坐标系与参数方程午练专题练习(五)含答案人教版高中数学考点大全
高考数学压轴专题人教版备战高考《坐标系与参数方程》专项训练及答案

高考数学《坐标系与参数方程》课后练习一、131.已知点N 在圆224x y +=上,()2,0A -,()2,0B ,M 为NB 中点,则sin BAM ∠的最大值为( ) A .12B .13C.10D【答案】B 【解析】 【分析】设(2cos ,2sin )N αα,则(1cos ,sin )M αα+先求出AM 的斜率的最大值,再得出sin NAM ∠的最大值. 【详解】解:设(2cos ,2sin )N αα,则(1cos ,sin )M αα+,sin 0sin tan 1cos 2cos 3BAM αααα-∠==+++„, 1sin 3BAM ∴∠„, 故选:C . 【点睛】本题考查了直线与圆的位置关系,属中档题.2.在满足极坐标和直角坐标互的化条件下,极坐标方程222123cos 4sin ρθθ=+经过直角坐标系下的伸缩变换123x x y y⎧=⎪⎪⎨=''⎪⎪⎩后,得到的曲线是( ).A .直线B .椭圆C .双曲线D .圆【答案】D 【解析】 【分析】先把极坐标方程化为直角坐标方程,再经过直角坐标系下的伸缩变换,把直角坐标方程中的x ,y 分别换成得2x '',由此能求出结果. 【详解】 ∵极坐标方程222123+4cos sin ρθθ=∴22223cos 4sin 12ρθρθ+=∴直角坐标方程为223412x y +=,即22143xy +=∴经过直角坐标系下的伸缩变换1233x x y y⎧=⎪⎪⎨=''⎪⎪⎩后得到的曲线方程为22(2)(3)14x y ''+=,即22()()1x y ''+=. ∴得到的曲线是圆 故选D. 【点睛】本题考查曲线形状的判断,是基础题,解题时要认真审题,注意极坐标方程、直角坐标方程和直角坐标系下的伸缩变换公式的合理运用.3.如图所示,ABCD 是边长为1的正方形,曲线AEFGH ……叫作“正方形的渐开线”,其中¶AE ,¶EF ,·FG,¶GH ,……的圆心依次按,,,B C D A 循环,则曲线AEFGH 的长是( )A .3πB .4πC .5πD .6π【答案】C 【解析】 【分析】分别计算»AE ,»EF,»FG ,¼GH 的大小,再求和得到答案. 【详解】根据题意可知,»AE 的长度2π,»EF 的长度为π,»FG的长度为32π,¼GH 的长度为2π,所以曲线AEFGH 的长是5π. 【点睛】本题考察了圆弧的计算,意在考察学生的迁移能力和计算能力.4.化极坐标方程2cos 20ρθρ-=为直角坐标方程为( ) A .2202x y y +==或 B .2x =C .2202x y x +==或D .2y =【解析】由题意得,式子可变形为(cos 2)0ρρθ-=,即0ρ=或cos 20ρθ-=,所以x 2+y 2=0或x=2,选C.【点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,利用这个公式可以实现直角坐标与极坐标的相互转化.5.已知圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为3490cos sin ραρα--=,则直线与圆的位置关系是( ) A .相切 B .相离C .直线过圆心D .相交但直线不过圆心 【答案】D 【解析】 【分析】分别计算圆和直线的普通方程,根据圆心到直线的距离判断位置关系. 【详解】 圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数)224x y ⇒+=直线的极坐标方程为34903490cos sin x y ραρα--=⇐--= 圆心到直线的距离为:925d r =<=相交 圆心坐标代入直线不满足,所以直线不过圆心. 故答案选D 【点睛】本题考查了参数方程,极坐标方程,直线和圆心的位置关系,综合性较强,意在考查学生的综合应用能力.6.在极坐标中,为极点,曲线:上两点对应的极角分别为,则的面积为 A .B .C .D .【答案】A 【解析】将、两点的极角代入曲线的极坐标方程,求出、,将、的极角作差取绝对值得出,最后利用三角形的面积公式可求出的面积。
