连接体问题与瞬时性
牛顿第二定律

牛顿第二运动定律牛顿第二运动定律1.定律内容物体的加速度跟物体所受的合外力F成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
而以物理学的观点来看,牛顿运动第二定律亦可以表述为“物体随时间变化之动量变化率和所受外力之和成正比”。
即动量对时间的一阶导数等于外力之和。
牛顿第二定律说明了在宏观低速下,∑F∝a,∑F∝m,用数学表达式可以写成∑F=kma,其中的k是一个常数。
但由于当时没有规定1个单位的力的大小,于是取k=1,就有∑F=ma,这就是今天我们熟悉的牛顿第二定律的表达式。
1.英文名称Newton's Second Law of Motion-Force and Acceleration2.内容物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同。
(百科名片中的定义是不准确的。
)在国际单位中,力的单位是牛顿,符号N,它是根据牛顿第二定律定义的:使质量为1kg的物体产生1m/s^2;加速度的力,叫做1N。
即1N=1kg·m/s^2。
3.公式F合=m a (单位:N(牛)或者千克米每二次方秒)N=(kg×m)/(s×s)牛顿发表的原始公式:F=△(m v)/△t(见自然哲学之数学原理)动量为p的物体,在合外力为F的作用下,其动量随时间的变化率等于作用于物体的合外力。
用通俗一点的话来说,就是以t为自变量,p为因变量的函数的导数,就是该点所受的合外力。
即:F=△p/△t=△(m v)/△t而当物体低速运动,速度远低于光速时,物体的质量为不依赖于速度的常量,所以有F=m(△v/△t)=m a这也叫动量定理。
在相对论中F=m a是不成立的,因为质量随速度改变,而F=△(m v)/△t依然使用。
由实验可得在加速度一定的情况下F∝m,在质量一定的情况下F∝a (只有当F以N,m以kg,a以m/s^2为单位时,F合=m a 成立)牛顿第二定律可以用比例式来表示,这就是a∝F/m 或F∝ma这个比例式也可以写成等式F=kma 其中k是比例系数[1]高中物理必修一4.几点说明⑴牛顿第二定律是力的瞬时作用规律。
高中物理高考复习课件:牛顿第二定律的瞬时问题及连接体问题分析

的加速度是多少?(用g和θ表示)
【归纳】 1.瞬时性模型 加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、 同时消失,具体可简化为以下两种模型.
2.解答瞬时性问题的一般思路 (1)分析原来物体的受力情况. (2)分析物体在突变时的受力情况. (3)由牛顿第二定律列方程求解.
答案:A两关键”
(1)明确绳或杆类、弹簧或橡皮条类模型的特点. (2)分析瞬时变化前、后的受力情况和运动状态.
拓展2 连接体问题 【归纳】 1.连接体 如图所示,两个或两个以上相互作用的物体组成的具有相同运动状 态的整体叫连接体.如几个物体叠放在一起,或并排放在一起,或用 绳子、细杆等连在一起,在求解连接体问题时常用的方法为整体法与 隔离法.
2.处理连接体问题的方法
方法
研究对象
整体法
将一起运动的物体系作为研 究对象
隔离法
将系统中的某一物体为研究 对象
选择原则 求解物体系整体的加速度和所 受外力
求解系统内物体之间的内力
说明:有些题目既可用“整体法”,也可用“隔离法”,还有些题 目则需要交替运用“整体法”与“隔离法”.
