高中数学专题练习常用逻辑用语
数学高中专题 常用逻辑用语

数学高中专题常用逻辑用语1、逻辑联结词:⑴且(and) :命题形式p q ∧;⑵或(or):命题形式p q ∨;⑶非(not):命题形式p ⌝.2、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p:)(,xpMx∈∀;全称命题p的否定⌝p:)(,xpMx⌝∈∃。
⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p:)(,xpMx∈∃;特称命题p的否定⌝p:)(,xpMx⌝∈∀;高考理科数学新课标对常用逻辑用语的要求:3、简单的逻辑连接词了解逻辑连接词或,且,非的含义4、全称量词与存在量词(1)理解全称量词与存在量词的意义(2)能正确的对含有一个量词的命题进行否定高考对常用逻辑用语主要考查逻辑联结词的应用、特(全)称命题的否定、充要条件的判断等.高考中集合属于基础题,多与不等式相结合考查集合的交、并、补运算及集合间的关系.近五年除了2012年及2016年其余都以小题形式出现,试题难度较小。
题型1: 充分条件、必要条件、充要条件的判断与证明。
此类题目出现的频率较高,多与不等式,三角,立体几何等知识点交汇出现。
1.(2015重庆理4)“1x >”是“12og ()l 20x +<”的( ).A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件5.(2015北京理4)设α,β是两个不同的平面,m 是直线且m α⊂,“//m β”是“//αβ”的( ). A. 充分而不必要条件 B.必要而不充分条件 C. 充分必要条件 D.既不充分也不必要条件 变式练习1.(2015天津理4,文4)设x ∈R ,则“21x -< ”是“220x x +->”的( ). A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件2.(2015安徽理3)设:1<<2p x ,:21xq >,则p 是q 成立的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 3.(2015陕西理6,文6)“sin cos αα=”是“cos 20α=”的( ). A .充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要 4.(2015湖北理5)设12,,,n a a a ∈R ,3n …. 若p :12,,,n a a a 成等比数列;q :22222221212312231()()()n n n n a a a a a a a a a a a a --++++++=+++ ,则( ). A. p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件题型2:判断含逻辑联结词的命题的真假1.(2015浙江理6)设,A B 是有限集,定义(,)()()d A B card A B card A B =- ,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集,A B ,“A B ≠”是“ (,)0d A B >”的充分必要条件; 命题②:对任意有限集,,A B C ,(,)(,)(,)d A C d A B d B C +…. 下列判断正确的是( ).A. 命题①和命题②都成立B. 命题①和命题②都不成立C. 命题①成立,命题②不成立D. 命题①不成立,命题②成立题型3: 全(特)称命题的否定1.(2015全国I 理3)设命题:p n ∃∈N ,22n n >,则p ⌝为( ). A .n ∀∈N ,22n n > B .n ∃∈N ,22n n … C .n ∀∈N ,22n n … D .n ∃∈N ,22n n = 变式练习1.(2015浙江理4)命题“**,()f n n ∀∈∈N N 且()f n n …的否定形式是( ). A. **,()f n n ∀∈∈N N 且()f n n > B. **,()f n n ∀∈∈N N 或()f n n > C. **00,()f n n ∃∈∈N N 且00()f n n > D. **00,()f n n ∃∈∈N N 或00()f n n >题型 4 四种命题及关系1(2015山东文5)设m ∈N ,命题“若0m >,则方程20x x m +-=有实根”的逆否命题 是( ).A. 若方程20x x m +-=有实根,则0m > B. 若方程20x x m +-=有实根,则0m … C. 若方程20x x m +-=没有实根,则0m > D. 若方程20x x m +-=没有实根,则0m …题型5:充分条件、必要条件、充要条件的判断与证明1.(2015湖南文3) 设x ∈R ,则“1x >”是“21x >”的( ). A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件2.(2015四川文4) 设,a b 为正实数,则“1a b >>”是“22log log 0a b >>”的( ). A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 变式练习1.(2015浙江文3)设a ,b 是实数,则“0a b +>”是“0ab >”的( ). A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件2.(2015重庆文2)“1x =”是“2210x x -+=”的( ). A. 充要条件 B.充分不必要条件 C. 必要不充分条件 D.既不充分也不必要条件3.(2015安徽文3)设p :3x <,q :13x -<<,则p 是q 成立的( ). A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件4.(2015北京文6)设a ,b 是非零向量,“a b =a b ⋅”是“//a b ”的( ). A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件 D .p 既不是q 的充分条件,也不是q 的必要条件1.命题“∀x ∈R ,x 3﹣x 2+1≤0”的否定是( )A .不存在x ∈R ,x 3﹣x 2+1≤0B .∃x 0∈R ,x﹣x+1≥0C .∃x 0∈R ,x﹣x+1>0D .∀x ∈R ,x 3﹣x 2+1>02..下列叙述中正确的是( )A .若,,a b c R ∈,则“20ax bx c ++≥”的充分条件是“240b ac -≤” B .若,,a b c R ∈,则“22ab cb >”的充要条件是“a c >”C .命题“对任意x R ∈,有20x ≥”的否定是“存在x R ∈,有20x ≥” D .l 是一条直线,,αβ是两个平面,若,l l αβ⊥⊥,则//αβ 3.下列四个结论:①若p q ∧是真命题,则p ⌝可能是真命题;②命题“2000,10x R x x ∃∈--<”的否定是“2,10x R x x ∃∈--≥”; ③“5a >且5b >-”是“0a b +>”的充要条件; ④当0a <时,幂函数a y x =在区间()0+∞,上单调递减. 其中正确结论的个数是( )A 、0个B 、 1个C 、2个D 、3个4.已知a ,b 都是实数,那么“>”是“lna >lnb”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 以下说法错误的是( )A .命题“若“x 2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x 2﹣3x+2≠0”B .“x=2”是“x 2﹣3x+2=0”的充分不必要条件C .若命题p :存在x 0∈R ,使得x 02﹣x 0+1<0,则¬p :对任意x ∈R ,都有x 2﹣x+1≥0D .若p 且q 为假命题,则p ,q 均为假命题 5.设a R ∈,则1a >是11a< 的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 6.若“x ∈[2,5]或x ∈{x|x <1或x >4}”是假命题,则x 的取值范围是 . 7.命题“∀x ∈R ,x 2≥0”的否定是 .8.若命题“∃x ∈R ,使x 2+(a ﹣1)x+1<0”是假命题,则实数a 的取值范围为 . 9.命题“若x 2﹣2x ﹣3>0,则x <﹣1或x >3”的逆否命题是 .10.若“∀x ∈[0,],tanx <m”是假命题,则实数m 的最大值为 .11.若命题“存在x ∈R ,使得2x 2﹣3ax+9<0成立”为假命题,则实数a 的取值范围是 .12.设x ∈R ,则“|x ﹣2|<1”是“x 2+x ﹣2>0”的 条件.(填充分不必要、必要不充分、充要条件、既不充分也不必要) 13.有下列命题:①双曲线与椭圆有相同的焦点;②“”是“2x 2﹣5x ﹣3<0”必要不充分条件;③“若xy=0,则x 、y 中至少有一个为0”的否命题是真命题.;④若p 是q 的充分条件,r 是q 的必要条件,r 是s 的充要条件,则s 是p 的必要条件; 其中是真命题的有: .(把你认为正确命题的序号都填上)14.已知命题p :x≤1,命题q :≥1,则命题p 是命题q 的 条件.15.(2015福建理7)若,l m 是两条不同的直线,m 垂直于平面α ,则“l m ⊥ ”是“//l α”的 ( B ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 16.(2015福建文12)“对任意π0,2x ⎛⎫∈ ⎪⎝⎭,sin cos k x x x <”是“1k <”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件17.(2015湖北文5) 1l ,2l 表示空间中的两条直线,若p :1l ,2l 是异面直线,q :1l ,2l 不相交,则( ).A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件。
高中数学第一章集合与常用逻辑用语考点专题训练(带答案)

高中数学第一章集合与常用逻辑用语考点专题训练单选题1、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.2、已知集合M={x|x=m−56,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则集合M,N,P的关系为()A.M=N=P B.M⊆N=PC.M⊆N P D.M⊆N,N∩P=∅答案:B分析:对集合M,N,P中的元素通项进行通分,注意3n−2与3p+1都是表示同一类数,6m−5表示的数的集合是前者表示的数的集合的子集,即可得到结果.对于集合M={x|x=m−56,m∈Z},x=m−56=6m−56=6(m−1)+16,对于集合N={x|x=n2−13,n∈Z},x=n2−13=3n−26=3(n−1)+16,对于集合P={x|x=p2+16,p∈Z},x=p2+16=3p+16,由于集合M,N,P中元素的分母一样,只需要比较其分子即可,且m,n,p∈Z,注意到3(n−1)+1与3p+1表示的数都是3的倍数加1,6(m−1)+1表示的数是6的倍数加1,所以6(m−1)+1表示的数的集合是前者表示的数的集合的子集,所以M⊆N=P.故选:B.3、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.4、设a,b是实数,集合A={x||x−a|<1,x∈R},B={x||x−b|>3,x∈R},且A⊆B,则|a−b|的取值范围为()A.[0,2]B.[0,4]C.[2,+∞)D.[4,+∞)答案:D分析:解绝对值不等式得到集合A,B,再利用集合的包含关系得到不等式,解不等式即可得解.集合A={x||x−a|<1,x∈R}={x|a−1<x<a+1},B={x||x−b|〉3,x∈R}={x|x<b−3或x>b+3}又A⊆B,所以a+1≤b−3或a−1≥b+3即a−b≤−4或a−b≥4,即|a−b|≥4所以|a−b|的取值范围为[4,+∞)故选:D5、设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M答案:A分析:先写出集合M,然后逐项验证即可由题知M={2,4,5},对比选项知,A正确,BCD错误故选:A6、已知集合A={(x,y)|x,y∈N∗,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6答案:C分析:采用列举法列举出A∩B中元素的即可.由题意,A∩B中的元素满足{y≥xx+y=8,且x,y∈N∗,由x+y=8≥2x,得x≤4,所以满足x+y=8的有(1,7),(2,6),(3,5),(4,4),故A∩B中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.7、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.8、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A分析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}.故选:A.多选题9、已知集合A={0,1,2},B={a,2},若B⊆A,则a=()A.0B.1C.2D.0或1或2答案:AB分析:由B⊆A,则B={0,2}或B={1,2},再根据集合相等求出参数的值;解:由B⊆A,可知B={0,2}或B={1,2},所以a=0或1.故选:AB.小提示:本题考查根据集合的包含关系求参数的值,属于基础题.10、已知集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},且x1、x2∈A,x3∈B,则下列判断正确的是()A.x1x2∈A B.x2x3∈BC.x1+x2∈B D.x1+x2+x3∈A答案:ABC分析:本题首先可根据题意得出A表示奇数集,B表示偶数集,x1、x2是奇数,x3是偶数,然后依次对x1x2、x2x3、x1+x2、x1+x2+x3进行判断,即可得出结果.