高中数学常用逻辑用语

合集下载

高中数学 第一章 常用逻辑用语 1.3 全称量词与存在量词 1.3.1 全称量词与全称命题 1.3.

高中数学 第一章 常用逻辑用语 1.3 全称量词与存在量词 1.3.1 全称量词与全称命题 1.3.

2.特称命题 “有些”“至少有一个”“有一个”“存在”等都有表示个别或一部分 的含义,这样的词叫作存在量词,含有存在量词的命题,叫作特称命 题. 【做一做2】 下列命题不是特称命题的是( ) A.有些实数没有平方根 B.能被5整除的数也能被2整除 C.存在x∈{x|x>3},使x2-5x+6<0 D.有一个m,使2-m与|m|-3异号 答案:B
题型一 题型二 题型三 题型四
解:(1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4. 要使m>-(x-1)2-4对于任意x∈R恒成立,只需m>-4即可. 故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,此时,只 需m>-4. (2)不等式m-f(x)>0可化为m>f(x),若存在一个实数x,使不等式 m>f(x)成立,只需m>f(x)min.
【做一做 3】 给出下列命题:
①任意 x∈R, ������是无理数; ②任意������, ������∈R,若 xy≠0,则 x,y 中至少
有一个不为 0;③存在实数既能被 3 整除又能被 19 整除.
其中真命题为
.(填序号)
解析:①是假命题,例如 4是有理数;②是假命题,若 xy≠0,则 x,y
题型一 题型二 题型三 题型四
题型三 利用全称命题、特称命题求参数范围
【例3】 已知函数f(x)=x2-2x+5. (1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立?并 说明理由. (2)若存在一个实数x,使不等式m-f(x)>0成立,求实数m的取值范围. 分析:可考虑用分离参数法,转化为m>-f(x)对任意x∈R恒成立和 存在一个实数x,使m>f(x)成立.

高中常用逻辑用语

高中常用逻辑用语

高中常用逻辑用语1. 高中常用逻辑用语啊,那可太重要啦!就像我们走路需要看清路一样,逻辑用语能让我们的思维更清晰呀!比如“如果明天下雨,我就不出门”,这就是一个简单的逻辑关系嘛。

2. 嘿,高中常用逻辑用语,不就是帮我们理清思路的好帮手嘛!就好比在迷宫里找到正确的路线一样。

像“要么选文科,要么选理科”,是不是很直白?3. 哇塞,高中常用逻辑用语真的很神奇呢!它就像一把钥匙,能打开我们思维的大门呀!“所有的三角形内角和都是 180 度”,这就是一个典型例子呀。

4. 高中常用逻辑用语呀,那可是学习中不可或缺的呀!这不就跟我们每天要吃饭一样重要嘛!“只要努力学习,就会取得好成绩”,大家都懂吧?5. 哎呀呀,高中常用逻辑用语,简直就是思维的导航仪呀!就像在海上航行需要指南针一样。

“没有一个人不喜欢美好的事物”,是不是这样?6. 嘿哟,高中常用逻辑用语,可太有意思啦!它就像游戏里的规则,让一切都有条有理呢!比如“只有认真听讲,才能学好知识”。

7. 哇哦,高中常用逻辑用语,那可是相当重要哇!就好像盖房子需要坚实的基础一样。

“有的同学喜欢数学”,这就是一种存在呀。

8. 高中常用逻辑用语,不就是让我们说话做事更有条理嘛!像给混乱的线团找到线头一样。

“若一个数是偶数,则它能被 2 整除”,多清晰呀。

9. 哎呀,高中常用逻辑用语,真是神奇的东西呢!就像魔法棒一样能让我们的思维变得更厉害!“不是正数就是负数”,很简单易懂吧。

10. 高中常用逻辑用语,那绝对是学习的好帮手呀!就跟好朋友一样可靠呢!“只要坚持锻炼,身体就会健康”,这道理多浅显。

我的观点结论就是:高中常用逻辑用语非常重要,能帮助我们更好地理解和表达,一定要好好掌握呀!。

高中数学常用逻辑用语

高中数学常用逻辑用语

逆否命题: 若 q 则 p
结论1:要写出一个命题的另外三个命
题关键是分清命题的题设和结论(即
把原命题写成“若p则q”的形式)
注意:三种命题中最难写 的是否命题。 高中数学常用逻辑用语
三、四种命题之间的 关系
原命题
பைடு நூலகம்若p则q
互逆 逆命题
若q则p