答案:BD
答案:A
A.aA=0,aB=0 B.aA=0,aB=g C.aA=2g,aB=g D.aA=3g,aB=0
答案:C
例 2 [2023·湖南衡阳八中高一月考](多选)光滑斜面上,当系统静止 时,挡板C与斜面垂直,弹簧、轻杆均与斜面平行,A、B质量相等, 在突然撤去挡板的瞬间 ( )
A. 两图中两球加速度均为g sin θ B.两图中A球的加速度均为零 C.图甲中B球的加速度为2g sin θ D.图乙中B球的加速度为g sin θ
牛顿第二运动定律

牛顿第二定律的性质
1. 2. 因果性:力是产生加速度的原因。若不存在力,则没有 加速度。 矢量性:力和加速度都是矢量,物体加速度方向由物体 所受合外力的方向决定。牛顿第二定律数学表达式∑F = ma中,等号不仅表示左右两边数值相等,也表示方向一 致,即物体加速度方向与所受合外力方向相同。 根据他的矢量性可以用正交分解法讲力合成或分解。
牛顿第二定律的适用范围
2. 由于牛顿动力学方程不是洛伦兹协变的,因而不能和狭 义相对论相容,因而当物体做高速移动时需要修改力, 速度,等力学变量的定义,使动力学方程能够满足洛伦 兹协变的要求,在物理预言上也会随速度接近光速而与 经典力学有不同。 但我们仍可以引入“惯性”使牛顿第二定律的表示形式 在非惯性系中使用。
目录
1. 牛顿第二定律
a) 内容 b) 公式 c) 几点说明
2. 牛顿第二定律的性质 3. 牛顿第二定律的适用范围 4. 牛顿第二定律的应用
a) b) c) d) 连接体问题 瞬时性问题 临界问题 解题思路
牛顿第二定律
定律内容:物体的加速度a跟物体所受的合外力F成正比,跟物体 的质量m成反比,加速度的方向跟合外力的方向相同。
牛顿第二定律的适用范围
1. 当考察物体的运动线度可以和该物体的德布罗意波长相 比拟时,由于粒子运动不准确性原理(即无法同时准确 测定粒子运动的方向与速度),物体的动量和位置已经 是不能同时准确获知的量了,因而牛顿动力学方程缺少 准确的初始条件无法求解。也就是说经典的描述方法由 于粒子运动不准确性原理已经失效或者需要修改。量子 力学用希尔伯特空间中的态矢概念代替位置和动量(或 速度)的概念(即波函数)来描述物体的状态,用薛定 谔方程代替牛顿动力学方程(即含有力场具体形式的牛 顿第二定律)。
8.牛二应用:瞬时性问题和(共同加速度)连接体问题(临界极值)

知识点:牛二应用: 瞬时性问题公式:)sin(cos sin 22ϕαβα-+=-b a b a瞬时加速度的分析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,在有牛顿第二定律求出瞬时加速度,此类问题应注意以下几种模型:几个力的共同加速度:复习:牛顿第二定律的内容那么如果一个物体受到几个力的作用下,那么它的加速度该如何求得呢ma =合F a 是物体实际表现出的加速度推广:==y x F ma F 辅助方程:N f μ=引入:首先:用一直线的受到两个力比如:竖直方向运动,用弹簧秤测量一个物体考虑匀速,匀加速,匀减速的情况其次:选用水平地面上用一个较大的水平外力作用在物体上求物体的加速度然后引进水平面上施加斜的力的作用求加速度 解题步骤:a.确定研究对象,进行受力分析b.确定正交分解的两个方向。
(一个是沿着运动的方向,另一个是垂直于运动的方向)c.将不在正交分解上的力进行正交分解d.排方程e.求解、并验证 1.水平面例1:如图3—6—2所示,质量为4 kg 的物体静止于水平面上,物体与水平面间的动摩擦因数为0.5,物体受到大小为20 N,与水平方向成30°角斜向上的拉力F 作用时沿水平面做匀加速运动,求物体的加速度是多大?(g取10 m/s 2)2)突然将F 的方向改成水平朝左,则此时物体的加速度。