因为集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},所以集合A表示奇数集,集合B表示偶数集,x1、x2是奇数,x3是偶数,A项:因为两个奇数的积为奇数,所以x1x2∈A,A正确;B项:因为一个奇数与一个偶数的积为偶数,所以x2x3∈B,B正确;C项:因为两个奇数的和为偶数,所以x1+x2∈B,C正确;D项:因为两个奇数与一个偶数的和为偶数,所以x1+x2+x3∈B,D错误,故选:ABC.11、已知命题p:∃x∈R,ax2−4x−4=0,若p为真命题,则a的值可以为()A.-2B.-1C.0D.3答案:BCD分析:根据给定条件求出p为真命题的a的取值范围即可判断作答,当a=0时,x=−1,p为真命题,则a=0,当a≠0时,若p为真命题,则Δ=16+16a≥0,解得a≥−1且a≠0,综上,p为真命题时,a的取值范围为a≥−1.故选:BCD12、已知集合A={x∈R|x2−3x−18<0},B={x∈R|x2+ax+a2−27<0},则下列命题中正确的是()A.若A=B,则a=−3B.若A⊆B,则a=−3C.若B=∅,则a≤−6或a≥6D.若B A时,则−6<a≤−3或a≥6答案:ABC分析:求出集合A,根据集合包含关系,集合相等的定义和集合的概念求解判断.A={x∈R|−3<x<6},若A=B,则a=−3,且a2−27=−18,故A正确.a=−3时,A=B,故D不正确.若A⊆B,则(−3)2+a⋅(−3)+a2−27≤0且62+6a+a2−27≤0,解得a=−3,故B正确.当B=∅时,a2−4(a2−27)≤0,解得a≤−6或a≥6,故C正确.故选:ABC.13、已知集合P={1,2},Q={x|ax+2=0},若P∪Q=P,则实数a的值可以是()A.−2B.−1C.1D.0答案:ABD分析:由题得Q⊆P,再对a分两种情况讨论,结合集合的关系得解.因为P∪Q=P,所以Q⊆P.由ax+2=0得ax=−2,当a=0时,方程无实数解,所以Q=∅,满足已知;当a≠0时,x=−2a ,令−2a=1或2,所以a=−2或−1.综合得a=0或a=−2或a=−1.故选:ABD小提示:易错点睛:本题容易漏掉a=0. 根据集合的关系和运算求参数的值时,一定要注意考虑空集的情况,以免漏解.填空题14、已知集合A={x|3≤x<7},C={x|x>a},若A⊆C,求实数a的取值范围_______.答案:(−∞,3)分析:根据集合的包含关系画出数轴即可计算.∵A⊆C,∴A和C如图:∴a<3.所以答案是:(−∞,3).15、若A={x|x2+(m+2)x+1=0,x∈R},且A∩R+=∅,则m的取值范围是__.答案:m>﹣4.解析:根据题意可得A是空集或A中的元素都是小于等于零的,然后再利用判别式以及韦达定理求解即可.解:A∩R+=∅知,A有两种情况,一种是A是空集,一种是A中的元素都是小于等于零的,若A=∅,则Δ=(m +2)2﹣4<0,解得﹣4<m<0 ,①若A≠∅,则Δ=(m +2)2﹣4≥0,解得m≤﹣4或m≥0,又A中的元素都小于等于零∵两根之积为1,∴A中的元素都小于0,∴两根之和﹣(m+2)<0,解得m>﹣2∴m≥0,②由①②知,m>﹣4,所以答案是:m>﹣4.小提示:易错点点睛:本题考查利用交集的结果求参数,本题在求解中容易忽略A=∅的讨论,导致错解,同时本题也可以采取反面考虑结合补集思想求解.16、设集合A={−4,2m−1,m2},B={9,m−5,1−m},又A∩B={9},求实数m=_____.答案:−3分析:根据A∩B={9}得出2m−1=9或m2=9,再分类讨论得出实数m的值.因为A∩B={9},所以9∈A且9∈B,若2m−1=9,即m=5代入得A={−4,9,25},B={9,0,−4},∴A∩B={−4,9}不合题意;若m2=9,即m=±3.当m=3时,A={−4,5,9},B={9,−2,−2}与集合元素的互异性矛盾;当m=−3时,A={−4,−7,9},B={9,−8,4},有A∩B={9}符合题意;综上所述,m=−3.所以答案是:−3解答题17、已知集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0},集合C={x|x2+2x−8=0}.(1)若A∩B={2},求实数a的值;(2)若A∩B≠∅,A∩C=∅,求实数a的值.答案:(1)−3(2)−2分析:(1)求出集合B={2,3},由A∩B={2},得到2∈A,由此能求出a的值,再注意3∉A检验即可;(2)求出集合C={−4,2},由A∩B≠∅,A∩C=∅,得3∈A,由此能求出a,最后同样要注意检验.(1)因为集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0}={2,3},且A∩B={2},所以2∈A ,所以4−2a +a 2−19=0,即a 2−2a −15=0,解得a =−3或a =5.当a =−3时,A ={x |x 2+3x −10=0}={−5,2},A ∩B ={2},符合题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},A ∩B ={2,3},不符合题意.综上,实数a 的值为−3.(2)因为A ={x |x 2−ax +a 2−19=0},B ={2,3},C ={x |x 2+2x −8=0}={−4,2},且A ∩B ≠∅,A ∩C =∅,所以3∈A ,所以9−3a +a 2−19=0,即a 2−3a −10=0,解得a =−2或a =5.当a =−2时,A ={x |x 2+2x −15=0}={−5,3},满足题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},不满足题意.综上,实数a 的值为−2.18、设α:m −1≤x ≤2m ,β:2≤x ≤4,m ∈R ,α是β的必要条件,但α不是β的充分条件,求实数m 的取值范围.答案:[2,3]分析:由题意可知α是β的必要不充分条件,可得出集合的包含关系,进而可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.由题意可知,α是β的必要不充分条件,所以,{x |m −1≤x ≤2m }{x |2≤x ≤4},所以{m −1≤22m ≥4,解之得2≤m ≤3. 因此,实数m 的取值范围是[2,3].。
高中常用逻辑用语

高中常用逻辑用语1. 高中常用逻辑用语啊,那可太重要啦!就像我们走路需要看清路一样,逻辑用语能让我们的思维更清晰呀!比如“如果明天下雨,我就不出门”,这就是一个简单的逻辑关系嘛。
2. 嘿,高中常用逻辑用语,不就是帮我们理清思路的好帮手嘛!就好比在迷宫里找到正确的路线一样。
像“要么选文科,要么选理科”,是不是很直白?3. 哇塞,高中常用逻辑用语真的很神奇呢!它就像一把钥匙,能打开我们思维的大门呀!“所有的三角形内角和都是 180 度”,这就是一个典型例子呀。
4. 高中常用逻辑用语呀,那可是学习中不可或缺的呀!这不就跟我们每天要吃饭一样重要嘛!“只要努力学习,就会取得好成绩”,大家都懂吧?5. 哎呀呀,高中常用逻辑用语,简直就是思维的导航仪呀!就像在海上航行需要指南针一样。
“没有一个人不喜欢美好的事物”,是不是这样?6. 嘿哟,高中常用逻辑用语,可太有意思啦!它就像游戏里的规则,让一切都有条有理呢!比如“只有认真听讲,才能学好知识”。
7. 哇哦,高中常用逻辑用语,那可是相当重要哇!就好像盖房子需要坚实的基础一样。
“有的同学喜欢数学”,这就是一种存在呀。
8. 高中常用逻辑用语,不就是让我们说话做事更有条理嘛!像给混乱的线团找到线头一样。
“若一个数是偶数,则它能被 2 整除”,多清晰呀。
9. 哎呀,高中常用逻辑用语,真是神奇的东西呢!就像魔法棒一样能让我们的思维变得更厉害!“不是正数就是负数”,很简单易懂吧。
10. 高中常用逻辑用语,那绝对是学习的好帮手呀!就跟好朋友一样可靠呢!“只要坚持锻炼,身体就会健康”,这道理多浅显。
我的观点结论就是:高中常用逻辑用语非常重要,能帮助我们更好地理解和表达,一定要好好掌握呀!。
高中数学常用逻辑用语符号有哪些

高中数学常用逻辑用语符号有哪些1、几何符号⊥ ∥ ∠ ⌒ ⊙ ≡ ≌ △2、代数符号∝ ∧ ∨ ~∫ ≠ ≤ ≥ ≈ ∞ ∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等.4、集合符号∪ ∩ ∈5、特殊符号∑ π(圆周率)6、推理符号|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≤ ∈ ←↑ → ↓ ↖ ↗ ↘ ↙ ∥ ∧ ∨&; §① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑩Γ Δ Θ Λ Ξ Ο Π Σ Φ Χ Ωα β γ δ ε ζ η θ ι κ λ μ νξ ο π ρ σ τ υ φ χ ψ ωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ∥ ∧ ∨ ∩ ∪ ∫ ∮∴ ∵ ∶ ∷ ∽ ≈ ≌ ≒ ≠ ≡ ≤ ≥ ≧ ≮ ≯ ⊕ ⊙ ⊥⊿ ⌒ ℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π.8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),.“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“?”是“包含”符号等.9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x 的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等.。
专题02 常用逻辑用语(学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】一、充分条件、必要条件、充要条件1高中数学53个题型归纳与方法技巧总结篇专题02常用逻辑用语.定义如果命题“若p ,则q ”为真(记作p q ⇒),则p 是q 的充分条件;同时q 是p 的必要条件.2.从逻辑推理关系上看(1)若p q ⇒且q p ,则p 是q 的充分不必要条件;(2)若p q 且q p ⇒,则p 是q 的必要不充分条件;(3)若p q ⇒且q p ⇒,则p 是q 的的充要条件(也说p 和q 等价);(4)若p q 且q p ,则p 不是q 的充分条件,也不是q 的必要条件.对充分和必要条件的理解和判断,要搞清楚其定义的实质:p q ⇒,则p 是q 的充分条件,同时q 是p 的必要条件.所谓“充分”是指只要p 成立,q 就成立;所谓“必要”是指要使得p 成立,必须要q 成立(即如果q 不成立,则p 肯定不成立).二.全称量词与存在童词(1)全称量词与全称量词命题.短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题叫做全称量词命题.全称量词命题“对M 中的任意一个x ,有()p x 成立”可用符号简记为“,()x M p x ∀∈”,读作“对任意x 属于M ,有()p x 成立”.(2)存在量词与存在量词命题.短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题叫做存在量词命题.存在量词命题“存在M 中的一个0x ,使0()p x 成立”可用符号简记为“00,()x M P x ∃∈”,读作“存在M 中元素0x ,使0()p x 成立”(存在量词命题也叫存在性命题).三.含有一个量词的命题的否定(1)全称量词命题:,()p x M p x ∀∈的否定p ⌝为0x M ∃∈,0()p x ⌝.(2)存在量词命题00:,()p x M p x ∃∈的否定p ⌝为,()x M p x ∀∈⌝.注:全称、存在量词命题的否定是高考常见考点之一.【方法技巧与总结】1.从集合与集合之间的关系上看设{}{}|(),|()A x p x B x q x ==.(1)若A B ⊆,则p 是q 的充分条件(p q ⇒),q 是p 的必要条件;若A B ,则p 是q 的充分不必要条件,q 是p 的必要不充分条件,即p q ⇒且q p ;注:关于数集间的充分必要条件满足:“小⇒大”.(2)若B A ⊆,则p 是q 的必要条件,q 是p 的充分条件;(3)若A B =,则p 与q 互为充要条件.2.常见的一些词语和它的否定词如下表原词语等于)(=大于)(>小于)(<是都是任意(所有)至多有一个至多有一个否定词语不等于)(≠小于等于)(≤大于等于)(≥不是不都是某个至少有两个一个都没有(1)要判定一个全称量词命题是真命题,必须对限定集合M 中的每一个元素x 证明其成立,要判断全称量词命题为假命题,只要能举出集合M 中的一个0x ,使得其不成立即可,这就是通常所说的举一个反例.(2)要判断一个存在量词命题为真命题,只要在限定集合M 中能找到一个0x 使之成立即可,否则这个存在量词命题就是假命题.【题型归纳目录】题型一:充分条件与必要条件的判断题型二:根据充分必要条件求参数的取值范围题型三:全称量词命题与存在量词命题的真假题型四:全称量词命题与存在量词命题的否定题型五:根据命题的真假求参数的取值范围【典例例题】题型一:充分条件与必要条件的判断例1.(2022·河北·模拟预测)“11a <”是“2,20x x x a ∃∈-+<R ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例2.(2022·重庆·三模)已知0a >且1a ≠,“函数()x f x a =为增函数”是“函数()1a g x x -=在()0,∞+上单调递增”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例3.