否命题
逆否命题
若﹁p则﹁q
互逆 若﹁q则﹁p
高中数学常用逻辑用语
x∈N”是“x∈M∩N”的
B
A.充要条件
B必要不充分条件
C充分不必要 D既不充分也不必要
注、集合法
2、a∈R,|a|<3成立的一个必要不充分条件是
A.a<3 B.|a|<2 C.a2<9 D.0<a<2
A
高中数学常用逻辑用语
练习5、
1.已知p是q的必要而不充分条件, 那么┐p是┐q的___充__分_不__必__要_条__件__.
(2)从这个假设出发,经过推理 论证,得出矛盾;
(3) 由矛盾判定假设不正确, 从而肯定命题的高中数结学常用论逻辑正用语 确。
归谬 结论
1.写出命题“当c>0时,若a>b, 则ac>bc“的逆命题,否命题 与逆否命题,并分别判断他们的真假
2.写出命题“若x≠a且x≠b, 则x2-(a+b)x+ab≠0”的否命题
充分非必要条件
2) 若A B且B A,则甲是乙的
必要非充分条件
3)若A B且B A,则甲是乙的
既不充分也不必要条件 4)若A=B ,则甲是高中乙数学的常用逻充辑用分语 且必要条件。
注意点
1.在判断条件时,要特别注意的是它们能否互相 推出,切不可不加判断以单向推出代替双向推出.

高中数学第一章常用逻辑用语1.1.1四种命题12111数学

高中数学第一章常用逻辑用语1.1.1四种命题12111数学
样的两个命题就叫做互否命题,若把其中一个命
题叫做原命题,则另一个就叫做原命题的否命题.
例如: 原命题是:同位角相等,两直线平行。 否命题(mìng tí)是:同位角不相等,两直线不平行。
第七页,共二十一页。
课中共(zhōnɡ ɡò①nɡ)学如果两个三角形全等,那么它们的面积相等;
④如果两个三角形的面积不相等,那么它们不全等。
逆否命题,并判断各命题的真假。
解 原命题(mìng tí):若a=0,则ab=0是真命题; 逆命题:若ab=0,则a=0是假命题(mìng tí);
否命题:若a 0,则ab 0 ”是假命题;
逆否命题:若ab 0,则a 0”是真命题;
原命题为真,它的否命题不一定为真;
原命题为真,它的逆否命题一定为真.
逆否命题 是:两直线不平行,同位角不相等。
第八页,共二十一页。
课中共(zhōnɡ 学 ɡònɡ)
探究 活动: (tànjiū)
1.探求(tànqiú)四种命题之间的关系,为 什么存在这种关系?
第九页,共二十一页。
课中共学
四种命题间的相互(xiānghù)关系:
原命题(mìng tí) 若p则q
互 否
例如:
原命题(mìng tí)是:同位角相等,两直线平行。 逆命题就是:两直线(zhíxiàn)平行,同位角相等。
第六页,共二十一页。
课中共(zhōnɡ ɡ①ònɡ如)学果两个三角形全等,那么它们的面积相等;
③如果两个三角形不全等,那么它们的面积不相等;
2.在两个命题中,一个命题的条件和结论分别 (fēnbié)是另一个命题的条件的否定和结论的否定,这
第十三页,共二十一页。
课中共(zhōnɡ 学 ɡònɡ)

高中数学第一章常用逻辑用语1.4逻辑联结词“且”“或”“非”5121数学

高中数学第一章常用逻辑用语1.4逻辑联结词“且”“或”“非”5121数学

真假:

(1) p: 12是3的倍数, 真 p∧qq:: 1122是是34的的倍倍数数(b;èishù)且12是4的倍数. 真

(2) p: π > 3 , 假 p∧qq:: ππ大< 于2 ;3且小于2. 假

(3) p:
p∧qq::
666是是是奇奇素数数数,且. 是假素数.

第四页,共二十页。
小组讨论1:“p∧q”的真假与p、q的真假有何关系(guān xì)?
【思考】命题的否定的否定是原命题吗?
提示:是
第十页,共二十页。
探究4:命题的否定(fǒudìng)与否命题的区别? 原命题:正方形的四条边相等.
若一个四边形是正方形,则它的四条边相等.
命题的否定: 正方形的四条边不相等.
若一个四边形是正方形,则它的四条边不相等.
否命题: 若一个四边形不是正方形,则它的四条边不相等.
就得到一个新命题, 记作:“p∧q”,读作:“p且q”
从集合角度看:P∩Q={x|x∈P且x∈Q}
P
P∩Q
Q
第三页,共二十页。
P∩Q
小探究组(讨tànj论iū)11::逻“p辑∧联q”结的词真“假且与”p、q的真假有何关系?
例1 用“且”构造新命题(mìng tí),并判断命题(mìng tí)的
简记(jiǎn jì)“p且q,同真则真,有假则假”
【思考】
1.若“p∧q”是假命题,则命题p、q都是假命题吗?为何? 提示:不一定,因为命题p、q中只要有一个(yī ɡè)是假命题, “p∧q”就是假命题. 2.判断“p∧q”命题真假的关键是什么? 提示:关键是判断命题p、q的真假.
第五页,共二十页。