3)若突然撤去F ,则物体的加速度。
2.斜面上问题例2:质量为10kg 的物体从光滑斜面上滑下,斜面倾角θ为30°(图4-15)。
求物体沿斜面下滑的加速度和物体对斜面的压力。
2)如果斜面是粗糙的,63=μ,则物体从斜面上滑下来的加速度。
又如果物体以某个速度上滑,则物体的加速度为多少?连接体问题定义:连接体一般指由两个或两个以上有一定联系的物体构成的系统,如图。
连接体问题的处理方法:整体法:连在一起的物体具有相同的加速度,就可以看成一个整体进行分析,即整体法求整体加速度和整体合外力。
简单连接体问题及瞬时问题

mM .简单连接体问题及瞬时问题例1、两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对物体B 的作用力等于( ) A.F m m m 211+ B.F m m m 212+ C.F D.F m m 21 扩展:1.若m 1与m 2与水平面间有摩擦力且摩擦因数均为μ则对B 作用力等于 。
若把物体放在斜面上,用平行于斜面的力F 推则作用力又为 。
扩展:2如图所示,在粗糙的水平面上,质量分 别为m 和M(m ∶M=1∶2)的物块A 、B 用轻弹簧相连,两物块与水平面间的动摩 擦因数相同.当用水平力F 作用于B 上且两物块共同向右加速运动时,弹簧的伸长量为x1.当用同样大小的力F 竖直加速提升两物块时(如图乙所示),弹簧的伸长量为x2,则x1∶x2等于( ) A .1∶1 B .1∶2 C .2∶1 D .2∶3扩展:3如图,用力F 拉A 、B 、C 三个物体在光滑水平面上运动,现在中间的B 物体上加一个小物体,它和中间的物体一起运动,且原拉力F 不变,那么加上物体以后,两段绳中的拉力F a 和F b 的变化情况是( )A.T a 增大B.T b 增大C.T a 变小D.T b 不变例2.如图所示,质量为M 的木板可沿倾角为θ的光滑斜面下滑,木板上站着一个质量为m 的人,问(1)为了保持木板与斜面相对静止,计算人运动的加速度?(2)为了保持人与斜面相对静止,木板运动的加速度是多少?例3.如图所示,在前进的车厢的竖直后壁上放一个物体,物体与壁间的静摩擦因数μ=0.8,要使物体不致下滑,车厢至少应以多大的加速度前进?(g =10m/s 2)例4、如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定在框架上,下端固定一个质量为m 的小球。
小球上下振动时,框架始终没有跳起,当框架对地面压力为零瞬间,小球的加速度大小为m 1 m 2 F A B θ a A B C T a T b( )A.g B.g m m M - C.0 D.g m m M + 例5、如图质量为m 的球与弹簧Ⅰ和水平细线Ⅱ相连,Ⅰ、Ⅱ的另一端分别固定于P 、Q.球静止时,Ⅰ中拉力大小为F1,Ⅱ中拉力大小为 F2,当仅剪断Ⅰ、Ⅱ中的一根的瞬间时,球的加速度a 大小为 ,方向 。
高中物理连接体问题临界问题弹簧瞬时性问题练习

⾼中物理连接体问题临界问题弹簧瞬时性问题练习微专题⼀连接体问题、临界问题、弹簧瞬时性问题知识点⼀连接体问题1.(多选)如图所⽰,两个质量相同的物体1和2紧靠在⼀起,放在光滑⽔平⾯上.它们分别受到⽔平推⼒F 1和F 2作⽤,⽽且F 1>F 2,设两物体之间的作⽤⼒为F ,物体1、2的加速度分别为a 1、a 2,则下列关系式正确的是( )A .F =F 1-F 2B .F =F 1+F 22C .a 1=a 2D .a 1>a 2 2.(多选)如图所⽰,A 、B 两物体质量分别为2 kg 、1 kg ,⽤细线连接置于⽔平地⾯上,现⽤⼤⼩为6 N 的⽔平作⽤⼒F 拉物体A ,两物体⼀起向右做匀加速运动,若两物体与地⾯间的动摩擦因数均为0.1 ,g 取10 m /s 2,下列说法正确的是( )A .B 的加速度⼤⼩为5 m /s 2 B .A 拉B 的作⽤⼒为2 NC .