(2022·湖北·模拟预测)在等比数列{}n a 中,已知20200a >,则“20212024a a >”是“20222023a a >”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例4.(2022·山东·德州市教育科学研究院二模)已知m ,n 是两条不重合的直线,α是一个平面,n ⊂α,则“m α⊥”是“m n ⊥”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例5.(2022·四川·宜宾市教科所三模(理))已知两条直线m ,n 和平面α,则m n ⊥的一个充分条件是()A .m α⊥且n α⊥B .m α∥且n ⊂αC .m α⊥且n ⊂αD .m α∥且n α∥(多选题)例6.(2022·山东临沂·二模)已知a ,b ∈R ,则使“1a b +>”成立的一个必要不充分条件是()A .221a b +>B .||||1a b +>C .221a b +>D .4110b a b++>【方法技巧与总结】1.要明确推出的含义,是p 成立q 一定成立才能叫推出而不是有可能成立.2.充分必要条件在面对集合问题时,一定是小集合推出大集合,而大集合推不出小集合.3.充分必要条件考察范围广,失分率高,一定要注意各个知识面的培养.题型二:根据充分必要条件求参数的取值范围例7.(2022·湖南怀化·一模)已知,a R ∈,且“x a >”是“22x x >”的充分不必要条件,则a 的取值范围是___________.例8.(2022·浙江·高三专题练习)若2()4x a -<成立的一个充分不必要条件是1102x+≤-,则实数a 的取值范围为()A .(,4]-∞B .[1,4]C .(1,4)D .(1,4]例9.(2022·山西晋中·二模(理))已知条件p :11x -<<,q :x m >,若p 是q 的充分不必要条件,则实数m 的取值范围是()A .[)1,-+∞B .(),1-∞-C .()1,0-D .(],1-∞-例10.(2022·河南平顶山·高三期末(文))若1102x+≤-是()24x a -<成立的一个充分不必要条件,则实数a 的取值范围为()A .(],4 -B .[]1,4C .()1,4D .(]1,4例11.(2022·全国·高三专题练习(文))若关于x 的不等式1x a -<成立的充分条件是04x <<,则实数a 的取值范围是()A .(-∞,1]B .(-∞,1)C .(3,+∞)D .[3,+∞)例12.(2022·湖南怀化·一模)已知,a R ∈,且“x a >”是“22x x >”的充分不必要条件,则a 的取值范围是___________.例13.(2022·重庆·高三阶段练习)若不等式x a <的一个充分条件为20x -<<,则实数a 的取值范围是___________.例14.(2022·全国·高三专题练习(文))已知集合233|1,,224A y y x x x ⎧⎫⎡⎤==-+∈⎨⎬⎢⎥⎣⎦⎩⎭,{}2|1B x x m =+≥.若“x A ∈”是“x B ∈”的充分条件,则实数m 的取值范围为________.例15.(2022·全国·高三专题练习)已知函数()f x A ,关于x 的不等式2()(21)0x m x m --+≤的解集为B .(1)当m =2时,求()A B R ;(2)若x ∈A 是x ∈B 的充分条件,求实数m 的取值范围.例16.(2022·天津·汉沽一中高三阶段练习)不等式5212xx ->+的解集是A ,关于x 的不等式22450x mx m --≤的解集是B .(1)若1m =,求A B ;(2)若A B B ⋃=,求实数m 的取值范围.(3)设:p 实数x 满足22430x ax a -+<,其中>0a ,命题:q 实数x 满足2260280x x x x ⎧--≤⎨+->⎩.若p 是q 的必要不充分条件,求实数a 的取值范围.例17.(2022·陕西·武功县普集高级中学高三阶段练习(理))已知条件{}22:4410p A x x ax a =-+-≤∣,条件{}2:20q B xx x =--≤∣.U =R .(1)若1a =,求()U A B ⋂ .(2)若q 是p 的必要不充分条件,求a 的取值范围.【方法技巧与总结】1.集合中推出一定是小集合推大集合,注意包含关系.2.在充分必要条件求解参数取值范围时,要注意端点是否能取到问题,容易出错.题型三:全称量词命题与存在量词命题的真假例18.(2022·黑龙江齐齐哈尔·三模(理))已知01b a <<<,下列四个命题:①(0,)∀∈+∞x ,x x a b >,②(0,1)x ∀∈,log log a b x x >,③(0,1)x ∃∈,a b x x >,④(0,)x b ∃∈,log x a a x >.其中是真命题的有()A .①③B .②④C .①②D .③④例19.(2022·江西·二模(理))已知命题1p :存在00x >,使得0044+≤x x ,命题2p :对任意的x ∈R ,都有tan 2x =22tan 1tan xx-,命题3p :存在0x ∈R ,使得003sin 4cos 6+=x x ,其中正确命题的个数是()A .0B .1C .2D .3例20.(2022·河南·新乡县高中模拟预测(理))已知函数()f x 和()g x 的定义域均为[],a b ,记()f x 的最大值为1M ,()g x 的最大值为2M ,则使得“12M M >”成立的充要条件为()A .[]1,x a b ∀∈,[]2,x a b ∀∈,()()12f x g x >B .[]1,x a b ∀∈,[]2,x a b ∃∈,()()12f x g x >C .[]1,x a b ∃∈,[]2,x a b ∀∈,()()12f x g x >D .[],x a b ∀∈,()()f xg x >例21.(2022·浙江·高三专题练习)下列命题中,真命题为()A .存在0x R ∈,使得00x e ≤B .直线a b ⊥,a ⊂平面α,平面b αβ= ,则平面αβ⊥C .224sin (,)sin y x x k k Z xπ=+≠∈最小值为4D .1a >,1b >是1ab >成立的充分不必要条件(多选题)例22.(2022·全国·高三专题练习)下列命题中的真命题是()A .∀x ∈R ,2x -1>0B .∀x ∈N *,(x -1)2>0C .∃x ∈R ,lg x <1D .∃x ∈R ,tan x =2例23.(2022·全国·高三专题练习)下列命题中正确的是_____(写出正确命题的序号)(1)[]0,x a b ∃∈,使()()00f x g x >,只需()()max min f x g x >;(2)[],x a b ∀∈,()()f x g x >恒成立,只需()()min 0f x g x ->⎡⎤⎣⎦;(3)[]1,x a b ∀∈,[]2,x c d ∈,()()12f x g x >成立,只需()()min max f x g x >;(4)[]1,x a b ∃∈,[]2,x c d ∈,()()12f x g x >,只需()()min min f x g x >.【方法技巧与总结】1.全称量词命题与存在量词命题的真假判断既要通过汉字意思,又要通过数学结论.2.全称量词命题和存在量词命题的真假性判断较为简单,注意细节即可.题型四:全称量词命题与存在量词命题的否定例24.(2022·四川成都·三模(理))命题“x ∀∈R ,e 20x +>”的否定是().A .0x ∃∈R ,0e 20x +≤B .x ∀∈R ,e 20x +≤C .0x ∃∈R ,0e 20x +>D .0x ∀∈R ,0e 20x +<例25.(2022·云南昆明·模拟预测(文))已知命题p :*N n ∀∈,22n n +≥,则p ⌝为()A .*N n ∀∉,22n n +<B .*N n ∀∈,22n n +<C .*0N n ∃∉,2002n n +<D .*0N n ∃∈,2002n n +<例26.(2022·江西赣州·二模(文))已知命题p :x ∀∈R ,sin cos x x +≥p ⌝为()A .x ∀∈R ,sin cos x x +<B .x ∃∉R ,sin cos x x +<C .x ∀∉R ,sin cos x x +<D .x ∃∈R ,sin cos x x +<例27.(2022·辽宁·建平县实验中学模拟预测)命题“()00,x ∃∈+∞,00ln 1x x ≥-”的否定是()A .()00,x ∃∈+∞,00ln 1x x <-B .()00,x ∃∉+∞,00ln 1x x ≥-C .()0,x ∀∈+∞,ln 1x x <-D .()0,x ∀∉+∞,ln 1x x ≥-例28.(2022·山东潍坊·二模)十七世纪,数学家费马提出猜想:“对任意正整数2n >,关于x ,y ,z 的方程n n n x y z +=没有正整数解”,经历三百多年,1995年数学家安德鲁·怀尔斯给出了证明,使它终成费马大定理,则费马大定理的否定为()A .对任意正整数n ,关于x ,y ,z 的方程n n n x y z +=都没有正整数解B .对任意正整数2n >,关于x ,y ,z 的方程n n n x y z +=至少存在一组正整数解C .存在正整数2n ≤,关于x ,y ,z 的方程n n n x y z +=至少存在一组正整数解D .存在正整数2n >,关于x ,y ,z 的方程n n n x y z +=至少存在一组正整数解例29.(2022·全国·高三专题练习(文))已知命题p :存在一个无理数,它的平方是有理数,则p ⌝为()A .任意一个无理数,它的平方不是有理数B .存在一个无理数,它的平方不是有理数C .任意一个无理数,它的平方是有理数D .存在一个无理数,它的平方是无理数例30.(2022·山西晋中·模拟预测(理))命题p :0x ∀≥,222e 3x x -+≤,则¬p 为___________.【方法技巧与总结】1.全称量词命题与存在量词命题的否定是将条件中的全称量词和存在量词互换,结论变否定.1.全称量词命题和存在量词命题的否定要注意否定是全否,而不是半否.题型五:根据命题的真假求参数的取值范围例31.(2022·山东青岛·一模)若命题“R x ∀∈,210ax +≥”为真命题,则实数a 的取值范围为()A .0a >B .0a ≥C .0a ≤D .1a ≤例32.(2022·浙江·高三专题练习)若命题“存在R x ∈,使220x x m ++≤”是假命题,则实数m 的取值范围是()A .(],1-∞B .(),1-∞C .()1,+∞D .[)1,+∞例33.(2022·江苏·南京市宁海中学模拟预测)若命题“[]1,4x ∀∈时,2x m >”是假命题,则m 的取值范围()A .16m ≥B .m 1≥C .16m <D .1m <例34.(2022·黑龙江齐齐哈尔·二模(文))若命题“[]()21,3,2130a ax a x a ∃∈---+-<”为假命题,则实数x 的取值范围为()A .[]1,4-B .50,3⎡⎤⎢⎥⎣⎦C .[]51,0,43⎡⎤⎢⎥⎣-⎦ D .[)51,0,43⎛⎤- ⎥⎝⎦例35.(2022·全国·高三专题练习)若“[,34x ππ∀∈-,tan x m ≥”是真命题,则实数m 的最大值为___________.例36.(2022·全国·高三专题练习)已知定义在R 上的函数()h x 满足'2()()0h x h x +>且21(1)e h =,其中2x1()e h x >的解集为A .函数21()1x x f x x -+=-,()()1xg x a a =>,若1x A ∀∈,2x A ∃∈使得()()12f x g x =,则实数a 的取值范围是___________.例37.(2022·湖北·荆门市龙泉中学二模)若命题“0,,63x ππ⎡⎤∃∈⎢⎥⎣⎦0tan x m >”是假命题,则实数m 的取值范围是__________.例38.(2022·全国·高三专题练习)若“[]01,1x ∃∈-,020x a +->”为假命题,则实数a 的最小值为______.例39.(2022·全国·高三专题练习)在①x ∃∈R ,2220x ax a ++-=,②a ∃∈R ,使得区间()2,4A =,(),3B a a =满足A B =∅ 这两个条件中任选一个,补充在下面的横线上,并解答.已知命题p :[]1,2x ∀∈,20x a -≥,命题q :______,p ,q 都是真命题,求实数a 的取值范围.例40.(2022·全国·高三专题练习)若f (x )=x 2-2x ,g (x )=ax +2(a >0),∀x 1∈[-1,2],∃x 0∈[-1,2],使g (x 1)=f (x 0),求实数a 的取值范围.【方法技巧与总结】1.在解决求参数的取值范围问题上,可以先令两个命题都为真命题,如果哪个是假命题,去求真命题的补级即可.2.全称量词命题和存在量词命题的求参数问题相对较难,要注重端点出点是否可以取到.【过关测试】一、单选题1.(2022·河北·模拟预测)已知2:10p x ax -+=无解,()2:()4q f x a x =-为增函数,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2022·北京房山·二模)已知,αβ是两个不同的平面,直线l α⊄,且αβ⊥,那么“//l α”是“l β⊥”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.(2022·江苏·华罗庚中学高三阶段练习)若1z ,2z 为复数,则“12z z -是纯虚数”是“1z ,2z 互为共轭复数”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4.(2022·全国·高三专题练习)命题“12x ∀≤≤,220x a -≤”是真命题的一个必要不充分条件是()A .1a ≥B .3a ≥C .2a ≥D .4a ≤5.(2022·全国·高三专题练习)已知下列四个命题:正确的是()1p :00x ∃>,使得00ln 1x x >-;2p :R x ∀∈,都有210x x -+>;3p :00x ∃>,使得001ln1x x >-+;4p :()0,x ∀∈+∞,使得121log 2xx ⎛⎫> ⎪⎝⎭.A .2p ,4pB .1p ,4pC .2p ,3pD .1p ,3p 6.