高中数学常用逻辑用语的解题方法归纳

高中数学常用逻辑用语的解题方法归纳

§.常用逻辑用语一、知识导学1.逻辑联结词:“且”、“或”、 “非”分别用符号“∧”“∨”“⌝”表示.2.命题:能够判断真假的陈述句.3.简单命题:不含逻辑联结词的命题4.复合命题:由简单命题和逻辑联结词构成的命题,复合命题的基本形式:p 或q ;p 且q ;非p5.四种命题的构成:原命题:若p 则q ; 逆命题:若q 则p ;否命题:若p 则q ;逆否命题:若q 则p.6.原命题与逆否命题同真同假,是等价命题,即“若p 则q”“若q 则p ” . 7.反证法:欲证“若p 则q”,从“非q”出发,导出矛盾,从而知“若p 则非q”为假,即“若p 则q”为真 .8.充分条件与必要条件 :①pq :p 是q 的充分条件;q 是p 的必要条件; ②p q :p 是q 的充要条件 . 9.常用的全称量词:“对所有的”、“ 对任意一个”“ 对一切”“ 对每一个”“任给”等;并用符号“∀” 表示.含有全称量词的命题叫做全称命题.10.常用的存在量词:“存在一个”、“至少有一个”、“有些”、“有一个”、 “有的”、“对某个”; 并用符号“∃”表示.含有存在量词的命题叫做特称命题.二、疑难知识导析1.基本题型及其方法(1)由给定的复合命题指出它的形式及其构成;(2)给定两个简单命题能写出它们构成的复合命题,并能利用真值表判断复合命题的真假;(3)给定命题,能写出它的逆命题、否命题、逆否命题,并能运用四种命题的相互关系,特别是互为逆否命题的等价性判断命题的真假.注意:否命题与命题的否定是不同的.(4)判断两个命题之间的充分、必要、充要关系;方法:利用定义(5)证明p 的充要条件是q ;方法:分别证明充分性和必要性(6)反证法证题的方法及步骤:反设、归谬、结论.反证法是通过证明命题的结论的反面不成立而肯定命题的一种数学证明方法,是间接证法之一. 关键词 是 都是(全是) >(<) 至少有一个 至多有一个 任意 存在否定 不是 不都是(全是) ≤(≥) 一个也没有 至少有两个 存在 任意2.全称命题与特称命题的关系:全称命题p:)(,x p M x ∈∀,它的否定p ⌝:)(,x p M x ⌝∈∃;特称命题p:)(,x p M x ∈∃,它的否定p ⌝:)(,x p M x ⌝∈∀;即全称命题的否定是特称命题,特称命题的否定是全称命题.否定一个全称命题可以通过“举反例”来说明.三、经典例题导讲[例1] 把命题“全等三角形一定相似”写成“若p 则q ”的形式,并写出它的逆命题、否命题与逆否命题.错解:原命题可改写成:若两个三角形全等,则它们一定相似.否命题:若两个三角形不一定全等,则它们不一定相似.逆否命题:若两个三角形不一定相似,则它们不一定全等.错因:对“一定”的否定把握不准,“一定”的否定 “一定不”,在逻辑知识中求否定相当于求补集,而“不一定”含有“一定”的意思.对这些内容的学习要多与日常生活中的例子作比较,注意结合集合知识.因而否命题与逆否命题错了.正解:否命题:若两个三角形不全等,则它们不相似.逆否命题:若两个三角形不相似,则它们不全等.[例2] 将下列命题改写成“若p 则q ”的形式,并写出否命题.a>o 时,函数y=ax+b 的值随x 值的增加而增加.错解:原命题改为:若a>o 时,x 的值增加,则函数y=ax+b 的值也随着增加.错因:如果从字面上分析最简单的方法是将a>o 看作条件,将“随着”看作结论,而x 的值增加,y 的值也增加看作研究的对象,那么原命题改为若a>o 时,则函数y=ax+b 的值随着x 的值增加而增加,其否命题为若a ≤o 时,则函数y=ax+b 的值不随x 值的增加而增加.此题错解在注意力集中在“增加”两个字上,将x 值的增加当做条件,又不把a>o 看作前提,就变成两个条件的命题,但写否命题时又没按两个条件的规则写,所以就错了.正解:原命题改为: a>o 时,若x 的值增加,则函数y=ax+b 的值也随着增加.否命题为: a>o 时,若x 的值不增加,则函数y=ax+b 的值也不增加.原命题也可改为:当x 的值增加时,若a>o ,,则函数y=ax+b 的值也随着增加.否命题为: 当x 增加时,若a ≤o ,则函数y=ax+b 的值不增加.[例3] 已知h>0,设命题甲为:两个实数a 、b 满足h b a 2<-,命题乙为:两个实数a 、b 满足h a <-|1且h b <-|1,那么A .甲是乙的充分但不必要条件B .甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件错解:h b a 2<-⇔h h h b a +=<---2)1()1(⇔h a <-|1|,h b <-|1|2.全称命题与特称命题的关系:全称命题p:)(,x p M x ∈∀,它的否定p ⌝:)(,x p M x ⌝∈∃;特称命题p:)(,x p M x ∈∃,它的否定p ⌝:)(,x p M x ⌝∈∀;即全称命题的否定是特称命题,特称命题的否定是全称命题.否定一个全称命题可以通过“举反例”来说明.三、经典例题导讲[例1] 把命题“全等三角形一定相似”写成“若p 则q ”的形式,并写出它的逆命题、否命题与逆否命题.错解:原命题可改写成:若两个三角形全等,则它们一定相似.否命题:若两个三角形不一定全等,则它们不一定相似.逆否命题:若两个三角形不一定相似,则它们不一定全等.错因:对“一定”的否定把握不准,“一定”的否定 “一定不”,在逻辑知识中求否定相当于求补集,而“不一定”含有“一定”的意思.对这些内容的学习要多与日常生活中的例子作比较,注意结合集合知识.因而否命题与逆否命题错了.正解:否命题:若两个三角形不全等,则它们不相似.逆否命题:若两个三角形不相似,则它们不全等.[例2] 将下列命题改写成“若p 则q ”的形式,并写出否命题.a>o 时,函数y=ax+b 的值随x 值的增加而增加.错解:原命题改为:若a>o 时,x 的值增加,则函数y=ax+b 的值也随着增加.错因:如果从字面上分析最简单的方法是将a>o 看作条件,将“随着”看作结论,而x 的值增加,y 的值也增加看作研究的对象,那么原命题改为若a>o 时,则函数y=ax+b 的值随着x 的值增加而增加,其否命题为若a ≤o 时,则函数y=ax+b 的值不随x 值的增加而增加.此题错解在注意力集中在“增加”两个字上,将x 值的增加当做条件,又不把a>o 看作前提,就变成两个条件的命题,但写否命题时又没按两个条件的规则写,所以就错了.正解:原命题改为: a>o 时,若x 的值增加,则函数y=ax+b 的值也随着增加.否命题为: a>o 时,若x 的值不增加,则函数y=ax+b 的值也不增加.原命题也可改为:当x 的值增加时,若a>o ,,则函数y=ax+b 的值也随着增加.否命题为: 当x 增加时,若a ≤o ,则函数y=ax+b 的值不增加.[例3] 已知h>0,设命题甲为:两个实数a 、b 满足h b a 2<-,命题乙为:两个实数a 、b 满足h a <-|1且h b <-|1,那么A .甲是乙的充分但不必要条件B .甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件错解:h b a 2<-⇔h h h b a +=<---2)1()1(⇔h a <-|1|,h b <-|1|故本题应选C.错因:(1)对充分、必要、充要条件的概念分不清,无从判断,凭猜测产生错误;(2)不能运用绝对值不等式性质作正确推理而产生错误.正解:因为,11⎪⎩⎪⎨⎧<-<-h b h a 所以,11⎩⎨⎧<-<-<-<-h b h h a h 两式相减得h b a h 22<-<- 故h b a 2<-即由命题甲成立推出命题乙成立,所以甲是乙的必要条件.由于⎪⎩⎪⎨⎧<-<-hb h a 22 同理也可得h b a 2<-因此,命题甲成立不能确定命题乙一定成立,所以甲不是乙的充分条件,故应选B.[例4] 已知命题甲:a+b ≠4, 命题乙:a 1≠且b 3≠,则命题甲是命题乙的 .错解:由逆否命题与原命题同真同假知,若a=1且b=3则a+b=4成立,所以命题甲是命题乙的充分不必要条件.错因 :对命题的否定不正确.a 1≠且b 3≠的否定是a=1或b=3.正解:当a+b ≠4时,可选取a=1,b=5,故此时a 1≠且b 3≠不成立( a=1).同样,a 1≠,且b 3≠时,可选取a=2,b=2,a+b=4,故此时a+b=4.因此,甲是乙的既不充分也不必要条件.注:a 1≠且b 3≠为真时,必须a 1≠,b 3≠同时成立.[例5] 已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件分析:本题考查简易逻辑知识.