若撤去外⼒F ,物体A 做减速运动,物体B 做加速运动D .若撤去外⼒F ,物体A 的加速度⼤⼩为1 m /s 23.5个质量相等的物体置于光滑的⽔平⾯上,如图所⽰,现施加⼤⼩为F 、⽅向⽔平向右的恒⼒,则第2个物体对第3个物体的作⽤⼒等于( )A .15FB .25FC .35FD .45F知识点⼆临界问题4.如图所⽰,物体A 、B 的质量分别为m 1=1 kg ,m 2=2 kg ,A 、B 之间的动摩擦因数µ=0.2,⽔平⾯光滑.要使A 、B 之间不发⽣相对运动,则F 最⼤不得超过(设最⼤静摩擦⼒等于滑动摩擦⼒,g 取10 m /s 2)( )A .2 NB .4 NC .6 ND .8 N5.(多选)如图所⽰,物体A 叠放在物体B 上,B 置于光滑⽔平⾯上,A 、B 的质量分别为m A =6 kg ,m B =2 kg ,A 、B 之间的动摩擦因数µ=0.2.(假设A 、B 间最⼤静摩擦⼒等于滑动摩擦⼒)开始时F =10 N ,此后逐渐增⼤,在增⼤到45 N 的过程中,则(g 取10 m /s 2)( )A .当拉⼒F <12 N 时,两物体保持相对静⽌状态B .两物体开始没有相对运动,当拉⼒超过12 N 时,开始相对运动C .两物体从受⼒开始就有相对运动D .两物体始终没有相对运动知识点三弹簧瞬时性问题6.如图所⽰,A 、B 、C 三个⼩球的质量均为m ,A 、B 之间⽤⼀根没有弹性的轻绳连在⼀起,B 、C 之间⽤轻弹簧拴接,⽤细线悬挂在天花板上,整个系统均静⽌,现将A 上⾯的细线烧断,使A 的上端失去拉⼒,则在烧断细线瞬间,A 、B 、C 的加速度的⼤⼩分别为( )A .1.5 g 1.5 g 0B .g 2 g 0C .g g gD .g g 07.如图所⽰,质量为m 的⼩球⽤⽔平轻质弹簧系住,并⽤倾⾓为30°的光滑⽊板AB 托住,⼩球恰好处于静⽌状态.当⽊板AB 突然向下撤离的瞬间,⼩球的加速度⼤⼩为(重⼒加速度为g)( )8.A .0B .233gC .gD .33g8.如图所⽰,A 、B 两⽊块间连⼀轻质弹簧,A 的质量为m 、B 的质量也为m ,⼀起静⽌放在⼀块⽊板上.若将此⽊板突然抽去,在此瞬间,A 、B 两⽊块的加速度分别是( )A .a A =g ,aB =2g B .a A =g ,a B =gC .a A =0,a B =2gD .a A =g ,a B =2g⼀、单项选择题1.如图,⽤相同材料做成的质量分别为m 1、m 2的两个物体A 、B 中间⽤⼀轻弹簧连接.在下列四种情况下,相同的拉⼒F 均作⽤在A 上,使A 、B 做加速运动:①拉⼒⽔平,A 、B 在光滑的⽔平⾯上加速运动;②拉⼒⽔平,A 、B 在粗糙的⽔平⾯上加速运动;③拉⼒平⾏于倾⾓为θ的斜⾯,A 、B 沿光滑的固定斜⾯向上加速运动;④拉⼒平⾏于倾⾓为θ的斜⾯,A 、B 沿粗糙的固定斜⾯向上加速运动.以ΔL 1、ΔL 2、ΔL 3、ΔL 4依次表⽰弹簧在四种情况下的伸长量,则有( )A .ΔL 2>ΔL 1B .ΔL 4>ΔL 3C .ΔL 1>ΔL 3D .ΔL 2=ΔL 42.如图所⽰,质量均为m 的⽊块A 和B ⽤⼀轻弹簧相连,竖直放在光滑的⽔平⾯上,⽊块A 上放有质量为2m 的⽊块C ,三者均处于静⽌状态.现将⽊块C 迅速移开,若重⼒加速度为g ,则在⽊块C 移开的瞬间( )B 对⽔平⾯的压⼒迅速变为2mg B .弹簧的弹⼒⼤⼩为mgC .⽊块A 的加速度⼤⼩为2gD .弹簧的弹性势能⽴即减⼩3.如图所⽰,在光滑⽔平⾯上有物体A 、B ,质量分别为m 1、m 2.在拉⼒F 作⽤下,A 和B 以加速度a 做匀加速直线运动.