(2022·重庆南开中学模拟预测)命题“2x ∀≥,24x ≥”的否定为()A .02x ∃≥,204x <B .2x ∀≥,24x <C .02x ∃<,204x <D .2x ∀<,24x <7.(2022·江西景德镇·模拟预测(理))已知命题:函数32()(21)(0,0)f x x ax m a x m a m =++--->>,且关于x 的不等式|()|f x m <的解集恰为(0,1),则该命题成立的必要非充分条件为()A .m a ≥B .m a ≤C .2m a ≥D .2m a ≤8.(2022·全国·高三专题练习)定义{|,}A B x x A x B -=∈∉,设A 、B 、C 是某集合的三个子集,且满足()()A B B A C -⋃-⊆,则()()A C B B C ⊆-⋃-是A B C =∅ 的()A .充要条件B .充分非必要条件C .必要非充分条件D .既非充分也非必要条件二、多选题9.(2022·广东茂名·模拟预测)下列四个命题中为真命题的是()A .“a b <”是“22ac bc <”的必要不充分条件B .设,A B 是两个集合,则“A B A = ”是“A B ⊆”的充要条件C .“0,0x x e ∀>>”的否定是“0,0x x e ∃≤≤”D .8名同学的数学竞赛成绩分别为:80,68,90,70,88,96,89,98,则该数学成绩的15%分位数为70(注:一般地,一组数据的第P 百分位数是这样一个值,它使得这组数据中至少有%P 的数据小于或者等于这个值,且至少有()100%P -的数据大于或者等于这个值.)10.(2022·全国·高三专题练习)设0a >,0b >,且a b ,则“2a b +>”的一个必要条件可以是()A .332a b +>B .222a b +>C .1ab >D .112a b+>11.(2022·辽宁实验中学模拟预测)已知x ,y 均为正实数,则下列各式可成为“x y <”的充要条件是()A .11x y>B .sin sin x y x y ->-C .cos cos x y x y -<-D .22e e x y x y -<-12.(2022·湖北·武汉市武钢三中高三阶段练习)下列命题正确的是()A .“关于x 的不等式20mx x m ++>在R 上恒成立”的一个必要不充分条件是14m >B .设,x y ∈R ,则“2x 且2y ”是“224x y + ”的必要不充分条件C .“1a >”是“11a<”的充分不必要条件D .命题“[]0,1,0x x a ∃∈+ ”是假命题的实数a 的取值范围为{0}aa >∣三、填空题13.(2022·河南·南阳中学高三阶段练习(文))若命题“20001,30x x ax a ∃>-++<”是假命题,则a 的取值范围是_______.14.(2022·浙江·高三学业考试)已知函数2()23=-+f x x x ,2()log g x x m =+,若对[]12,4x ∀∈,[]28,16x ∃∈,使得12()()f x g x ≥,则实数m 的取值范围为______.15.(2022·全国·模拟预测(理))已知函数()()2221f x x ax a a =-+-∈R ,则“方程()0f x =在区间(),0 -和()1,+∞上各有一个解”的一个充分不必要条件是a =______.(写出满足条件的一个值即可)16.(2022·全国·高三专题练习)已知():ln p f x x a x =-在[)2+∞,上单调递增,:q a m <.若p 是q 的充分不必要条件,则实数m 的取值范围为____________.四、解答题17.(2022·全国·高三专题练习)已知函数()f x =的定义域为集合A ,函数()g x =B ,(1)当0a =时,求A B ;(2)设命题:p x A ∈,命题:q x B ∈,p q 是的充分不必要条件,求实数a 的取值范围.18.(2022·全国·高三专题练习)已知集合11122x A x ⎧⎫-=-<⎨⎬⎩⎭,{}227100B x x ax a =-+<,a ∈R .(1)当0a >时,x A ∈是x B ∈的充分条件,求实数a 的取值范围;(2)若R B A ⊆ ,求实数a 的取值范围.19.(2022·全国·高三专题练习)已知p :22114x y m m+=+-表示焦点在x 轴上的椭圆,q :2,10x R x mx ∃∈-+<,(1)若p 是真命题,求m 的取值范围;(2)若p ,q 都是真命题,求m 的取值范围.20.(2022·全国·高三专题练习)设:24p x ≤<,q :实数x 满足()222300x ax a a --<>.(1)若1a =,且,p q 都为真命题,求x 的取值范围;(2)若p 是q 的充分不必要条件,求实数a 的取值范围.21.(2022·全国·高三专题练习)已知集合{}2,1x A y y x ==≤,{}21,R B x a x a a =+≤≤-∈.求:(1)若A B =∅ ,求实数a 的取值范围.(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数a 的取值范围22.(2022·全国·高三专题练习)已知幂函数2242()(1)m m f x m x -+=-在(0,)+∞上单调递增,函数()2g x x k =-.(1)求m 的值;(2)当[1,2)x ∈时,记(),()f x g x 的值域分别为集合A ,B ,设:,:p x A q x B ∈∈,若p 是q 成立的必要条件,求实数k 的取值范围.(3)设2()()1F x f x kx k =-+-,且|()|F x 在[0,1]上单调递增,求实数k 的取值范围.。
常用逻辑用语高一数学

第02练 常用逻辑用语1.充分、必要条件的判断: (1)定义法:①分清条件和结论:分清哪个是条件,哪个是结论; ②找推式:判断“q p ⇒”及“p q ⇒”的真假; ③下结论:根据推式及定义下结论.(2)等价法:将命题转化为另一个等价的又便于判断真假的命题。
(3)集合法:写出集合A={x|p(x)}及B={x|q(x)},利用集合之间的包含关系进行判断。
2.充要条件的证明:(1)证明充要条件时要分别证明充分性和必要性,二者缺一不可。
一般地,证明“p 成立的充要条件是q ”,①充分性:把q 当作已知条件,结合命题的前提条件,推出p ; ②必要性:把p 当作已知条件,结合命题的前提条件,推出q ;(2)等价证明:从条件开始,逐步推出结论,或者从结论开始,逐步推出条件,但要求每一步都是等价的。
3.应用充分、必要条件确定参数:利用充分条件和必要条件求参数的取值范围、主要是根据集合间的包含关系与充分条件和必要条件的关系,将问题转化为集合之间的关系,建立关于参数的不等式或不等式组求解。
4.判断全称量词命题、存在量词命题的真假:(1)要判定一个全称量词命题是真命题,必须对限定集合M 中的每个元素x ,证明p(x)成立;但要判定全称量词命题是假命题,只要能举出集合M 中的一个0x x =,使得)(0x p 不成立即可(这就是通常所说的“举出一个反例”).(2)要判定一个存在量词命题是真命题,只要在限定集合M 中,至少能找到一个0x x =;使)(0x p 成立即可。
否则,这一存在量词命题就是假命题。
一、单选题 1.“0a b >>”是“1ab>”的( ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 【答案】B【解析】解:由0a b >>,得1a b >,反之不成立,如2a =-,1b =-,满足1ab>,但是不满足0a b >>, 故“0a b >>”是“1ab>”的充分不必要条件.故选:B 2.命题“x ∀∈R ,23230x x -->”的否定为( ) A .x ∀∈R ,23230x x --≤B .x ∀∉R ,23230x x --≤ C .x ∃∈R ,23230x x --≤D .x ∃∉R ,23230x x --≤ 【答案】C【解析】命题“x ∀∈R ,23230x x -->”的否定为x ∃∈R ,23230x x --≤,故选:C 。
高中数学集合与常用逻辑用语100题(含答案解析)

高中数学集合与常用逻辑用语100题(含答案解析)一、单选题1.已知集合{}2,0xA y y x ==≥,(){}ln 2B x y x ==-,则A B =( )A .[]1,2B .()1,2C .[)1,2D .(),-∞+∞2.已知,R a b ∈,则“ln ln a b >”是“sin sin a b b a +>+”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.命题():0,p x ∀∈+∞,1ln x x +≤的否定为( ) A .()0,x ∃∈+∞,1ln x x +≤ B .()0,x ∀∈+∞,1ln x x +≥ C .()0,x ∃∈+∞,1ln x x +>D .()0,x ∀∈+∞,1ln x x +>4.若集合{}23A x Z x x =∈≤,{}2,B x y x y A ==∈,则A B =( )A .{}0,1,2B .{}0,2C .{}0,1D .{}1,25.已知向量(),2m k =-,()1,3n =,则“k 6<”是“m 与n 的夹角为钝角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知集合2{|230}A x x x =--≥,{B x y ==,则A B ⋃=( ) A .[)3,+∞B .[)2,+∞C .(][),10,-∞-⋃+∞D .(][),12,-∞-⋃+∞7.已知集合{}2()1A xx a =-<∣,{1,0,1,2,3}B =-,若{0,1}A B =,则实数a 的取值范围是( ) A .[0,1]B .(0,1)C .[1,)+∞D .(,0)-∞8.方程22x x =的所有实数根组成的集合为( ) A .()0,2B .(){}0,2C .{}0,2D .{}22x x =9.设全集{}24U x N x =∈-<<,{}0,2A =,则UA 为( )A .{}1,3B .{}0,1,3C .{}1,1,3-D .{}1,0,1,3-10.已知0a >,则“3a a a >”是“3a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件11.设p :3x <,q :()()130x x +-<,则p 是q 成立的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件12.设π:3p α=;:tan q α=p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件13.设{M x x =≥,b = ) A .b M ⊆B .b M ∉C .{}b M ∉D .{}b M ⊆14.已知集合{A x y ==,{}1,2,3,4,5B =,则A B =( ). A .{}2,3B .{}1,2,3C .{}1,2,3,4D .{}2,3,415.已知非零向量a ,b ,c ,则“||1a b -≤,||2b c -≤”是“||3a c -≤”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件16.设集合{}|33A x x =-<<,集合{}|25B x x =-≤≤,则A B =( ) A .{}|35x x -<≤B .{}|32x x -<≤-C .{}|23x x -≤<D .{}|35x x <≤17.已知集合(){}{}22log 213,40A x x B x x =-≤=-≤,则()A B =R ( )A .122x x ⎧⎫-≤≤⎨⎬⎩⎭ B .122x x ⎧⎫<≤⎨⎬⎩⎭C .{}22x x -≤≤D .∅18.命题“0x ∀>,2x x >”的否定是( )A .00x ∃>,200x x ≤B .00x ∃≤,200x x ≤C .0x ∀>,2x x ≤D .0x ∀≤,2x x >19.若01a <<,则“log log a a x y >”是“x y a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件20.若数列{}n a 满足11a =-,则“m ∀,*n N ∈,m n m n a a a +=”是“{}n a 为等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件21.设集合{}1,0,1,2A =-,{B y y ==,则A B =( ) A .{}0B .{}0,1,2C .{}0,1D .{}0,2 22.已知集合(){}ln 3A x N y x =∈=-,{}12B x x =-≤<,则A B =( ) A .{}1,0,1-B .{}1C .{}0,1D .{}0,1,223.已知集合{1,0,1,2,3,4}A =-,{}2ln 2B x x =<,图中阴影部分为集合M ,则M 中的元素个数为( )A .1B .2C .3D .424.设x ∈R ,则“(1)(2)0x x -+≥”是“|2|1x -<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件25.设全集{}2,1,0,1,2,3U =--,集合{}1,0,1,3A =-,{}2,0,2B =-,则U ()A B ⋂=( ) A .{}0,1,2B .2,0,2C .{}0,2D .{}1,1,3-26.给出下列三个命题:①“全等三角形的面积相等”的否命题 ①若“2lg 0x =,则1x =-”的逆命题 ①“若x y ≠或x y ≠-,则x y ≠”的逆否命题.其中真命题的个数是( ) A .0B .1C .2D .327.已知全集2,1,0,1,2U ,{}21A x Z x =∈-<<,{}1,0,1B =-,则()U B A ⋂=( )A .∅B .{}0C .{}1D .{}0,128.