因为p ⇒r ⇒s ⇒q 但r 成立不能推出p 成立,所以q p ⇒,但q 成立不能推出p 成立,所以选A 解:选A[例6] 已知关于x 的一元二次方程 (m∈Z)① mx 2-4x +4=0 ② x 2-4mx +4m 2-4m -5=0求方程①和②都有整数解的充要条件.解:方程①有实根的充要条件是,04416≥⨯⨯-=∆m 解得m ≤1.方程②有实根的充要条件是0)544(41622≥---=∆m m m ,解得.45-≥m ,.145Z m m ∈≤≤-∴而故m =-1或m =0或m =1. 当m =-1时,①方程无整数解.当m=0时,②无整数解;当m=1时,①②都有整数.从而①②都有整数解m =1.反之,m =1①②都有整数解.∴①②都有整数解的充要条件是m =1.[例7] 用反证法证明:若a 、b 、c R ∈,且122+-=b a x ,122+-=c b y ,122+-=a c z ,则x 、y 、z 中至少有一个不小于0证明: 假设x 、y 、z 均小于0,即:0122<+-=b a x ----① ;0122<+-=c b y ----② ;0122<+-=a c z ----③;①+②+③得0)1()1()1(222<-+-+-=++c b a z y x ,这与0)1()1()1(222≥-+-+-c b a 矛盾,则假设不成立, ∴x 、y 、z 中至少有一个不小于0[例8] 已知命题p :方程x 2+mx +1=0有两个不等的负根;命题q :方程4x 2+4(m -2)x +1=0无实根.若“p 或q ”为真,“p 且q ”为假,求m 的取值范围.分析:“p 或q ”为真,则命题p 、q 至少有一个为真,“p 且q ”为假,则命题p 、q 至少有一为假,因此,两命题p 、q 应一真一假,即命题p 为真,命题q 为假或命题p 为假,命题q 为真. 解: 若方程x 2+mx +1=0有两不等的负根,则⎩⎨⎧>>-=∆0042m m 解得m >2,即命题p :m >2若方程4x 2+4(m -2)x +1=0无实根,则Δ=16(m -2)2-16=16(m 2-4m +3)<0解得:1<mq :1<m <3.因“p 或q ”为真,所以p 、q 至少有一为真,又“p 且q ”为假,所以命题p 、q 至少有一为假,因此,命题p 、q 应一真一假,即命题p 为真,命题q 为假或命题p 为假,命题q 为真.∴⎩⎨⎧<<≤⎩⎨⎧≥≤>312312m m m m m 或或 解得:m ≥3或1<m ≤2.四、典型习题导练1.方程0122=++x mx 至少有一个负根,则( )A.10<<m 或0<mB.10<<mC.1<mD.1≤m2.“0232>+-x x ”是“1<x 或4>x ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.三个数,,a b c 不全为0的充要条件是 ( )A.,,a b c 都不是0.B.,,a b c 中至多一个是0.C.,,a b c 中只有一个是0.D.,,a b c 中至少一个不是0.4.由命题p :6是12的约数,q :6是24的约数,构成的“p 或q ”形式的命题是:_ ___,“p 且q ”形式的命题是__ _,“非p ”形式的命题是__ _.5.若,a b R ∈,试从A.0ab =B.0a b +=C.220a b +=D.0ab >E.0a b +>F.220a b +> 中,选出适合下列条件者,用代号填空:(1)使,a b 都为0的充分条件是 ;(2)使,a b 都不为0的充分条件是 ;(3)使,a b 中至少有一个为0的充要条件是 ;(4)使,a b 中至少有一个不为0的充要条件是 .6.分别指出由下列各组命题构成的逻辑关联词“或”、“且”、“非”的真假.(1)p : 梯形有一组对边平行;q :梯形有一组对边相等.(2)p : 1是方程0342=+-x x 的解;q :3是方程0342=+-x x 的解. (3)p : 不等式0122>+-x x 解集为R ;q : 不等式1222≤+-x x 解集为. 7.命题:已知a 、b 为实数,若x 2+ax +b ≤0 有非空解集,则a 2- 4b ≥0.写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.8.用反证法证明:若a 、b 、c 、d 均为小于1的正数,且x=4a(1-b),y=4b(1-c),z=4c(1-d),t=4d(1-a),则x 、y 、z 、t 四个数中,至少有一个不大于1.。