高考数学压轴专题人教版备战高考《坐标系与参数方程》全集汇编及答案解析

高考数学《坐标系与参数方程》课后练习一、131.设x 、y 满足223412,x y +=则2x y +的最大值为( )A .2B .3C .4D .6【答案】C 【解析】 【分析】由223412x y +=得出22143x y +=,表示椭圆,写出椭圆的参数方程,利用三角函数求2x y +的最大值.【详解】由题可得:22143x y +=则2cos (x y θθθ=⎧⎪⎨=⎪⎩为参数),有22cos x y θθ+=+14sin 22con θθ⎛⎫=+ ⎪ ⎪⎝⎭4sin 6πθ⎛⎫=+⎪⎝⎭. 因为1sin 16πθ⎛⎫-≤+≤ ⎪⎝⎭, 则: 44sin 46πθ⎛⎫-≤+≤ ⎪⎝⎭,所以2x y +的最大值为4. 故选:C. 【点睛】本题主要考查与椭圆上动点有关的最值问题,利用椭圆的参数方程,转化为三角函数求最值.2.在平面直角坐标系xOy 中,曲线C的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),直线l的方程为4x y +=,则曲线C 上的点到直线l 的距离的最小值是( ) ABC .1D .2【答案】B 【解析】 【分析】设曲线C上任意一点的坐标为),sinθθ,利用点到直线的距离公式结合辅助角公式可得出曲线C上的点到直线l的距离的最小值.【详解】设曲线C上任意一点的坐标为),sinθθ,所以,曲线C上的一点到直线l的距离为d==42sinπθ⎛⎫-+⎪=当()232k k Zππθπ+=+∈时,d取最小值,且mind== B.【点睛】本题考查椭圆参数方程的应用,考查椭圆上的点到直线距离的最值问题,解题时可将椭圆上的点用参数方程表示,利用三角恒等变换思想求解,考查运算求解能力,属于中等题.3.在极坐标系中,曲线1C的极坐标方程为2sinρθ=,曲线2C的极坐标方程为ρθ=,若曲线1C与2C交于A、B两点,则AB等于()A.1BC.2D.【答案】B【解析】【分析】由题意可知曲线1C与2C交于原点和另外一点,设点A为原点,点B的极坐标为()(),0,02ρθρθπ>≤<,联立两曲线的极坐标方程,解出ρ的值,可得出ABρ=,即可得出AB的值.【详解】易知,曲线1C与2C均过原点,设点A为原点,点B的极坐标为()(),0,02ρθρθπ>≤<,联立曲线1C与2C的坐标方程2sinρθρθ=⎧⎪⎨=⎪⎩,解得3πθρ⎧=⎪⎨⎪=⎩,因此,ABρ==故选:B.【点睛】本题考查两圆的相交弦长的计算,常规方法就是计算出两圆的相交弦方程,计算出弦心距,利用勾股定理进行计算,也可以联立极坐标方程,计算出两极径的值,利用两极径的差来计算,考查方程思想的应用,属于中等题.4.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( ) AB.CD.【答案】D 【解析】 【分析】先求出直线和圆的普通方程,再利用圆的弦长公式求弦长. 【详解】由题意得,直线l 的普通方程为y =x -4, 圆C 的直角坐标方程为(x -2)2+y 2=4, 圆心到直线l 的距离d=,直线l 被圆C 截得的弦长为= 【点睛】(1)本题主要考查参数方程极坐标方程与普通方程的互化,意在考察学生对这些知识的掌握水平和分析推理计算能力.(2)求直线和圆相交的弦长,一般解直角三角形,利用公式||AB =.5.已知曲线T的参数方程1x ky ⎧=⎪⎪⎨⎪=⎪⎩(k 为参数),则其普通方程是()A .221x y +=B .()2210x y x +=≠ C.00x y x ⎧>⎪=⎨<⎪⎩D.y =0x ≠)【答案】C 【解析】 【分析】 由已知1x k =得1k x=代入另一个式子即可消去参数k ,要注意分类讨论。
高考数学压轴专题人教版备战高考《坐标系与参数方程》知识点训练附答案