已知集合{}2230A x x x =∈--<Z ,{}1,1,2,3B =-,则A B =( )A .{}1,2-B .{}1,1,2,3-C .{}1,2D .{}1,329.“4a <”是“过点()1,1有两条直线与圆2220x y y a ++-=相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件30.已知集合{1,0,1,2,3,4,5}A =-,集合{|34}=-<<B x x ,则 A B =( ) A .{1,0,1,2,3}-B .{0,1,2,3}C .{1,0,1,2}-D .{1,0,1,2,3,4}-31.设集合{}12022A x x =-<<,{}22530B x x x =+-≤,则A B =( )A .{}32022x x -<≤B .132x x ⎧⎫-<≤⎨⎬⎩⎭C .112x x ⎧⎫-<≤⎨⎬⎩⎭D .{}1x x ≥-32.已知集合(){}2log 12A x x =-≤,{}2230B x x x =--≤,则()RA B =( )A .[]1,3B .()(),13,-∞-⋃+∞C .(]1,3D .(](),13,-∞⋃+∞33.已知集合{}2,3,4,5A =,{B x y ==,则A B =( )A .{}2B .{}3C .{}2,3D .{}2,3,434.“b <是“圆22:9C x y +=上有四个不同的点到直线:l y x b =-的距离等于1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件35.设命题3:,3n p n N n ∀∈>,则命题p 的否定为( ) A .3,3n n N n ∃∉> B .3,3n n N n ∃∉≤ C .3,3n n N n ∃∈≤D .3,3n n N n ∀∈>36.已知α,R β∈,则“cos cos αβ=”是“存在k Z ∈使得()1kk απβ=+-”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件37.将有理数集Q 划分为两个非空的子集M 与N ,且满足M N Q M N ⋃=⋂=∅,,M 中的每一个元素都小于N 中的每一个元素,这种有理数的分割()M N ,就是数学史上有名的戴德金分割.试判断,对于任一戴德金分割()M N ,,下列选项中不可能成立的是( )A .M 有最大元素,N 有一个最小元素B .M 没有最大元素,N 也没有最小元素C .M 没有一个最大元素,N 有一个最小元素D .M 有一个最大元素,N 没有最小元素 38.设x R ∈,则“322x -≤”是“2102x x +≤-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件39.设集合{}{}|14|3A x x B x x =-<<=≤,,则()B A =R ( )A .{}|34x x ≤<B .{}|34x x <<C .{}|13x x -<≤D .{}1x x >-40.若01a <<,则“log log a a b c <”是“b c >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件41.已知集合{}03A x x =<<,{}24B x x =≤,则A B =( )A .()0,2B .[)2,0-C .[)0,3D .(]0,242.已知集合{}02A x x =<<,{}2230B x x x =+-≥,则如图所示的阴影部分表示的集合为( )A .(][),32,-∞-⋃+∞B .()[),32,-∞-⋃+∞C .()(),02,-∞+∞D .(][),02,-∞⋃+∞43.若向量(),3a m =-,()3,1b =,则“1m <”是“向量a ,b 夹角为钝角”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件44.设集合{}A y y x ==,{B x y ==,全集为R ,则RA B =( )A .[)0,∞+B .(),0∞-C .{}0,1D .()(){}0,0,1,145.已知集合1|0,N 4x A x x x +⎧⎫=≤∈⎨⎬-⎩⎭,{0,1,2,3,4}B =,则( ) A .A B = B .B A C .A B B = D .A B46.若集合12xA x x ⎧⎫-=∈>⎨⎬⎩⎭R ,(){}2log 11B x x =+<,则A B =( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .10,3⎛⎫⎪⎝⎭D .1,13⎛⎫ ⎪⎝⎭47.若集合{}20A x x x =-=,B x y ⎧=⎨⎩,则A B =( )A .∅B .{}0C .{}1D .{}0,148.已知集合{}24A x Z x =∈<,{}1,B a =,B A ⊆,则实数a 的取值集合为( ) A .{}2,1,0--B .{}2,1--C .{1,0}-D .{}1-49.若集合61A x ZN x ⎧⎫=∈∈⎨⎬-⎩⎭,(){}lg 3B x y x ==-,则A B =( ) A .{}2,3,4,7 B .{}3,4,7 C .{}1,4,7 D .{}4,750.已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,5-B .(]1,1-C .()1,3D .[)1,351.已知,l m 是两条不同的直线,αβ,是两个不同的平面,命题p :若m α⊂,m β∥,则αβ∥;命题q :若m α⊥,l β⊥,αβ∥,则m l ∥;则下列命题正确的是( ) A .p q ∧B .p q ⌝∧C .p q ∨⌝D .p q ⌝∧⌝52.“2x =”是“2320x x -+=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件53.已知命题p :0x ∃∈R ,0sin 1x <;命题q :0x ∃∈R ,00sin cos x x +,则下列命题中的真命题是( ) A .p q ∧B .()p q ⌝∧C .()p q ∧⌝D .()p q ⌝∨54.已知集合{}2,x A y y x R ==∈,{}24B x x =≤,则A B =( )A .[]22-,B .[)2,0-C .[]0,2D .(]0,255.已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是( ) A .3B .4C .8D .1656.已知全集{}N 27U x x =∈-≤<,(){}1,5,6UA B ⋃=,{}2,4B =,则图中阴影部分表示的集合是( )A .{}2,1,0,3--B .{}0,3C .{}0,2,3,4D .{}357.已知集合{}34A x x =-<<,{}250B x x x =+>.则A B ( )A .()5,4-B .()0,4C .()3,0-D .()5,0-58.已知集合(){},22,0M x y y x xy ==-≤,(){}2,5N x y y x ==-,则M N ⋂中的元素个数为( ) A .0B .1C .2D .l 或259.设集合402x A xx -⎧⎫=>⎨⎬+⎩⎭,{}27100B x x x =-+≥,则()R A B ⋂=( ) A .{}22x x -<< B .{}22x x -≤≤ C .{4x x ≤或}5x ≥D .{2x x ≤或}5x ≥60.设非零复数1z ,2z 在复平面内分别对应向量OA ,OB ,O 为原点,则OA OB ⊥的充要条件是( )A .211z z =-B .21i zz =C .21z z 为实数D .21z z 为纯虚数61.命题“若24x <,则22x -<<”的逆否命题是( ) A .若22x -<<,则24x < B .若24x ≥,则2x ≥或2x -≤ C .若22x -<<,则24x ≥ D .若2x ≥或2x -≤,则24x ≥62.已知集合(){}22,4A x y xy =+=,(){},2B x y y ==,则集合A B 中元素的个数为( ) A .3B .2C .1D .063.已知集合{}213M x x =+<,{}N x x a =<,若N M ⊆,则实数a 的取值范围为( ) A .[)1,+∞ B .[)2,+∞ C .(],1-∞D .(),1-∞64.已知集合{}23180A x x x =--≤,{}2log 1B x x =>,则A B =( )A .[)(]3,22,6-B .[)(]3,22,6--⋃C .[)3,2--D .(]2,665.已知命题p :“23m <<是方程22123x y m m+=--表示椭圆”的充要条件;命题q :“2b ac =是a ,b ,c 成等比数列”的必要不充分条件,则下列命题为真命题的是( ) A .p q ∧B .p q ∨⌝C .p q ⌝∨⌝D .p q ⌝∧⌝66.已知命题p :()010,x ∃∈+∞,0lg 1x >,则命题p 的否定为( ) A .()10,x ∀∈+∞,1lg x ≤ B .()10,x ∀∈+∞,lg 1x C .()10,x ∀∉+∞,lg 1xD .()10,x ∀∉+∞,1lg x ≤67.集合{}0,1,2,3A =的真子集的个数是( ) A .16B .15C .8D .768.已知集合{}1A x x =>,{}13B x x =-≤<,则()R A B ⋂=( ) A .{}13x x <<B .{}11x x -≤<C .{}13x x ≤<D .{}11x x -≤≤69.若p :24x ≤≤,q :13x ≤≤,则p 为q 的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分又不必要条件70.若命题p 为“0x ∃≥,()10x x -<”,则p ⌝为( ) A .0x ∀<,()10x x -≥ B .0x ∀≥,()10x x -≥ C .0x ∃≥,()10x x -≥D .0x ∃<,()10x x -<71.已知p :a m <(其中R a ∈,m ∈Z ),q :关于x 的一元二次方程2210ax x ++=有一正一负两个根.若p 是q 的充分不必要条件,则m 的最大值为( ) A .1B .0C .1-D .272.命题“0x ∀>,210x ->”的否定为( ) A .0x ∀>,210x -≤ B .0x ∀≤,210x -≤ C .00x ∃>,0210x -≤D .00x ∃>,0210x ->73.已知{}2430M x x x =-+<,{|N x y ==,则M N ⋃=( )A .(]1,2B .(](),21,3-∞-⋃C .(](),23,-∞-+∞ D .(](),21,-∞-⋃+∞74.命题“0x ∃∈R ,使得320000x ax bx c +++=”的否定是( ) A .x ∃∉R ,320x ax bx c +++≠ B .x ∀∈R ,320x ax bx c +++≠ C .x ∀∉R ,320x ax bx c +++≠D .x ∀∈R ,320x ax bx c +++=75.已知集合{}220A xx x =+-≤∣, 集合(){}2log 1B x y x ==+∣, 则A B ⋂=( ) A .[-21],B .(-11],C .(]12-,D .[)1,∞+ 76.若集合{12}A x x =-<<∣,{|1B x x =<或}3x >,则()R A B ⋂=( ) A .{13}xx -<<∣ B .{11}xx -<<∣ C .{23}x x <≤∣ D .{12}xx ≤<∣ 77.已知命题20:,0p x x ∃∈R ,则p ⌝是( )A .2,0x x ∀∉RB .2,0x x ∀∈<RC .200,0x x ∃∈RD .200,0x x ∃∈<R78.若方程22121x y m m +=+--表示的曲线为C ,则( )A .21m -<<-是C 为椭圆的充要条件B .21m -<<-是C 为椭圆的充分条件C .312m -<<-是C 为焦点在x 轴上椭圆的充要条件D .302m -<<是C 为焦点在x 轴上椭圆的充分条件79.已知集合{}{|ln 1|A x x B x =<=,,则()R A B =( ) A .[2,e )B .(0,2)C .(2,e ]D .(0,e )80.“0mn >”是“方程221x y m n-=为双曲线方程”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、多选题81.已知函数()()2221e xf x ax x =-+,则( )A .()f x 有零点的充要条件是1a <B .当且仅当(]0,1a ∈,()f x 有最小值C .存在实数a ,使得()f x 在R 上单调递增D .2a ≠是()f x 有极值点的充要条件 82.下列选项中,能够成为“关于x 的方程2||10x x a -+-=有四个不等实数根”的必要不充分条件是( ) A .51,4a ⎛⎫∈ ⎪⎝⎭B .51,4a ⎡⎫∈⎪⎢⎣⎭C .()1,2a ∈D .91,8a ⎛⎫∈ ⎪⎝⎭三、解答题83.若实数数列()12:,,,2n n A a a a n ≥满足()111,2,,1k k a a k n +-==-,则称数列nA 为E 数列.(1)请写出一个5项的E 数列5A ,满足150a a ==,且各项和大于零; (2)如果一个E 数列n A 满足:存在正整数()1234512345,,,,i i i i i i i i i i n <<<<≤使得12345,,,,i i i i i a a a a a 组成首项为1,公比为2-的等比数列,求n 的最小值;(3)已知()122,,,2m a a a m ≥为E 数列,求证:3211,,,222m a a a -为E 数列且224,,,222m a a a 为E 数列”的充要条件是“122,,,m a a a 是单调数列”.84.已知命题p :实数x 满足()42220x x a a ⋅+-⋅-≤;命题q :实数x 满足2320x x -+<.若p 是q 的必要条件,求实数a 的取值范围.85.