传质指数Kya是单位填料体积、单位时间吸收的溶质量。
它是反应填料吸收塔性能的主要参数,是设计填料高度的重要数据。
本实验是水吸收空气——氨混合气体中的氨。
混合气体中氨的浓度很低。
吸收所得的溶液浓度也不高,气液两相的平衡关系可以认为服从亨利定律(即平衡在X—Y坐标系位置线)。
故可用对树皮平均浓度差法计算填料层传质平均推动力,相应的传质速率方程式为:GA =KYa·VP·ΔYm所以 KY a=GA/VPΔYm其中ΔYm =[(Y1-Ye1)-(Y2-Ye2)]/[ln(Y1-Ye1)/ (Y2-Ye2)]式中GA—单位时间内氨的吸收量[Kmol/h]Kya—总体积传质系数[Kmol/m3h]Vp—填料层体积[m3]ΔYm—气相对数平均浓度差。
9.1.17.1.2填料塔力学性能与附属结构

Ht=Hc+ Hs m3(液体)/m3(填料) 总持液量可由经验式或曲线图来估算。
分析
Ht
~
~
填料层 压降
生产能力 传质效率
6
填料塔的流体力学性能与传质性能
2. 填料塔的水力学性能
5)润湿速率
润湿速率
喷淋密度 填料比表面积
液体体积流量 / 填料层截面积 填料层表面积 / 填料层体积
液体体积流量
液体体积流量
填料塔
➢ 填料塔与填料 ➢ 填料塔的流体力学性能与传质性能 ➢ 填料塔的附属结构
1
填料塔的流体力学性能与传质性能
1. 填料塔内的气、液两相流动
1)流体在填料层内的流动
流体在填料层内的流动与流体在颗粒层内的流动类似。 填料塔中压降与气速的变化关系如图所示。
填 料 表 面
填 料 表 面
持液量
持液量
空塔气速 实际气速 喷淋密度
填料层表面积 / 填料层高度 填料层的周长
液体喷淋密度:单位塔截面积上单位时间内喷淋的液体体积,其计算式为:
U=Lh /Ω m3/(m2·h) 式中: Lh —— 液体体积流量,m3/h;
Ω —— 填料塔的截面积,m2。
7
填料塔的流体力学性能与传质性能
2. 填料塔的水力学性能
最小液体喷淋密度:为保证填料层的充分润湿,必须保证液体喷淋密 度大于某一极限值
Umin= (Lw)min σ
最小喷淋密 度计算式
式中:Umin ——最小液体喷淋密度,m3/(m2·h); (Lw)m—in— 最小润湿速率,m3/(m·h)。
经验值
8
填料塔的流体力学性能与传质性能
3. 填料的传质性能
1)填料润湿表面的计算
填料塔培训教材解析

规整填料用定位器(固定在塔壁上)
-
13
-
14
谢谢欣赏
-
15
-
6
3-2-3 填料塔的计算
塔径:关键是确定空塔气速 u=(50~85)%u泛 塔高:计算填料层高度的方法。
3-2-4 填料塔附件 填料支撑装置
液体分布器
液体再分布器
填料压紧器
床层定位器
除沫装置
-
7
散装填料支撑板
-
8
规整填料支撑板
-9Leabharlann 液体分布器-10
-
11
液体再分布器
-
12
散装填料用压紧器(不固定,随填料下移)
-
3
-
4
规整填料
-
5
3-2-2 填料塔的流体力学性能
一、气体通过填料层的压强降
二、液泛 特 征: 气体在液体中鼓泡,操作不稳定。 泛点气速:允许的最大气速,此值大为好。 影响泛点气速的因素: 填料特性、流体物性、
液气比 泛点气速确定:用埃克特通用图 三、润湿性能
与填料的材质、表面形状、装填方法及 液体喷淋量有关。 液体喷淋量用喷淋密度表示:单位时间内单 位塔截面上喷淋的液体体积。
填料塔培训教材
-
1
第二节 填料塔 3-2-1 填料 一、填料的性能 比表面积 空隙率
填料因子=/ (有干、湿填料因子) 3
二、选择填料的原则
比表面积大、空隙率大、润湿性能好、单位体积填料的 重量轻、造价低、机械强度高。
三、填料的材质
陶瓷 金属 塑料 四、填料类型
散装(乱堆)填料和规整填料
-
2
散装填料(乱堆填料)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,位于干填料压降线的左侧,且
基本上与干填料压降线平行。
2018/11/20
(4)载液区
当气速超过载点时,气体
【有关规律】载点气速随喷
对液膜的曳力较大,对液膜流 淋量增大而减小。
动产生阻滞作用,使液膜增厚
,填料层的持液量随气速的增 加而增大,此现象称为拦液。 开始发生拦液现象时的空塔气 速称为载点气速,曲线上的转
吸收设备——填料塔
吸 收
一、填料塔的结构与填料性能 二、填料塔的流体力学性能 三、填料塔的附件
2018/11/20
二、填料层内气液两相的流体力学特性
填料塔的流体力学性能主要包括填料层的持液量 、填料层的压降、液泛等。 1、填料层的持液量 在一定操作条件下,由于液膜与填料表面的摩擦
以及液膜与上升气体的摩擦,有部分液体停留在填
填料层内的气液分布不均 气体和液体在填料层内的沟流 气液的湍流脉动使气液微团停留时间不一致
2018/11/20