高中数学 第一章 常用逻辑用语 1.4 全称量词与存在量词 1.4.1 全称量词 1.4.2 存在量

高中数学 第一章 常用逻辑用语 1.4 全称量词与存在量词 1.4.1 全称量词 1.4.2 存在量
所以“p或q”是真命题时,实数a的取值范围是(-∞,1]∪[2,+∞).
方法技巧 (1)含参数的全称命题为真时,常转化为不等式的恒成立问题来 处理,最终通过构造函数转化为求函数的最值问题. (2)含参数的特称命题为真时,常转化为方程或不等式有解问题来处理,最 终借助根的判别式或函数等相关知识获得解决.
是错误的,故选C.
方法技巧 (1)全称命题的真假判断
要判定一个全称命题“∀x∈M,p(x)”是真命题,必须对限定集合M中的每个
元素x验证p(x)成立;但要判定全称命题是假命题,只要能举出集合M中的一
个x=x0,使得p(x0)不成立即可. (2)特称命题的真假判断 要判断特称命题“∃x0∈M,p(x0)”为真命题,只需在限定集合M中找出一个 x=x0,使得p(x0)成立即可;要判断特称命题为假命题,就要验证集合M中的每 个元素x都不能满足p(x),即在集合M中,使p(x0)成立的元素x0不存在.
新知探求 课堂探究
新知探求 素养养成
知识点一 全称量词与全称命题
问题1:结合你学过的知识,谈谈你对全称量词的含义的理解.
答案:短语“所有”在陈述中表示所述事物的全体,在逻辑中通常叫做全称量
词.

梳理 全称量词有:所有的、任意一个、任给一个,用符号“
”表示,含
有全∀称x∈量M词,p的(x命) 题,叫做全称命题.“对M中的所有x,p(x)”用符号简记为:
解析:(1)可以改为所有的凸多边形的外角和等于360°,故为全称命题.
(2)含有全称量词“任意”,故是全称命题;
(3)是命题,但既不是全称命题,也不是特称命题;
(4)有一个实数a,a不能取对数. (5)任何数的0次方都等于1吗?
解析:(4)含有存在量词“有一个”,因此是特称命题; (5)不是命题.

高中数学:常用逻辑用语

高中数学:常用逻辑用语

常用逻辑用语一、知识框架1.命题定义:用语言、符号或式子表达的、可以判断正误的陈述语句,叫做命题。

其中,判断为真的即为真命题,为假的即为假命题。

2.命题的判断以及命题真假的判断(1)命题的判断:①判断该语句是否是陈述句;②能否判断真假。

(2)命题真假的判断:首先,分清条件与结论,其次,再判断命题真假。

3.一般地,用p 和q 分别表示原命题的条件和结论,用¬p 和¬q 表示p 与q 的否定,即如下:(四种命题的关系)4.充分条件和必要条件 (1)充分条件:如果A 成立,那么B 成立,则条件A 是B 成立的充分条件。

(2)必要条件:如果A 成立,那么B 成立,这时B 是A 的必然结果,则条件B 是A 成立的必要条件。

(3)充要条件:如果A 既是B 成立的充分条件,又是B 成立的必要条件,则A 是B 成立的充要条件,与此同时,B 也一定是A 成立的重要条件,所以此时,A 、B 互为充要条件。

【注意】充分条件与必要条件是完全等价的,是同一逻辑关系“A =>B ”的不同表达方法。

5.逻辑联结词(1)不含逻辑联结词的命题是简单命题,由简单命题和逻辑联结词“或”“且”“非”构成的命题是复合命题,它们有以下几种形式:p 或q (p ∨q );p 且q (p ∧q );非p (¬p )。