设p :()224300x ax a a -+<>,q :211180x x -+≤.(1)若命题“()1,2x ∀∈,p 是真命题”,求a 的取值范围;(2)若p 是q 的充分不必要条件,求a 的取值范围.86.著名的“康托尔三分集”是由德国数学家康托尔构造的,是人类理性思维的产物,其操作过程如下:将闭区间[]0,1均分为三段,去掉中间的区间段12,33⎛⎫ ⎪⎝⎭记为第一次操作;再将剩下的两个闭区间10,3⎡⎤⎢⎥⎣⎦,2,13⎡⎤⎢⎥⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷.每次操作后剩下的闭区间构成的集合即是“康托尔三分集”.例如第一次操作后的“康托尔三分集”为120,,,133⎧⎫⎡⎤⎡⎤⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭. (1)求第二次操作后的“康托尔三分集”;(2)定义[],s t 的区间长度为t s -,记第n 次操作后剩余的各区间长度和为()*n a n N ∈,求4a ;(3)记n 次操作后“康托尔三分集”的区间长度总和为n T ,若使n T 不大于原来的110,求n 的最小值.(参考数据:lg 20.3010=,lg30.4771=)87.已知命题p :“0x R ∃∈,20048x a x +≤”为假命题,命题q :“实数a 满足415a>-”.若p q ∨是真命题,p q ∧是假命题,求a 的取值范围. 88.求证:角θ为第二象限角的充要条件是sin 0tan 0θθ>⎧⎨<⎩. 89.已知P ={x |x 2-x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ①P 是x ①S 的必要条件,求m 的取值范围.90.已知p :()222100x x a a -+-≥>,q :()()150x x +-<.(1)当3x =-时,p 为真命题,求实数a 的取值范围;(2)若p ⌝是q 的充分不必要条件:求实数a 的取值范围.91.已知集合{}2,12x A y y x ==-≤≤,集合{}1ln 2B x x =<≤,集合{}22320,0C x x ax a a =-+≤>. (1)求A B ;(2)若C A ⊆,求实数a 的取值范围.92.判断命题的真假:如果12,n n 分别是直线12,l l 的一个方向向量,则1l 与2l 垂直的充要条件是1n 与2n 垂直.四、填空题93.设集合{}{}240,,20A xx x A x x a =-≤∈=+≤R ∣∣,且[]2,1A B =-,则=a ___________.94.以下有关命题的说法错误的命题的序号是_______.①若命题p :某班所有男生都爱踢足球,则¬p :某班至少有一个男生爱踢足球; ①已知a ,b 是实数,那么“a b >”是"ln ln "a b >的必要不充分条件;①若αβ>则sin sin αβ>;①幂函数253(1)m y m m x --=--在,()0x ∈+∞时为减函数,则2m =.95.已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是 ________.96.曲线0:p x ∃∈R ,320010x x -+≥,则p ⌝为___________.97.命题“0x ∃①R ,使20mx -(m +3)x 0+m ≤0”是假命题,则实数m 的取值范围为__________.98.命题“x R ∃∈,20x +≤”的否定是______.五、概念填空99.存在量词与存在量词命题100.判断正误.(1)命题“任意一个自然数都是正整数”是全称量词命题.( )(2)命题“三角形的内角和是180 ”是全称量词命题.( )(3)命题“梯形有两边平行”不是全称量词命题.( )参考答案:1.C【解析】【分析】利用指数函数的性质可化简集合A ,根据对数函数性质得集合B ,然后计算交集.【详解】 由已知{}2,0[1,)x A y y x ∞==≥=+,{}ln(2)B x y x ==-(){|20}{|2},2x x x x =->=<=-∞,①[1,2)A B ⋂=.故选:C .2.A【解析】【分析】由ln ln a b >及对数函数的单调性可得0a b >>;将sin sin a b b a +>+变形化同构,进而构造函数,利用导数讨论函数的单调性可得a b >,即可得解.【详解】由ln ln a b >,得0a b >>.由sin sin a b b a +>+,得sin sin a a b b ->-.记函数()sin ()x x f x x R =-∈,则()1cos 0f x x '=-≥,所以函数()f x 在R 上单调递增,又sin sin a a b b ->-,则()()f a f b >,所以a b >.因此“ln ln a b >”是“sin sin a b b a +>+”的充分不必要条件.故选:A .3.C【解析】【分析】根据全称量词命题的否定直接得出结果.【详解】因为全称量词命题的否定是特称量词命题,故原命题的否定是()0,x ∃∈+∞,1ln x x +>.故选:C4.C【解析】【分析】先解不等式求出集合A ,再求出集合B ,然后求两集合的交集即可【详解】解不等式23x x ≤,得03x ≤≤,又x ∈Z ,所以{}0,1,2,3A =, 所以{}132,0,,1,22B x y x y A ⎧⎫==∈=⎨⎬⎩⎭,所以{}0,1A B =. 故选:C5.B【解析】【分析】先求出m 与n 的夹角为钝角时k 的范围,即可判断.【详解】当m 与n 的夹角为钝角时,0m n ⋅<,且m 与n 不共线,即6032k k -<⎧⎨≠-⎩所以k 6<且23k ≠-.故“k 6<”是“m 与n 的夹角为钝角”的必要不充分条件.故选B.6.D【解析】【分析】根据一元二次不等式的解法和函数定义域的定义,求得集合,A B ,集合集合并集的运算,即可求解.【详解】由不等式2230x x --≥,解得1x ≤-或3x ≥,所以集合{|1A x x =≤-或3}x ≥, 又由20x -≥,解得2x ≥,所以集合{}2B x x =≥,所以(][),12,A B ⋃=-∞-⋃+∞.故选:D .7.B【解析】【分析】按照交集的定义,在数轴上画图即可.【详解】由题可得集合{}{}2()111A xx a x a x a =-<=-<<+∣,所以要使{0,1}A B =,则需110112a a -≤-<⎧⎨<+≤⎩,解得01a <<, 故选:B.8.C【解析】【分析】首先求出方程的解,再根据集合的表示方法判断即可;【详解】解:由22x x =,解得2x =或0x =,所以方程22x x =的所有实数根组成的集合为{}{}2|20,2x R xx ∈==; 故选:C9.A 【解析】【分析】根据全集U 求出A 的补集即可.【详解】{}{}24=0,1,2,3U x N x =∈-<<,{}0,2A =,{}U =1,3A ∴.故选:A.10.B【解析】【分析】对a 的取值进行分类讨论,结合指数函数的单调性解不等式3a a a >,利用集合的包含关系判断可得出结论.【详解】若01a <<,由3a a a >可得3a <,此时01a <<;若1a =,则3a a a =,不合乎题意;若1a >,由3a a a >可得3a >,此时3a >.因此,满足3a a a >的a 的取值范围是{01a a <<或}3a >, 因为{01a a <<或}3a > {}3a a >,因此,“3a a a >”是“3a >”的必要不充分条件.故选:B.11.C【解析】【分析】解不等式化简命题q ,再利用充分条件、必要条件的定义直接判断作答.【详解】解不等式得:13x ,即:13q x -<<,显然{|13}x x -<< {|3}x x <,所以p 是q 成立的必要不充分条件.故选:C12.A【解析】【分析】根据特殊角的三角函数值以及充分条件与必要条件的定义可得结果.【详解】当π3α=时,tan α=p 则q 成立;当tan α=,3k k Z παπ=+∈,即若q 则p 不成立;综上得p 是q 充分不必要条件,故选:A.13.D【解析】【分析】根据元素与集合的关系,集合与集合的关系判断即可得解.【详解】解:因为{M x x =≥,b =所以b M ∈,{}b M ⊆.故选:D.14.C【解析】【分析】先化简集合A ,再利用集合的交集运算求解.【详解】因为集合{{}4A x y x x ==≤,{}1,2,3,4,5B =,所以A B = {}1,2,3,4,故选:C15.A【解析】【分析】根据充分、必要性的定义,结合向量减法的几何意义判断条件间的推出关系,即可得答案.【详解】由||1a b -≤,||2b c -≤,如下图示,||||||3a c a b b c -≤-+-≤,当且仅当a ,b ,c 共线时前一个等号成立,充分性成立;当||3a c -≤,不一定有||1a b -≤,||2b c -≤,必要性不成立. 综上,“||1a b -≤,||2b c -≤”是“||3a c -≤”的充分而不必要条件. 故选:A16.C【解析】【分析】利用集合的交运算求A B 即可.【详解】由题设,A B ={}|33x x -<<⋂{}|25{|23}x x x x -≤≤=-≤<. 故选:C17.A【解析】【分析】先求出集合A 和集合A 的补集,集合B ,再求出()A B ⋂R【详解】由22log (21)3log 8x -≤=,得0218x <-≤,解得1922x <≤, 所以1922A x x ⎧⎫=<≤⎨⎬⎩⎭,所以12R A x x ⎧=≤⎨⎩或x >92}, 由240x -≤得22x -≤≤,所以{}22B x x =-≤≤,所以()A B =R 122x x ⎧⎫-≤≤⎨⎬⎩⎭故选:A18.A【解析】【分析】根据命题的否定的定义判断.【详解】全称命题的否定是特称命题,命题“0x ∀>,2x x >”的否定是:00x ∃>,200x x ≤.故选:A.19.A【解析】【分析】根据一直关系判断,x y 的大小关系进行等价转化即可得解.【详解】由01a <<,log log 0a a x y y x >⇔>>,x y a a y x ≥⇔>,故为充分不必要条件. 故选:A20.A【解析】【分析】利用等比数列的定义通项公式即可判断出结论.【详解】解:“m ∀,*n N ∈,m n m n a a a +=”,取1m =,则11n n a a +=-, {}n a ∴为等比数列.反之不成立,{}n a 为等比数列,设公比为q ()0q ≠,则1m n m n a q +-+=-,()()112n n m m m n a a q q q --+-=-⨯-=,只有1q =-时才能成立满足m n m n a a a +=. ∴数列{}n a 满足11a =-,则“m ∀,*n N ∈,m n m n a a a +=”是“{}n a 为等比数列”的充分不必要故选:A .21.B【解析】【分析】求得集合B 中对应函数的值域,再求A B 即可.【详解】因为{B y y ==∣{|0}y y =≥,又{}1,0,1,2A =-, 故A B ={}0,1,2.故选:B22.C【解析】【分析】由对数函数定义域可求得集合A ,由交集定义可得结果.【详解】由30x ->得:3x <,(){}{}ln 30,1,2A x N y x ∴=∈=-=,{}0,1A B ∴⋂=.故选:C.23.C【解析】【分析】由Venn 图得到()A M A B =⋂求解. 【详解】如图所示()A M A B =⋂,2ln 2x <,22ln ln e x ∴<,解得e e x -<<且0x ≠,(e,0)(0,e)B ∴=-又{1,0,1,2,3,4}A =-,{1,1,2}A B ∴=-,(){0,3,4}A A B ∴⋂=,{0,3,4}M ∴=,所以M 中元素的个数为3 故选:C24.B【分析】根据充分必要条件的定义判断.【详解】(1)(2)0x x -+≥,则2x -≤或1≥x ,不满足21x -<,如2x =-,不充分,21x -<时,13x <<,满足(1)(2)0x x -+≥,必要性满足.应为必要不充分条件.故选:B .25.D【解析】【分析】根据集合的运算法则计算.【详解】由已知{1,1,3}U B =-,所以U (){1,1,3}A B =-.故选:D .26.B【解析】【分析】写出相应命题,根据相关知识直接判断可得.【详解】“全等三角形的面积相等”的否命题为:不全等的三角形的面积不相等.易知为假命题;若“2lg 0x =,则1x =-”的逆命题为:若1x =-,则2lg 0x =.显然为真命题;“若x y ≠或x y ≠-,则x y ≠”的逆否命题为:若x y =,则x y =且x y =-.易知为假命题. 故选:B27.C【解析】【分析】根据集合的运算法则计算.{2,1,2}U A =-,(){1}U B A =.故选:C .28.C【解析】【分析】求出集合A ,利用交集的定义可求得结果.【详解】{}{}{}2230130,1,2A x x x x x =∈--<=∈-<<=Z Z ,因此,{}1,2A B =. 故选:C.29.B【解析】【分析】先由已知得点()1,1在圆2220x y y a ++-=外,求出a 的范围,再根据充分条件和必要条件的定义分析判断【详解】由已知得点()1,1在圆2220x y y a ++-=外,所以22211210240a a ⎧++⨯->⎨+>⎩,解得14a -<<, 所以“4a <”是“过点()1,1有两条直线与圆2220x y y a ++-=相切”的必要不充分条件, 故选:B30.A【解析】【分析】根据交集的定义计算.【详解】由已知{1,0,1,2,3}A B =-.故选:A .【解析】【分析】化简集合B ,结合交集运算即可.【详解】 因为集合{}21253032B x x x x x ⎧⎫=+-≤=-≤≤⎨⎬⎩⎭,所以112A B x x ⎧⎫⋂=-<≤⎨⎬⎩⎭, 故选:C .32.D【解析】【分析】先解出集合A 、B ,再求A B ,从而求解补集.【详解】由()2log 12x -≤,即014x <-≤,解得15x <≤,所以(]1,5A =.