某时刻突然撤去拉⼒,此瞬时A 和B 的加速度为a 1、a 2,则( )A .a 1=a 2=0B .a 1=a ;a 2=0C .a 2=m 1m 1+m 2a ;a 2=m 2m 1+m 2a D .a 1=a ;a 2=-m 1m 2a 4.(易错题)如图所⽰,质量均为m 的A 、B 两物体叠放在竖直弹簧上并保持静⽌,⽤⼤⼩等于mg 的恒⼒F 向上拉B ,运动距离h 时,B 与A 分离.下列说法正确的是( )A .B 和A 刚分离时,弹簧长度等于原长 B .B 和A 刚分离时,它们的加速度为gC .弹簧的劲度系数等于mghD .在B 与A 分离之前,它们做匀加速直线运动⼆、多项选择题5.如图所⽰,劲度系数为k 的轻弹簧下端系⼀个质量为m 的⼩球A ,⼩球被⽔平挡板P 托住使弹簧长度恰为⾃然关键能⼒综合练进阶训练第⼆层长度(⼩球与挡板不粘连),然后使挡板P 以恒定的加速度a(a <g)开始竖直向下做匀加速直线运动,则( )A .⼩球与挡板分离的时间为t = ka2mg -a B .⼩球与挡板分离的时间为t =2mg -akaC .⼩球从开始运动直到最低点的过程中,⼩球速度最⼤时弹簧的伸长量x =mg kD .⼩球从开始运动直到最低点的过程中,⼩球速度最⼤时弹簧的伸长量x =mg -ak6.如图所⽰,已知物块A 、B 的质量分别为m 1=4 kg 、m 2=1 kg ,A 、B 间的动摩擦因数为µ1=0.5,A 与地⾯之间的动摩擦因数为µ2=0.5,在⽔平⼒F 的推动下,要使A 、B ⼀起运动⽽B 不致下滑,则⼒F ⼤⼩可能是( )A .50 NC .125 ND .150 N三、⾮选择题7.如图所⽰,光滑⽔平桌⾯上的物体A 质量为m 1,系⼀细绳,细绳跨过桌沿的定滑轮后悬挂质量为m 2的物体B ,先⽤⼿使物体B 静⽌(细绳质量及滑轮摩擦均不计).(1)求放⼿后A 、B -起运动时绳上的张⼒F T .(2)若在物体A 上再叠放⼀个与A 质量相等的物体C ,绳上张⼒就增⼤到32F T ,求m 1∶m 2.学科素养升级练进阶训练第三层1.如图所⽰,光滑的⽔平地⾯上有两块材料完全相同的⽊块A 、B ,质量均为m ,A 、B 之间⽤轻质细绳⽔平连接.现沿细绳所在直线施加⼀⽔平恒⼒F 作⽤在A 上,A 、B 开始⼀起做匀加速运动,在运动过程中把和⽊块A 、B 完全相同的⽊块C 放在某⼀⽊块上⾯,系统仍加速运动,且始终没有相对滑动,则在放上C 并达到稳定后,下列说法正确的是( )A .若C 放在A 上⾯,绳上拉⼒不变B .若C 放在B 上⾯,绳上拉⼒为F2C .C 放在B 上,B 、C 间摩擦⼒为F 3D .C 放在A 上⽐放在B 上运动时的加速度⼤2.(多选)如图所⽰,⼩球A 、B 的质量相等,A 球光滑,B 球与斜⾯间的动摩擦因数µ=0.5 tan θ,中间⽤⼀根弹簧连接,弹簧的质量不计,斜⾯⾜够长,倾⾓为θ,将A 、B 和弹簧组成的系统放到斜⾯上,并让弹簧处于原长时由静⽌释放,弹簧轴线平⾏于斜⾯,下列说法正确的是( )A.刚开始释放时,A、B两球的加速度⼤⼩均为g sinθB.刚开始释放时,A、B两球的加速度⼤⼩分别为g sinθ、0.5g sinθC.A球的加速度为零时,B球的加速度⼤⼩为1.5g sinθD.A、B球的加速度第⼀次相等时,弹簧第⼀次最短3.(多选)如图,在光滑⽔平⾯上放着紧靠在⼀起的A、B两物体,B的质量是A的2倍,B受到向右的恒⼒F B=2 N,A受到的⽔平⼒F A=9-2t(N)(t的单位是s).从t=0时刻开始计时,则( )A.A物体3 s末时的加速度⼤⼩是初始时加速度⼤⼩的511B.4 s后,B物体做匀加速直线运动C.4.5 s时,A物体的速度为零D.4.5 s时,A、B的加速度⽅向相同4.如图所⽰,质量为4 kg的⼩球⽤细线拴着吊在⾏驶的汽车后壁上,线与竖直⽅向夹⾓为37°.