高中数学《坐标系与参数方程》复习知识点(1)一、131.在极坐标系中,曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为43cos ρθ=,若曲线1C 与2C 的关系为( )A .外离B .相交C .相切D .内含【答案】B 【解析】 【分析】将两曲线方程化为普通方程,可得知两曲线均为圆,计算出两圆圆心距d ,并将圆心距d 与两圆半径差的绝对值和两半径之和进行大小比较,可得出两曲线的位置关系. 【详解】在曲线1C 的极坐标方程两边同时乘以ρ,得24sin ρρθ=,化为普通方程得224x y y +=,即()2224x y +-=,则曲线1C 是以点()10,2C 为圆心,以12r =为半径的圆,同理可知,曲线2C 的普通方程为()222312x y -+=,则曲线2C 是以点()223,0C 为圆心,以223r =为半径的圆, 两圆圆心距为()()22023204d =-+-=,12223232r r -=-=-,12223r r +=+,1212r r d r r ∴-<<+,因此,曲线1C 与2C 相交,故选:B.【点睛】本题考查两圆位置关系的判断,考查曲线极坐标方程与普通方程的互化,对于这类问题,通常将圆的方程化为标准方程,利用两圆圆心距与半径和差的大小关系来得出两圆的位置关系,考查分析问题和解决问题的能力,属于中等题.2.如图所示,ABCD 是边长为1的正方形,曲线AEFGH ……叫作“正方形的渐开线”,其中¶AE ,¶EF ,·FG,¶GH ,……的圆心依次按,,,B C D A 循环,则曲线AEFGH 的长是( )A .3πB .4πC .5πD .6π【答案】C 【解析】 【分析】分别计算»AE ,»EF,»FG ,¼GH 的大小,再求和得到答案. 【详解】根据题意可知,»AE 的长度2π,»EF 的长度为π,»FG的长度为32π,¼GH 的长度为2π,所以曲线AEFGH 的长是5π. 【点睛】本题考察了圆弧的计算,意在考察学生的迁移能力和计算能力.3.化极坐标方程2cos 20ρθρ-=为直角坐标方程为( ) A .2202x y y +==或 B .2x =C .2202x y x +==或D .2y =【答案】C 【解析】由题意得,式子可变形为(cos 2)0ρρθ-=,即0ρ=或cos 20ρθ-=,所以x 2+y 2=0或x=2,选C.【点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,利用这个公式可以实现直角坐标与极坐标的相互转化.4.已知圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为3490cos sin ραρα--=,则直线与圆的位置关系是( ) A .相切 B .相离C .直线过圆心D .相交但直线不过圆心 【答案】D 【解析】 【分析】分别计算圆和直线的普通方程,根据圆心到直线的距离判断位置关系. 【详解】圆的参数方程2cos 2sin x y θθ=⎧⎨=⎩(θ为参数)224x y ⇒+= 直线的极坐标方程为34903490cos sin x y ραρα--=⇐--=圆心到直线的距离为:925d r=<=相交圆心坐标代入直线不满足,所以直线不过圆心.故答案选D【点睛】本题考查了参数方程,极坐标方程,直线和圆心的位置关系,综合性较强,意在考查学生的综合应用能力.5.参数方程(为参数)所表示的图象是A.B.C.D.【答案】D【解析】【分析】由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。
坐标系与参数方程练习题及参考答案