(2)逻辑联结词“或”“且”“非”的含义的理解 在集合中学习的“并集”“交集”“补集”与逻辑联结词中的“或”“且”“非”关系十分密切。

6.量词与命题量词名称 常见量词表示符号全称量词 所有、一切、任意、全部、每一个、任给等 ∀存在量词 存在一个、至少有一个、某个、有些、某些等∃命 题 表述形式 原命题 若p 则q 逆命题 若q 则p 否命题 若¬p 则¬q 逆否命题若¬q 则¬p(2)全称命题与特称命题 命题全称命题“()x p M x ,∈∀”特称命题“()00,x p M x ∈∃”定义短语“对所有的”“对任意一个”等,在逻辑中通常叫做全称量词,用符号“∀”表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结论:
(1)原命题与逆否命题同真假。
(2)原命题的逆命题与否命题同真假。
反证法
反证法的一般步骤:
(1)假设命题的结论不成立,即假 反设 设结论的反面成立;
(2)从这个假设出发,经过推理 论证,得出矛盾;
归谬
(3) 由矛盾判定假设不正确, 从而肯定命题的结论正确。
结论
1.写出命题“当c>0时,若a>b, 则ac>bc“的逆命题,否命题 与逆否命题,并分别判断他们的真假
2、a>b成立的充分不必要的条件是( D )
A. ac>bc
B. a/c>b/c
C. a+c>b+c D. ac2>bc2
3.关于x的不等式:|x|+|x-1|>m的
解集为R的充要条件是( C )
(A)m<0
(B)m≤0
(C)m<1
(D)m≤1
练习4、
1、设集合M={x|x>2},N={x|x<3},那么”x∈M或
2.写出命题“若x≠a且x≠b, 则x2-(a+b)x+ab≠0”的否命题
充要条件
如果命题“若p则q”为真,则记
作p
q(或q
p)。
如果命题“若p则q”为假,则记作p q。
定义:如果 p q ,则说p是q的充分
条件,q是p的必要条件
p q,相当于P q , 从集合角度理解: 即 P q 或 P、q
3、注意几种方法的灵活使用: 定义法、集合法、逆否命题法
1:填写“充分不必要,必要不充分,充要, 既不充分又不必要。 既不充分又不必要 1)sinA>sinB是A>B的___________条件。
2)在ΔABC中,sinA>sinB是 A>B的 _充__要__条_件__条件。
注、定义法(图形分析)
求实数m的取值范围
2.给出下列命题:①关于x的不等式
(m 2)x2 2(m 2)x 4 0 对xR恒成立;
② f (x) (1 3m m2 )x 是减函数。
若①和②中至少有一个是真命题,求实数 m的取值范围
全称量词与存在量词
短语”对所有的””对任意一 个”在逻辑中通常叫做全称量词,
并用符号 “ ”表示.含有全称
注、等价法(转化为逆否命题)
2:若┐A是┐B的充要条件,┐C是┐B的充 要条
件,则A为C的( )条A件
A.充要
B必要不充分
C充分不必要 D既不充分也不必要
练习6、
1.已知P:|2x-3|>1;q:1/(x2+x-6)>0,
则┐p是┐q的( A )
(A)充分不必要条件
(B)必要不充分条件
(C)充要条件
x+a(a+1)≤0。若 p是 q的必要
不充分条件 ,求实数a的取值范围。
我们再来看几个复杂的命题:
(1)10可以被2或5整除. (2)菱形的对角线互相垂直且平分. (3)0.5非整数.
“或”,“且”, “非”称为逻辑联结词.含有 逻辑联结词的命题称为复合命题,不含逻辑联 结词的命题称为简单命题.
常用逻辑用语 复习
用常 语用
逻 辑
知识网络
命题及其关 系
简单的逻辑联结 词
四种命题
充分条件与必要条件