由2230x x --≤得()3x -⋅()10x +≤,即13x -≤≤,所以[]1,3B =-,由此(]1,3A B =,于是()(]()R ,13,A B ⋂=-∞⋃+∞,故选:D.33.C【解析】【分析】由一元二次不等式的解法求出函数y B ,然后根据交集的定义即可求解.【详解】解:因为集合{}2,3,4,5A =,集合{{}{}23003B x y x x x x x ===-≥=≤≤,所以{}2,3A B ⋂=.故选:C.34.A【分析】根据直线和圆的位置关系求出b ,然后利用充分条件和必要条件的定义进行判断.【详解】①圆22:9C x y +=的半径3r =,若圆C 上恰有4个不同的点到直线l 的距离等于1,则必须满足圆心(0,0)到直线:l y x b =-的距离2d =<,解得b -<<又((⊆-,①“b <是“圆22:9C x y +=上有四个不同的点到直线:l y x b =-的距离等于1”的充分不必要条件.故选:A.35.C【解析】【分析】由全称命题的否定是特称命题即可得解.【详解】根据全称命题的否定是特称命题可知,命题3:,3n p n N n ∀∈>的否定命题为3,3n n N n ∃∈≤,故选:C36.D【解析】【分析】根据充分条件,必要条件的定义,以及诱导公式即可判断.【详解】(1)当存在k Z ∈使得()1kk απβ=+-时, 则()cos ,2,cos cos (1)cos ,21,k k n n Z k k n n Z βαπββ=∈⎧=+-=⎨-=+∈⎩;即不能推出cos cos αβ=.(2)当cos cos αβ=时,2k αβπ=+或2k απβ=-,k Z ∈,所以对第二种情况,不存在k Z ∈时,使得()1kk απβ=+-成立,故“cos cos αβ=”是“存在k Z ∈使得()1k k απβ=+-”的既不充分不必要条件.故选:D37.A【解析】【分析】由题意依次举例对四个命题判断,从而确定答案.【详解】M 有一个最大元素,N 有一个最小元素,设M 的最大元素为m ,N 的最小元素为n ,若有m <n ,不能满足M①N=Q ,A 错误;若{|M x Q x =∈<,{|2}N x Q x =∈;则M 没有最大元素, N 也没有最小元素,满足其它条件,故B 可能成立;若{|0}M x Q x =∈<,{|0}N x Q x =∈,则M 没有最大元素,N 有一个最小元素0,故C 可能成立;若{|0}M x Q x =∈,{}0N x Q x =∈;M 有一个最大元素,N 没有最小元素,故D 可能成立;故选:A .38.D【解析】 【分析】 首先解出绝对值不等式与分式不等式,再根据充分条件、必要条件的定义判断即可;【详解】解:因为322x -≤,所以33222x -≤-≤,解得1722x ≤≤;由2102x x +≤-,即()()212020x x x ⎧+-≤⎨-≠⎩,解得122x -≤<;所以1722x ≤≤与122x -≤<互相不能推出,故“322x -≤”是“2102x x +≤-”的既不充分也不必要条件; 故选:D39.B【解析】【分析】根据补集运算得{}R |3x B x =>,再根据交集运算求解即可.【详解】解:因为{}{}|14|3A x x B x x =-<<=≤,,所以{}R |3x B x =>,所以{}()|34R B A x x ⋂=<<故选:B40.A【解析】【分析】利用函数log a y x =在(0,)+∞单调递减,可得log log 0a a b c b c <⇔>>,分析即得解【详解】由01a <<,故函数log a y x =在(0,)+∞单调递减故log log 0a a b c b c <⇔>>即log log a a b c b c <⇒>,充分性成立; b c >推不出log log a a b c <,必要性不成立;故“log log a a b c <”是“b c >”的充分不必要条件.故选:A41.D【解析】解一元二次不等式求集合B ,再利用集合交运算求A B .【详解】 由题设,{}24{|22}B x x x x =≤=-≤≤,又{}03A x x =<<, 所以{}(]{|22}030,2A x x B x x -≤≤⋂<<==.故选:D42.A【解析】【分析】根据阴影部分表示的集合为R A B ⋂求解.【详解】 因为集合{}02A x x =<<,所以R {|0A x x =≤或2}x ≥, 又因为{}2230{|3B x x x x x =+-≥=≤-或1}x ≥, 所以阴影部分表示的集合为R {|3A B x x ⋂=≤-或2}x ≥,故选:A43.B【解析】【分析】 由向量a ,b 夹角为钝角可得0a b ⋅<且a ,b 不共线,然后解出m 的范围,然后可得答案.【详解】若向量a ,b 夹角为钝角,则0a b ⋅<且a ,b 不共线所以330133m m -<⎧⎨⋅≠-⋅⎩,解得1m <且9m所以“1m <”是“向量a ,b 夹角为钝角”的必要不充分条件故选:B44.B【分析】化简集合A ,B ,根据补集及交集运算即可.【详解】{}A y y x R ===,{[0,)B x y ∞===+(,0)R R A B B ∴==-∞,故选:B45.D【解析】【分析】解分式不等式求集合A ,再判断集合之间的包含关系,即可判断各选项的正误.【详解】由题设,{|14,N}{0,1,2,3}A x x x =-≤<∈=,又{0,1,2,3,4}B =,所以A B ,即A 、B 、C 错误,D 正确.故选:D46.C【解析】【分析】根据分式不等式解法解出集合A ,根据对数的运算法则计算出集合B ,再根据集合交集运算得结果. 【详解】(){}113003A x x x x x ⎧⎫=-⋅>=<<⎨⎬⎩⎭, (){}{}{}2log 1101211B x x x x x x =+<=<+<=-<<,①10,3A B ⎛⎫ ⎪⎝=⎭. 故选:C.47.B【解析】先化简集合A ,B ,再利用交集运算求解.【详解】 因为{}{}200,1A x x x =-==,B x y ⎧=⎨⎩={}|1x x <, 所以A B ={}0,故选:B48.C【解析】【分析】先解出集合A ,再根据B A ⊆确定集合B 的元素,可得答案.【详解】由题意得,{}{|22}1,0,1A x Z x =∈-<<=-,①{}1,B a =,B A ⊆, ①实数a 的取值集合为{}1,0-,故选:C.49.D【解析】【分析】首先用列举法表示集合A ,再根据对数函数的性质求出集合B ,最后根据交集的定义计算可得;【详解】 解:集合{}62,3,4,71A x Z N x ⎧⎫=∈∈=⎨⎬-⎩⎭,集合(){}{}lg 33B x y x x x ==-=>,则{}4,7A B ⋂=,故选:D .50.D【解析】【分析】先根据一元二次不等式解得集合A ,然后利用交集运算法则求出答案.【详解】解:由题意得:{}{}2230|13A x x x x x =--<=-<<,{}15B x x =≤≤ {}[)|131,3A B x x ∴=≤<=故选:D51.B【解析】【分析】先根据空间线面位置关系判断命题,p q 的真假,再根据且、或、非命题判断真假即可.【详解】解:命题p :若m α⊂,m β∥,则αβ∥,还可能相交,故是假命题,;命题q :若m α⊥,l β⊥,αβ∥,则m l ∥,是真命题.所以p ⌝为真命题,q ⌝为假命题,所以p q ∧,p q ∨⌝,p q ⌝∧⌝均为假命题,p q ⌝∧为真命题,故选:B52.A【解析】【分析】解方程2320x x -+=,利用集合的包含关系判断可得出结论.【详解】解方程2320x x -+=可得1x =或2x =,{}2 {}1,2,因此,“2x =”是“2320x x -+=”的充分不必要条件.故选:A.53.A【解析】【分析】判断命题p ,q 的真假,再借助真值表逐一判断作答.【详解】因当00x =时,0sin 01x =<,即命题p 是真命题,因当04x π=时,00sin cos x x +,即命题q 是真命题, 因此,p q ∧,p q ∨都是真命题,()p q ⌝∨是假命题,而p ⌝是假命题,则()p q ⌝∧是假命题,同理()p q ∧⌝是假命题,所以,B ,C ,D 都不正确,A 正确.故选:A54.D【解析】【分析】首先解一元二次不等式求出集合B ,再根据指数函数的性质求出集合A ,最后根据交集的定义计算可得;【详解】解:由24x ≤,即()()220x x -+≤,解得22x -≤≤,所以{}{}24|22B x x x x =≤=-≤≤,又{}()2,0,x A y y x R ∞==∈=+,所以(]0,2A B ⋂=. 故选:D55.C【解析】【分析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.56.B【解析】【分析】确定全集中的元素,根据(){}1,5,6U A B ⋃=可确定A B ⋃={}0,2,3,4,再结合图中阴影部分的含义即可得答案.全集{}{}N 270,1,2,3,4,5,6U x x =∈-≤<=,又因为(){}1,5,6U A B ⋃=,所以A B ⋃={}0,2,3,4,而{}2,4B =所以阴影部分表示的集合是()U A B ∩即为{}0,3,故选:B.57.B【解析】【分析】解不等式求得集合B ,由此求得A B .【详解】()()()2550,50,x x x x B +=+>⇒=-∞-⋃+∞, 又{34}A x x =-<<,所以()0,4A B =.故选:B58.A【解析】【分析】首先联立方程,然后判断交点个数,即可判断选项.【详解】首先联立方程22250y x y x xy =-⎧⎪=-⎨⎪≤⎩,得2230x x --=,解得:1x =-或3x =,当1x =-时,4y =-,此时0xy >,舍去;当3x =时,4y =,此时0xy >,舍去,所以M N ⋂为空集.故选:A59.B【分析】根据不等式的解法,分别求得集合,A B ,结合集合补集和交集的运算,即可求解.【详解】 由不等式402x x ->+,解得2x <-或4x >,所以{|2A x x =<-或4}x >, 又由不等式27100x x -+≥,解得2x ≤或5x ≥,所以{|2B x x =≤或5}x , 可得R {|24}A x x =-≤≤,所以()R A B ⋂={}22x x -≤≤.故选:B.60.D【解析】【分析】设()11111i ,z x y x y R =+∈,()22222i ,z x y x y R =+∈,则11(,)OA x y =,22(,)OB x y =,计算出21z z ,然后结合OA OB ⊥可得答案. 【详解】设()11111i ,z x y x y R =+∈,()22222i ,z x y x y R =+∈,则11(,)OA x y =,22(,)OB x y =, 且21212122122111()i z x x y y x y x y z x y ++-=+, 由OA OB ⊥知12120x x y y +=且12x y -210x y ≠,故OA OB ⊥的充要条件是21z z 为纯虚数, 故选:D .61.D【解析】【分析】根据命题和逆否命题的关系可得答案.【详解】 原命题的条件是“若24x <”,结论为“22x -<<”,则其逆否命题是:若2x ≥或2x -≤,则24x ≥,故选:D .【解析】【分析】利用直线与圆的位置关系判断.【详解】因为圆心(0,0)到直线y =2的距离d =2=r ,所以直线2y =与圆224x y +=相切,所以A B 的元素的个数是1,故选:C .63.C【解析】【分析】根据集合的包含关系,列出参数a 的不等关系式,即可求得参数的取值范围.【详解】①集合{}{}2131M x x x x =+<=<,且N M ⊆,①1a ≤.故选:C .64.B【解析】【详解】先求解集合A 和集合B 中的不等式,利用交集的定义即得解【分析】由2318(6)(3)0x x x x --=-+≤,解得36x -≤≤,则[]3,6A =-, 不等式2log 1x >,即2x ,可得2x <-或2x >,则(,2)(2,)B =-∞-⋃+∞所以[)(]3,22,6A B ⋂=--⋃故选:B .65.C【解析】【分析】先判断命题p,q 的真假,从而判断,p q ⌝⌝的真假,再根据“或”“且”命题的真假判断方法,可得答案.【详解】 当52m =时,22123x y m m+=--表示圆, 故命题p :“23m <<是方程22123x y m m+=-- 表示椭圆”的充要条件是假命题, 命题q :“2b ac =是a ,b ,c 成等比数列”的必要不充分条件为真命题,则p ⌝是真命题,q ⌝是假命题,故p q ∧是假命题,p q ∨⌝是假命题,p q ⌝∨⌝是真命题,p q ⌝∧⌝是假命题, 故选:C66.A【解析】【分析】根据特称命题的否定是全称命题,结合已知条件,即可求得结果.【详解】因为命题p :()010,x ∃∈+∞,0lg 1x >,故命题p 的否定为:()10,x ∀∈+∞,1lg x ≤. 故选:A.67.B【解析】【分析】确定集合的元素个数,利用集合真子集个数公式可求得结果.【详解】集合A 的元素个数为4,故集合A 的真子集个数为42115-=.故选:B.68.D【解析】【分析】先求出集合A 的补集,进而求交集即可.【详解】①{}1A x x =>,①(]R ,1A ∞=-,又{}13B x x =-≤<,①()[]R 1,1A B ⋂=-.故选:D69.D【解析】【分析】根据充分条件和必要条件的定义即可得出答案.【详解】解:因为p :24x ≤≤,q :13x ≤≤, 所以,p q q p ⇒⇒,所以p 为q 的既不充分又不必要条件.故选:D.70.B【解析】【分析】特称命题的否定是全称命题,把存在改为任意,把结论否定.【详解】“0x ∃≥,()10x x -<”的否命题为“0x ∀≥,()10x x -≥”,故选:B71.C【解析】【分析】 由一元二次方程根的分布可得010a∆>⎧⎪⎨<⎪⎩求命题q 的参数a 范围,再由命题间的关系求m 的最值即可.【详解】因为2210ax x ++=有一正一负两个根,所以224010a a ⎧∆=->⎪⎨<⎪⎩,解得0a <. 因为p 是q 的充分不必要条件,所以0m <,且m ∈Z ,则m 的最大值为1-.故选:C72.C【解析】【分析】根据含有一个量词的命题的否定的方法进行求解.