高二年数学选修4-4坐标系与参数方程测试班级:__________________ 座号:______ :___________________成绩:___________ 一、选择题〔共12题,每题5分〕1、点M的直角坐标是(1-,那么点M 的极坐标为〔 〕 A .(2,)3πB .(2,)3π-C .2(2,)3πD .(2,2),()3k k Z ππ+∈ 2、极坐标系中,以下各点与点P 〔ρ,θ〕〔θ≠k π,k ∈Z 〕关于极轴所在直线对称的是 〔 〕A .〔-ρ,θ〕B .〔-ρ,-θ〕C .〔ρ,2π-θ〕D .〔ρ,2π+θ〕 3.点P 的极坐标为〔1,π〕,那么过点P 且垂直于极轴的直线的极坐标方程是 〔 〕A .ρ=1B .ρ=cosθC .ρ=-θcos 1D .ρ=θcos 14.以极坐标系中的点〔1,1〕为圆心,1为半径的圆的方程是 〔 〕A .ρ=2cos(θ-4π) B .ρ=2sin(θ-4π) C .ρ=2cos(θ-1) D .ρ=2sin(θ-1) 5.极坐标方程cos 2sin 2ρθθ=表示的曲线为〔 〕A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆 6.假设直线的参数方程为12()23x tt y t=+⎧⎨=-⎩为参数,那么直线的斜率为〔 〕A .23 B .23- C .32 D .32- 7.在极坐标系中,以〔2,2πa 〕为圆心,2a为半径的圆的方程为〔 〕A .θρcos a =B .θρsin a =C .a =θρcosD .a =θρsin8.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),那么曲线是〔 〕A .线段B .双曲线的一支 C.圆 D.射线 9、在同一坐标系中,将曲线y=2sin3x 变为曲线y=sinx 的伸缩变换是〔 〕A .⎪⎩⎪⎨⎧==//213y y x xB .⎪⎩⎪⎨⎧==y y xx 213//C .⎩⎨⎧==//23y y x xD .⎩⎨⎧==y y x x 23// 10.以下在曲线sin 2()cos sin x y θθθθ=⎧⎨=+⎩为参数上的点是〔 〕A .1(,2B .31(,)42-C .D . 11、直线:3x-4y-9=0与圆:⎩⎨⎧==θθsin 2cos 2y x ,(θ为参数)的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心12、设P(x ,y)是曲线C :⎩⎨⎧θ=θ+-=sin y ,cos 2x 〔θ为参数,0≤θ<2π〕上任意一点,那么yx的取值范围是 〔 〕A .[-3,3]B .〔-∞,3〕∪[3,+∞]C .[-33,33]D .〔-∞,33〕∪[33,+∞]二、填空题〔共8题,各5分〕1、点A 的直角坐标为〔1,1,1〕,那么它的球坐标为 ,柱坐标为2、曲线的1cos 3sin --=θθρ直角坐标方程为____________________3、直线3()14x att y t=+⎧⎨=-+⎩为参数过定点_____________4、设()y tx t =为参数那么圆2240x y y +-=的参数方程为__________________________。
高考数学压轴专题人教版备战高考《坐标系与参数方程》知识点训练附答案

数学《坐标系与参数方程》高考复习知识点一、131.直线122x ty t=+⎧⎨=+⎩(t 是参数)被圆229x y +=截得的弦长等于( )A .125B .910C .925D .125【答案】D 【解析】 【分析】先消参数得直线普通方程,再根据垂径定理得弦长. 【详解】直线122x t y t=+⎧⎨=+⎩(t 是参数),消去参数化为普通方程:230x y -+=.圆心()0,0O 到直线的距离5d =,∴直线被圆229x y +=截得的弦长222312522955r d ⎛⎫=-=-= ⎪⎝⎭.故选D . 【点睛】本题考查参数方程化普通方程以及垂径定理,考查基本分析求解能力,属基础题.2.在同一直角坐标系中,曲线经过伸缩变换后所得到的曲线A .B .C .D .【答案】C 【解析】 【分析】 由,得代入函数,化简可得出伸缩变换后所得曲线的解析式。
【详解】 由伸缩变换得,代入,有,即.所以变换后的曲线方程为.故选:C 。