已知g取10 m/s2,sin37°=0.6,cos37°=0.8,求:(1)当汽车以a=2 m/s2向右匀减速⾏驶时,细线对⼩球的拉⼒和⼩球对车后壁的压⼒.(2)当汽车以a=10 m/s2向右匀减速⾏驶时,细线对⼩球的拉⼒和⼩球对车后壁的压⼒.5.如图所⽰,停放在⽔平冰⾯上的冰车由质量为M、倾⾓为θ的斜⾯体改装⽽成,在斜⾯体上轻放⼀质量为m 的物块,不计物块与斜⾯、冰车与冰⾯之间的摩擦.(1)释放物块后,在物块沿斜⾯向下运动的同时,冰车也在⽔平冰⾯上运动.请画出冰车受⼒的⽰意图,并根据⽰意图说明冰车由静⽌变为运动的原因(作图时冰车可视为质点).(2)若冰⾯上的⼈在车后⽅⽤⽔平⽅向的⼒推车,请分析下列两种可能情况:①当⼒的⼤⼩为F1时,物块在斜⾯上滑动的同时冰车在冰⾯上保持静⽌,求F1和物块加速度的⼤⼩a1;②当⼒的⼤⼩为F2时,物块和斜⾯保持相对静⽌⼀起加速运动,求F2和物块加速度的⼤⼩a2.微专题⼀连接体问题、临界问题、弹簧瞬时性问题必备知识基础练1.解析:由于两个⼒⽅向相反,可以把两物体看成⼀个整体,所以两者的加速度相等.设两物体的质量均为m ,物体1施于物体2的作⽤⼒⼤⼩为F .根据⽜顿第⼆定律得对整体:a =F 1-F 22m对物体2:F -F 2=ma得到F =ma +F 2=12(F 1+F 2),故B 、C 正确,A 、D 错误.答案:BC2.解析:两物体加速时,对整体应⽤⽜顿第⼆定律有:F -µ(m 1+m 2)g =(m 1+m 2)a ,解得a =1 m/s 2,选项A 错误.对物体B 有:T -µm 2g =m 2a ,可得:T =2 N ,选项B 正确.若撤去外⼒F ,A 、B 两物体均在摩擦⼒作⽤下做减速运动,选项C 错误.若撤去外⼒F ,A 、B 两物体的加速度⼤⼩均为a ′=µm 1g m 1=µm 2g m 2=µg =1 m/s 2,选项D 正确.答案:BD3.解析:设每个物体的质量为m ,对整体运⽤⽜顿第⼆定律得:a =F 5m ,对前2个物体运⽤⽜顿第⼆定律得:a =F -N2m,解得:N =35F ,故选C.答案:C⽅法:先对整体运⽤⽜顿第⼆定律求出整体的加速度,再对前2个物体运⽤⽜顿第⼆定律即可求解.4.解析:拉⼒F 作⽤在物体B 上,A 、B 恰好不滑动时,A 、B 间的静摩擦⼒达到最⼤值,对物体A ,有µm 1g =m 1a 对整体,有:F max =(m 1+m 2)a由以上两式联⽴解得:F max =6 N ,故C 正确.答案:C5.解析:当物体A 、B 间的静摩擦⼒超过最⼤静摩擦⼒时,物体A 、B 才会发⽣相对运动.此时对物体B 有F fmax =µm A g =12 N ,⽽F fmax =m B a ,a =6 m/s 2,即两者开始相对运动时的加速度为6 m/s 2,此时对物体A 、B 整体F =(mA +mB )a=48 N ,即F >48 N 时,物体A 、B 才会开始相对运动,故选项B 、C 错误,选项A 、D 正确.答案:AD6.解析:开始A 、B 、C 静⽌,隔离对C 分析,弹簧的弹⼒F 弹=mg ,剪断A 上⾯的细线,在该瞬间弹簧的弹⼒不变,隔离对AB 整体分析,AB 的加速度均为a AB =F 弹+2mg2m=1.5 g ,C 所受的合⼒为0,加速度为0.故A 正确,B 、C 、D 错误.答案:A点睛:本题属于⽜顿第⼆定律应⽤的瞬时加速度问题,关键是区分瞬时⼒与延时⼒;弹簧的弹⼒通常来不及变化,为延时⼒,轻绳的弹⼒为瞬时⼒,绳⼦断开⽴即消失.7.解析:未撤离⽊板时,⼩球受重⼒G 、弹簧的拉⼒F 和⽊板的弹⼒F N 的作⽤处于静⽌状态,通过受⼒分析可知,⽊板对⼩球的弹⼒⼤⼩为233mg .