【详解】全称命题的否定是特称命题,则命题“0x ∀>,210x ->”的否定为“00x ∃>,0210x -≤”. 故选:C.73.D【解析】【分析】利用集合M 、N 的含义,将其化简,然后求其并集即可.【详解】解:由2430x x -+<可得13x <<,所以(1,3)M =,由240x -≥可得2x -≤或2x ≥,所以(][),22,N =-∞-+∞, 所以(](),21,M N =-∞-+∞.故选:D.74.B【解析】【分析】根据特称命题的否定的知识确定正确选项.【详解】原命题是特称命题,其否定是全称命题,注意否定结论,所以,命题“0x ∃∈R ,使得320000x ax bx c +++=”的否定是x ∀∈R ,320x ax bx c +++≠.故选:B75.B【解析】【分析】先求出集合A ,B ,进而根据交集的定义求得答案.【详解】由题意,()(){}[]()|1202,1,1,A x x x B =-+≤=-=-+∞,所以(1,1]A B ⋂=-故选:B.76.D【解析】【分析】先求得R B ,然后求得正确答案.【详解】{}R |13B x x =≤≤,()R A B ⋂={12}x x ≤<∣故选:D77.B【解析】【分析】根据存在量词命题的否定的知识确定正确选项.【详解】原命题是存在量词命题,其否定是全称量词命题,注意到要否定结论,所以B 选项符合. 故选:B78.C【解析】【分析】根据椭圆的性质及焦点的性质可写出其充要条件,然后逐项分析即可.【详解】解:对于A 、B 选项: 曲线22:121x y C m m -=++表示椭圆的充要条件是2010,2121m m m m m +>⎧⎪-->⇔-<<-⎨⎪+≠--⎩且32m ≠-,所以A ,B 不正确;对于C 、D 选项: 方程22121x y m m +=+--表示焦点在x 轴上椭圆321012m m m ⇔+>-->⇔-<<-,所以C 对,D 错.故选:C79.A【解析】【分析】先化简集合A ,B ,再利用集合的补集和交集运算求解.【详解】因为集合{}(){|ln 10,|[1,2)A x x e B x =<==-=,, 所以{|1R B x x =<-或2}x ≥,()[. 2,)R A B e ⋂=故选:A80.C【解析】【分析】 先求出方程221x y m n -=表示双曲线时,m n 满足的条件, 然后根据“小推大”的原则进行判断即可.【详解】 因为方程221x y m n-=为双曲线方程,所以0mn >, 所以“0mn >”是“方程221x y m n-=为双曲线方程”的充要条件. 故选:C.81.BCD【解析】【分析】对于A ,将函数有零点的问题转化为方程有根的问题,根据一元二次方程有根的条件可判断其正误;对于B ,分类讨论a 的取值范围,利用导数判断函数的最值情况;对于C ,可举一具体实数,说明()f x 在R 上单调递增,即可判断其正误;对于D ,根据导数与函数极值的关系判断即可. 【详解】对于A ,函数()()2221e xf x ax x =-+有零点⇔方程2210ax x -+=有解,当0a =时,方程有一解12x =; 当0a ≠时,方程2210ax x -+=有解01,0440a a a a ≠⎧⇔⇒≤≠⎨∆=-≥⎩, 综上知()f x 有零点的充要条件是1a ≤,故A 错误;对于B ,由()()2221e xf x ax x =-+得()()222e x f x x ax a '=+-,当0a =时,()24e xf x x '=-,()f x 在(),0∞-上单调递增,在()0,∞+上单调递减,此时()f x 有最大值()0f ,无最小值;当01a <<时,方程2210ax x -+=有两个不同实根1x ,()212x x x <,当[]12,x x x ∈时,()f x 有最小值()00f x <,当()()12,,x x x ∈-∞⋃+∞时,()0f x >;当1a =时,()()221e x f x x =-有最小值0;当1a >时,()0f x >且当x →-∞时,()0f x →,()f x 无最小值; 当0a <时,x →+∞时,()f x →-∞,()f x 无最小值, 综上,当且仅当(]0,1a ∈时,()f x 有最小值,故B 正确;对于C ,因为当2a =时,()()22221e xf x x x =-+,()224e 0x f x x '=≥在R 上恒成立,此时()f x 在R 上单调递增,故C 正确;对于D ,由()()222e xf x x ax a '=+-知,当0a =时,0x =是()f x 的极值点,当0a ≠,2a ≠时,0x =和2ax a-=都是()f x 的极值点,。
高中学习数学专题总结练习常用逻辑用语

课间辅导----常用逻辑用语1.设p: x (1,5)使函数g(x) log2(tx22x 2)有意义,假设p为假命题,那么t的2取值范围为_____________.2.“三个数a,b,c成等比数列〞是“ b2ac〞的条件.〔填“充分不必要、充要、必要不充分、既不充分也不必要〞〕3.设实数a 1,b 1,那么“a b〞是“lna lnb a b〞的条件.〔请用“充分不必要〞、“必要不充分〞、“充要〞、“既不充分也不必要〞中之一填空〕4.命题p: x R,f(x) m,那么命题 p的否认p是.5.以下命题中为真命题的是.①命题“x∈R,x2+2>0〞的否认;2 2②“假设x+y=0,那么x,y全为0〞的否命题;③“全等三角形是相似三角形〞的逆命题;④“圆内接四边形对角互补〞的逆否命题.6.命题 p:|x﹣1|<2和命题q:﹣1<x<m+1,假设p是q的充分不必要条件,那么实数m的取值范围.7.命题“x∈R,x2+x+1≤0〞的否认是.8.命题“x0,2x1〞的否认.9.命题p:对任意的x1,2,x20,命题q:存在xR,x22ax2a,假设命题“p且q〞是真命题,那么实数a的取值范围是__________.10.设p:|xa|3,q:(x1)(2x1)0,假设p是q的充分不必充要条件,那么实数a的取值范围是.11.命题p:“x0,有2x1成立〞,那么p为_______.12.给出以下五个命题:①函数f x lnx2x在区间1,e上存在零点;②假设f'0,那么函数yfx在xx0处取得极值;③命题“x R,x2x 0〞的否认是“R,x20〞;④“1x2〞是“2x1成立〞的充分不必要条件⑤假设函数yfx是偶函数,那么函数yfx的图象关于直线x2对称;其中正确命题的序号是〔请填上所有正确命题的序号〕13.给出以下命题:①半径为2,圆心角的弧度数为1的扇形面积为1;22②在ABC中,AB的充要条件是sinAsinB;③在ABC中,假设AB4,AC26,B,那么ABC为钝角三角形;3④函数f(x)lnx2x在区间(1,e)上存在零点.其中真命题的序号是__________.14.用符号(x]表示小于x的最大整数,如(]3,(1.2]2,有以下命题:①假设函数f(x)(x]x,xR,那么f(x)的值域为[1,0);②假设x1(1,4),那么方程x(x]5有三个根;③假设数列an是等差数列,那么数列(a n]也是等差数列;④假设x,y{5,3,7},那么(x]?(y]2的概率为P2.32______________.9那么以下正确命题的序号是15.给定以下命题:①假设k0,那么方程x22xk0有实数根;②“假设a b,那么a c b c〞的否命题;③“矩形的对角线相等〞的逆命题;④“假设xy,那么x,y中至少有一个为0〞的否命题;⑤“假设x2或y,那么x y5〞.其中真命题的序号是.6.设p:关于x的方程x24x2a在区间0,5上有两相异实根;q:“至少存在一个实数x01,2,使不等式x22ax2a0成立〞.假设“pq〞为真命题,参数a的取值范围为___________.7.p:xm,q:|x|1,假设q是p的必要不充分条件,那么实数m的取值范围是.8.以下各小题中,p是q的充分必要条件的是___________.p:m2或m6;q:yx2mx3有两个不同的零点;f xfx是偶函数;②p:q:yfx1;③p:coscos;q:tantan;④p:AIBA;q:C U BC U A;9.以下四个命题:①一个命题的逆命题为真,那么它的逆否命题一定为真;②命题“设a,bR,假设ab6,那么a3或b3〞是一个假命题;③“x2〞是“11〞x 2的充分不必要条件;④一个命题的否命题为真,那么它的逆命题一定为真.其中不正确的命题是.〔写出所有不正确命题的序号〕1.t课间辅导---- 常用逻辑用语参考答案122.充分不必要3.充要4. x R,f(x) m5.②④6.〔2,+∞〕7.?x∈R,x2+x+1>08. x 0,2x19.a或a110.(4]U[7,)211.x,2x1成立12.①④⑤13.②④14.①②④15.①②④16.-3,0 2,17.m 0 18.①④19.①②。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学 课间辅导----常用逻辑用语
1.设5
:(1,)2
p x ∃∈使函数22()log (22)g x tx x =+-有意义,若p ⌝为假命题,则t 的取值范围为_____________.
2.“三个数a ,b ,c 成等比数列”是“2b ac =”的 条件.(填“充分不必要、充要、必要不充分、既不充分也不必要”)
3.设实数1a >,1b >,则“a b <”是“ln ln a b a b ->-”的 条件.(请用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中之一填空)
4.命题:p x R ∀∈,()f x m ≥,则命题p 的否定p ⌝是 .
5.下列命题中为真命题的是 .
①命题“∀x∈R,x 2+2>0”的否定;
②“若x 2+y 2=0,则x ,y 全为0”的否命题;
③“全等三角形是相似三角形”的逆命题;
④“圆内接四边形对角互补”的逆否命题.
6.已知命题p :|x ﹣1|<2和命题q :﹣1<x <m+1,若p 是q 的充分不必要条件,则实数m 的取值范围 .
7.命题“∃x∈R,x 2+x+1≤0”的否定是 .
8.命题“0,21x
x ∀>>”的否定 .
9.已知命题:p 对任意的[]21,2,0x x a ∈-≥,命题:q 存在2,220x R x ax a ∈++-=,若命题“p 且q ”是真命题,则实数a 的取值范围是__________.
10.设p :3||>-a x ,q :0)12)(1(≥-+x x ,若p ⌝是q 的充分不必充要条件,则实数a 的取值范围是 .
11.已知命题p :“0>∀x ,有12≥x
成立”,则p ⌝为_______.
12.给出下列五个命题:
①函数()ln 2f x x x =-+在区间()1,e 上存在零点;
②若()0'0f x =,则函数()y f x =在0x x =处取得极值;
③命题“2,0x R x x ∃∈->” 的否定是“2,0x R x x ∀∈->”;
④“12x <<” 是“21x >成立”的充分不必要条件
⑤若函数()2y f x =+是偶函数,则函数()y f x =的图象关于直线2x =对称; 其中正确命题的序号是 (请填上所有正确命题的序号)
13.给出下列命题: ①半径为2,圆心角的弧度数为
12的扇形面积为12
; ②在ABC ∆中,A B <的充要条件是sin sin A B <; ③在ABC ∆中,若4AB =
,AC =3B π=
,则ABC ∆为钝角三角形;
高中数学
④函数()ln 2f x x x =-+在区间(1,)e 上存在零点.
其中真命题的序号是__________.
14.用符号(]x 表示小于x 的最大整数,如(]3,( 1.2]2π=-=-,有下列命题:①若函数()(],f x x x x R =-∈,则()f x 的值域为[1,0)-;②若(1,4)x ∈,则方程1
(]5
x x -=有三个根;③若数列{}n a 是等差数列,则数列{}(]n a 也是等差数列;④若
57,{,3,}32x y ∈,则(](]2x y •=的概率为29
P =. 则下列正确命题的序号是______________.
15.给定下列命题:
①若0k >,则方程220x x k +-=有实数根;
②“若a b >,则a c b c +>+”的否命题;
③“矩形的对角线相等”的逆命题;
④“若0xy =,则,x y 中至少有一个为0”的否命题;
⑤“若2x ≠或3y ≠,则5x y +≠”.
其中真命题的序号是 .
16.设:p 关于x 的方程2420x x a -+=在区间[]0,5上有两相异实根;:q “至少存在一个实数[]01,2x ∈,使不等式2220x ax a ++->成立”.若“p q ⌝∧”为真命题,参数a 的取值范围为___________.
17.已知p :x m ≥,q :|1|1x -<,若q ⌝是p ⌝的必要不充分条件,则实数m 的取值范围是 .
18.下列各小题中,p 是q 的充分必要条件的是___________.
①:2p m <-或26;:3m q y x mx m >=+++有两个不同的零点;
②()()()::1;
f x p q y f x f x -==是偶函数; ③:cos cos ;:tan tan p q αβαβ==;
④:;:U U p A B A q C B C A =⊆;
19.下列四个命题:①一个命题的逆命题为真,则它的逆否命题一定为真;②命题“设,a b R ∈,若6a b +≠,则3a ≠或3b ≠”是一个假命题;③“2x >”是“112x <”的充分不必要条件;④一个命题的否命题为真,则它的逆命题一定为真.其中不正确的命题是 .(写出所有不正确命题的序号)
高中数学 课间辅导----常用逻辑用语
参考答案
1.12
t >- 2.充分不必要
3.充要
4.x R ∃∈,()f x m <
5.②④
6.(2,+∞)
7.∀x ∈R ,x 2+x+1>0
8.0,21x x ∃>≤
9.2a ≤-或1a =
10.7(,4][,)2
-∞-+∞
11.12,0<>∃x x 成立
12.①④⑤
13.②④
14.①②④
15.①②④ 16.()[)∞+,
20,3- 17.0m ≤
18.①④
19.①②。