【点睛】本题考查伸缩变换后曲线方程的求解,理解伸缩变换公式,准确代入是解题的关键,考查计算能力,属于基础题。
3.在极坐标系中,已知圆C 经过点236P π⎛⎫⎪⎝⎭,,圆心为直线sin 24πρθ⎛⎫+= ⎪⎝⎭轴的交点,则圆C 的极坐标方程为 A .4cos ρθ= B .4sin ρθ=C .2cos ρθ=D .2sin ρθ=【答案】A 【解析】 【分析】求出圆C 的圆心坐标为(2,0),由圆C 经过点236P π⎛⎫⎪⎝⎭,得到圆C 过极点,由此能求出圆C 的极坐标方程. 【详解】 在sin 24πρθ⎛⎫+= ⎪⎝⎭中,令0θ=,得2ρ=, 所以圆C 的圆心坐标为(2,0). 因为圆C 经过点236P π⎛⎫⎪⎝⎭,,所以圆C 的半径()222322223cos26r π=+-⨯⨯=,于是圆C 过极点,所以圆C 的极坐标方程为4cos ρθ=. 故选A 【点睛】本题考查圆的极坐标方程的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查运算求解能力,考查函数与方程思想,属于中档题.4.已知曲线C 的极坐标方程为:22cos 2sin 0ρρθρθ--=,直线l 的极坐标方程为:4πθ=(ρ∈R ),曲线C 与直线l 相交于A B 、两点,则AB 为( )A 2B .2C 3D .23【答案】B 【解析】【分析】把圆和直线的极坐标方程都转化成直角坐标方程,可得弦AB 过圆心,则2AB r =。
坐标系与参数方程早练专题练习(五)含答案人教版高中数学考点大全

高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人得分
一、选择题
1.设曲线C的参数方程为
23c o s
13s i n
x
y
θ
θ
=+
⎧
⎨
=-+
⎩
(θ为参数),直线l的方程为
320
x y
-+=,则曲线C上到直线l距离为710
10
的点的个数为
A、1
B、2
C、3
D、4
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人得分
二、填空题
2.直线
3
2
3
x a t
y t
⎧
=+
⎪
⎨
⎪=
⎩
(t为参数,a为常数且0
>
a)被以原点为极点,x轴的正半。
高中数学选修4-4《坐标系与参数方程》练习题(含详解)

高中数学选修4-4《坐标系与参数方程》练习题(含详解)数学选修4-4 坐标系与参数方程[基础训练A组]一、选择题x?1?2t1.若直线的参数方程为?(t为参数),则直线的斜率为()y?2?3t?A.C.2332B.? D.?2332x?sin2?(?为参数)上的点是() 2.下列在曲线?y?cos??sin??A.(, B.(?2131,) C. D. 422x?2?sin?3.将参数方程?(?为参数)化为普通方程为() 2y?sin?A.y?x?2 B.y?x?2 C.y?x?2(2?x?3) D.y?x?2(0?y?1) 4.化极坐标方程?2cos0为直角坐标方程为()A.x2?y2?0或y?1 B.x?1 C.x2?y2?0或x?1 D.y?1 5.点M的直角坐标是(?,则点M的极坐标为()A.(2,3) B.(2,?3) C.(2,2?3) D.(2,2k??3),(k?Z)6.极坐标方程?cos??2sin2?表示的曲线为()A.一条射线和一个圆B.两条直线C.一条直线和一个圆 D.一个圆二、填空题 1.直线?x?3?4t?y?4?5t(t为参数)的斜率为______________________。
t?t??x?e?e2.参数方程?(t为参数)的普通方程为__________________。
t?ty?2(e?e)3.已知直线l1:?x?1?3t?y?2?4t(t为参数)与直线l2:2x?4y?5相交于点B,又点A(1,2),则AB?_______________。
1?x?2?t??2224.直线?(t为参数)被圆x?y?4截得的弦长为______________。