5、液体喷淋密度和填料表面的润湿
填料表面的润湿状况取决于塔内液体喷淋密度 及填料材质的表面润湿性能。 •喷淋密度U
——指单位塔截面积上,单位时间内喷淋的液体体积,以 U表示,单位为m3/(m2· h)。 为保证填料层的充分润湿,喷淋密度大于最小喷淋密度
【影响液泛的因素】影响因素很多,如填料的特性、
流体的物性及操作的液气比等。
2018/11/20
【特点】气体为分散相,液体为连续相。
正 常 操 作 时 的 填 料 塔
2018/11/20
填 料 塔 的 液 泛 现 象
2018/11/20
3、填料塔的液泛
液泛时的空塔气速
(2)影响液泛的因素 填料特性 影响液泛 的因素
折点称为载点。
载点气速
2018/11/20
(5)液泛区
【填料塔的正常操作范围】
若气速继续增大,到达泛点 从载点到泛点的载液区,是
时,由于液体不能顺利向下流 填料塔的正常操作范围。
动,使填料层的持液量不断增 大,填料层内几乎充满液体。 此时,气速增加很小便会引起 压降的剧增,此现象称为液泛
,开始发生液泛现象时的气速
5、液体喷淋密度和填料表面的润湿
填料表面的润湿状况取决于塔内液体喷淋密度 及填料材质的表面润湿性能。 •最小润湿速率LW
——指在塔截面上,单位长度填料周边的最小液体体积 流量。 ——其值可由经验公式计算,也可采用经验值。
称为泛点气速,以uF表示,曲 线上的拐点称为泛点。
2018/11/20
泛点气速
3、填料塔的液泛 【现象】在泛点气速下,持液量的增多使液相由分散 相变为连续相,而气相则由连续相变为分散相,此种 情况称为淹塔或液泛。 【危害】液泛时,气体呈气泡形式通过液层,传质速 率下降;液体被大量带出塔顶,塔的操作极不稳定, 甚至会被破坏。
uF
u
3、填料塔的液泛 (4)泛点气速的计算 ① 贝恩-霍根关联式
2 at V 0.2 uF L 1/4 V 1/8 lg[ ( 3 )( ) L ] A K ( ) ( ) g L V L
A、K 关联式常数,由表查出。 ② 埃克特(Eckert)通用关联图
散装填料的泛点气速可用埃克特通用关联图计算。
空塔气速
液体喷淋量 L3>L2>L1
【现象】两个拐点;三个区域。
【特点】三个区域内的 压降与空塔气速之间的 关系不同。
2018/11/20
(3)恒持液量区
【原因】当气速低于载点时,气
体流动对液膜的曳力很小,液体
流动不受气流的影响,填料表面 上覆盖的液膜厚度基本不变,因 而填料层的持液量不变。 【特点】此时△P/Z~u为一直线
△P/Z~u关系,称
为干填料压降线。 【特点】 △P/Z~u 为线性关系。
2018/11/20
空塔气速
(2)填料操作压降线
【构成】在不同液体喷淋
量下,填料层的△P/Z~u 关系,称为填料操作压降 线。 【特点】在一定的喷淋量
下, △P/Z随空塔气速的变
化曲线大致可为三段( 三个区域)。
2018/11/20
泛点气速 uF
~
ρL
μL ρV
L V
uF
流体物性
液气比
2018/11/20
~ uF ~ uF ~ uF ~ uF
3、填料塔的液泛 (3)泛点率 为保证填料塔正常操作,其操作气速应低于泛 点气速,操作气速与泛点气速的比值称为泛点率。
u 100% uF
散装填料 规整填料
安全系数
50% ~ 85% 60% ~ 95%
大。
2018/11/20
【填料层压降Δ P/Z与空塔气速u的关系曲线图】
【构成】将不同液体
喷淋量下的单位高度
填料层的压降Δ P/Z与 空塔气速u的关系标 绘在对数坐标纸上, 所得到的曲线簇。
空塔气速
【空塔气速】气体的体积流量除以塔截面积所得的
流速。
2018/11/20
(1)干填料压降线 在图中,直线0表 示无液体喷淋(L=0 )时,干填料的
横坐标
L V 0.5 ( ) V L
纵坐标
2 uF F V 0.5 ( ) L g L
埃克特通用关联图
H 2O L
4、填料塔的返混
在填料塔内,气液两相的逆流并不呈理想的 活塞流状态,而是存在着不同程度的返混。 返混的影响 传质推动力变小,传质效率降低放大效应。 造成返混现象原因
2018/11/20
2、填料层的压降 【产生原因】在操作过程中,从塔顶喷淋下来的液
体,依靠重力在填料表面成膜状向下流动,上升气
体与下降液膜的摩擦阻力形成了填料层的压降。 【影响因素】压降与液体喷淋量及气速有关:
(1)一定的气速下,液体喷淋量越大,压降越大;
(2)在一定的液体喷淋量下,气速越大,压降也越
料表面及其缝隙中。
【定义】单位体积填料层内所积存的液体体积,以
(m3液体)/(m3填料)表示。
2018/11/20
【持液量的影响】
一般来说,适当的持液量对填料塔操作的稳定性
和传质是有益的,可以提供更大的气液相接触面积;
但持液量过大,将减少填料层的空隙和气相流通
截面,使压降增大,处理能力下降。 【结论】持液量不宜太小,也不宜太大。