并集

交集 运算

补集
全称量词与存在 量词
量词
全称量词 存在量词
含有一个量词的否定
一.用语言、符号或式子表达的,可以判断真 假的陈述句称为命题. 其中判断为真的语句称为真命题,判断为假 的语句称为假命题.
x∈N”是“x∈M∩N”的
B
A.充要条件
B必要不充分条件
C充分不必要 D既不充分也不必要
注、集合法
2、a∈R,|a|<3成立的一个必要不充分条件是
A.a<3 B.|a|<2 C.a2<9 D.0<a<2
A
练习5、
1.已知p是q的必要而不充分条件, 那么┐p是┐q的___充__分_不__必__要_条__件__.
“非”命题对常见的几个正面词语的否定.
正面 = > 是 都是 至多 至少 任 所有 有一 有一 意 的 个个的
否定 ≠ ≤ 不 不都 至少 没有 某 某些 是 是 有两 一个 个 个
1.已知p: 方程 x2 mx 1 0 有 两个不
等的负实根;q:方程 4x2 4(m 2)x 1 0
无实根.若 p q为真, p q 为假,
量词的命题,叫做全称命题.
常见的全称量词还有:
“对所有的”,”对任意一个”,”对一 切”,”对每一个”,”任给”,”所有的”
通常,将含有变量x的语句用p(x)、q(x)、 r(x)表示,变量x的取值范围用M表示。
全称命题”对M中任意一个x有p(x) 成立”可用符号简记为
x M , p(x)
读作”对任意x属于M,有p(x)成 立”.
复合命题有以下三种形式: (1)P且q. (2)P或q. (3)非p.
逻辑联结词 : 或、且、非
一般地,用逻辑联结词”且”把命题p和命 题q联结起来.就得到一个新命题,记作
p q 读作”p且q”.
规定:当p,q都是真命题时, p q 是 真命题;当p,q两个命题中有一个命
题是假命题时, p q 是假命题. pq
充要条件定义:
如果既有p q,又有q p就记做p q
称:p是q的充分必要条件,简称充要条件
显然,如果p是q的充要条件,那么q也是p的充要条件
p与q互为充要条件(也可以说成”p与q等价”)
各种条件的可能情况
1、充分且必要条件 2、充分非必要条件 3、必要非充分条件 4、既不充分也不必要条件
2、从逻辑推理关系看充分条件、必要条件:
全称命题p: x M , P(x),
它的否定p: x M,p(x).
全称命题的否定是特称命题.
一般地,对于含有一个量词的特称命题的否定, 有下面的结论:
特称命题 p : x M,p(x)
它的否定 p : x M,p(x)
特称命题的否定是全称命题.
1.写出下列命题的否定,判断它们否定 的真假
(1)无论x为何实数,sin2x+cos2x=1 (2)存在a,使得不等式ax2+x+1≤0 有实数解
命题的形式:“若P, 则q”
通常,我们把这种形式的命题中的P叫做 命题的条件,q叫做结论.
记做: p q
二、 四 种 命 题
原命题:若p 则q
结论2:
(1)“或”的否定为“且”
逆命题:若q 则p
(2)“且”的否定为“或” (3)“都”的否定为“不
否命题: 若 p 则都 ”q 。
逆否命题: 若 q 则 p
结论1:要写出一个命题的另外三个命
题关键是分清命题的题设和结论(即
把原命题写成“若p则q”的形式)
注意:三种命题中最难写 的是否命题。
三、四种命题之间的 关系
原命题
若p则q
互逆 逆命题
若q则p




否命题Βιβλιοθήκη 逆否命题若﹁p则﹁q
互逆 若﹁q则﹁p
四、命题真假性判断
(1) 原命题为真,则其逆否命题一定为 真。但其逆命题、否命题不一定为真。 (2) 若其逆命题为真,则其否命题一定为 真。但其原命题、逆否命题不一定为真。
充分非必要条件
2) 若A B且B A,则甲是乙的
必要非充分条件
3)若A B且B A,则甲是乙的
既不充分也不必要条件
4)若A=B ,则甲是乙的充分且必要条件。
注意点
1.在判断条件时,要特别注意的是它们能否互相 推出,切不可不加判断以单向推出代替双向推出.
2.搞清 ①A是B的充分条件与A是B的充分非必要条件之间 的区别与联系; ②A是B的必要条件与A是B的必要非充分条件之间 的区别与联系
存在量词
短语”存在一个””至少有一个”在
逻辑上通常叫做存在量词,并用符号” ”
表示.含有存在量词的命题,叫做特称命题. 常见的存在量词还有”有些””有
一个””有的””对某个”等.
特称命题”存在M中的一个x,使p(x) 成
立”可用符x号简记M为 , p(x).
含有一个量词 的命题的否定
一般地,对于含有一个量词的全称命题的否 定,有下面的结论:
全真为真,有假即假.
一般地,用逻辑联结词”或”把命题p和命
题q联结起来.就得到一个新命题,记p作 q
规定:当p,q两个命题中有一个是真命题
时, p q 是真命题;当p,q两个命题中都是
假命题时, p q 是假命题. p
q
p 一般地,对一个命题p全盘否定,就得到一个
新命题,记作
读作”非p”或”p的否定”
(D)既不充分也不必要条件
2、已知p:|x+1|>2,q:x2<5x-6,
则┐p是┐q的( A)
A.充分不必要条件 B.必要不充分条件
C.充要条件
D.既非充分又非必要条件
集合法与转化法
7.求关于x的方程x2-mx+3m-2=0的 两根均大于1的充要条件
8.设p:|4x-3|≤1,q:x2-(2a+1)
1)A B且B A,则A是B的
充分非必要条件
2)若A B且B A,则A是B的
必要非充分条件
3)若A B且B A,则A是B的
既不充分也不必要条件
4)A B且B A,则A是B的
充分且必要条件
3、从集合与集合的关系看充分条件、必要 条件
一般情况下若条件甲为x∈A,条件乙为x∈B
1)若A B且B A,则甲是乙的
相关文档
最新文档