y??1?1t??25.直线xcos??ysin??0的极坐标方程为____________________。
三、解答题1.已知点P(x,y)是圆x2?y2?2y上的动点,(1)求2x?y的取值范围;(2)若x?y?a?0恒成立,求实数a的取值范围。
高考数学压轴专题人教版备战高考《坐标系与参数方程》全集汇编含答案

【最新】高考数学《坐标系与参数方程》练习题一、131.已知曲线Γ的参数方程为(3cos ln x t t t y t ⎧=-⎪⎨=⎪⎩其中参数t R ∈,,则曲线Γ( ) A .关于x 轴对称 B .关于y 轴对称C .关于原点对称D .没有对称轴【答案】C 【解析】 【分析】设()x f t =,()y g t = t R ∈,首先判断这两个函数都是奇函数,然后再判断函数关于原点对称. 【详解】设()x f t =,()y g t = t R ∈()()()()()333cos cos cos f t t t t t t t t t t x -=----=-+=--=-,()x f t ∴=是奇函数, ()()((ln ln g t g t t t -+=-+++((ln ln ln10t t =-+== ,()y g t ∴=也是奇函数,设点()()(),P f t g t 在函数图象上,那么关于原点的对称点是()()(),Q f t g t --,()f t Q 和()g t 都是奇函数,所以点Q 的坐标是()()(),Q f t g t --,可知点Q 在曲线上,∴ 函数图象关于原点对称.故选:C 【点睛】本题考查函数图象和性质的综合应用,意在考查转化与计算能力,属于中档题型.2.设曲线C 的参数方程为5cos ()15sin x y θθθ⎧=⎪⎨=-+⎪⎩为参数,直线l 10y -+=,则曲线C 上到直线l 的距离为52的点的个数为( ) A .1 B .2C .3D .4【答案】C【解析】 【分析】将圆C 化为普通方程,计算圆心到直线l 的距离,通过比较所求距离与52的关系即可得到满足条件的点的个数. 【详解】化曲线C 的参数方程为普通方程:()()223125x y -++=,圆心()3,1-到直线310x y -+=的距离3115522d ++==<, 所以直线和圆相交,过圆心和l 平行的直线和圆的2个交点符合要求, 与l 平行且与圆相切的直线和圆的一个交点符合要求,故有3个点符合题意, 故选C 【点睛】解决这类问题首先把曲线C 的参数方程为普通方程,然后利用圆心到直线的距离判断直线与圆的位置关系得出结论.3.曲线2cos sin x y θθ=⎧⎨=⎩(θ为参数)上的点到原点的距离的最大值为( )A .1B .3C .2D .4【答案】C 【解析】 【分析】根据点到直线的距离求最值. 【详解】曲线2cos sin x y θθ=⎧⎨=⎩(θ为参数)上的点到原点的距离为:2224cos sin 13cos 2θθθ+=+…,当且仅当cos 1θ=±时取得等号 故选C. 【点睛】本题考查椭圆参数方程的应用.4.参数方程(为参数)所表示的图象是A .B .C .D .【答案】D 【解析】 【分析】 由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学专题复习
《坐标系与参数方程》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.设曲线C 的参数方程为23c o s 13s i n x y θθ=+⎧⎨=-+⎩
(θ为参数),直线l 的方程为320x y -+=,则曲线C 上到直线l 距离为71010
的点的个数为 A 、1
B 、2
C 、3
D 、4 第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
2.极坐标方程分别为2cos ρθ=和sin ρθ=的两个圆的圆心距为 ;
3.(理)已知抛物线C 的参数方程为28,8.x t y t ⎧=⎨=⎩(t 为参数)若斜率为1的直线经。