在撤离⽊板的瞬间,弹簧的弹⼒⼤⼩和⽅向均没有发⽣变化,⽽⼩球的重⼒是恒⼒,故此时⼩球受到重⼒G 、弹簧的拉⼒F ,合⼒与⽊板对⼩球的弹⼒⼤⼩相等、⽅向相反,故可知加速度的⼤⼩为233g .答案:B8.解析:在抽出⽊板的瞬间,弹簧对A ⽊块的⽀持⼒和对B ⽊块的压⼒并未改变.A ⽊块受重⼒和⽀持⼒,mg =F ,a A =0.B ⽊块受重⼒和弹簧向下的压⼒,根据⽜顿第⼆定律得a B =F +mg m =mg +mg m=2g ,故选C.答案:C关键能⼒综合练1.解析:根据⽜顿第⼆定律得:①以整体为研究对象,a 1=Fm 1+m 2,对B 有kΔL 1=m 2a 1=m 2Fm 1+m 2;②以整体为研究对象,a 2=F -µm 1+m 2g m 1+m 2=F m 1+m 2-µg ,对B 有kΔL 2=µm 2g +m 2a 2=m 2Fm 1+m 2;③以整体为研究对象,a 3=F -m 1+m 2g sin θm 1+m 2=F m 1+m 2-g sin θ,对B 有kΔL 3=m 2g sin θ+m 2a 3=m 2Fm 1+m 2;④以整体为研究对象,a 4=F -m 1+m 2g sin θ-µm 1+m 2g cos θm 1+m 2=Fm 1+m 2-g sin θ-µg cos θ,对B 有kΔL 4=m 2g sin θ+µm 2g cosθ+m 2a 4=m 2Fm 1+m 2,可见ΔL 1=ΔL 2=ΔL 3=ΔL 4.答案:D2.解析:对AC 整体分析,弹簧的弹⼒F 弹=(m +2m )g =3mg ,撤去C 瞬间,弹簧的弹⼒不变,弹性势能不变,故B 、D 错误;对A 分析,根据⽜顿第⼆定律得,a =F 弹-mgm=2g ,故C 正确;由于弹簧的弹⼒不变,⽊块B 对⽔平⾯的压⼒不变,仍然为4mg ,故A 错误.答案:C3.解析:当⼒F 作⽤时,对A 运⽤⽜顿第⼆定律得:a =F 弹m 1.突然撤去拉⼒F 的瞬间,弹簧弹⼒没有发⽣变化,所以A 受⼒不变,即a 1=a ;B 只受弹簧弹⼒作⽤,根据⽜顿第⼆定律得:a 2=-F 弹m 2=-m 1m 2a ,故D 正确,A 、B 、C 错误.答案:D4.解析:A 、B 分离前,A 、B 共同做加速运动,由于F 是恒⼒,⽽弹⼒是变⼒,故A 、B 做变加速直线运动,当两物体要分离时,F AB =0.对B :F -mg =ma ,对A :kx -mg =ma ,即F =kx 时,A 、B 分离,此时弹簧处于压缩状态,设⽤恒⼒F 拉B 前弹簧压缩量为x 0,⼜2mg =kx 0,h =x 0-x ,F =mg ,解以上各式得k =mg h,综上所述,只有选项C 正确.答案:C5.解析:⼩球与挡板之间弹⼒为零时分离,此时⼩球的加速度仍为a ,由⽜顿第⼆定律得mg -kx =ma .由匀变速直线运动的位移公式得x =12at 2,解得t =2mg -aka,故选项A 错误,B 正确,⼩球速度最⼤时⼩球所受合⼒为零,伸长量x =mg k,选项C 正确,D 错误.答案:BC6.解析:对B 不下滑有µ1F N ≥m 2g ,由⽜顿第⼆定律F N =m 2a ;对整体有F -µ2(m 1+m 2)g =(m 1+m 2)a ,得F ≥(m 1+m 2)?1µ1+µ2g =125 N ,选项C 、D 正确.答案:CD7.解析:(1)对物体B ,由⽜顿第⼆定律有:m 2g -F T =m 2a 1,对物体A ,由⽜顿第⼆定律有:F T =m 1a 1,解得:F T =m 1m 2m 1+m 2g . (2)对物体B ,由⽜顿第⼆定律有:m 2g -F T2=m 2a 2,对物体A 、C 整体,由⽜顿第⼆定律有:F T2=2m 1a 2,解得:F T2=2m 1m 2m 2+2m 1g ,由F T2=32F T ,得:2m 1m 2m 2+2m 1g =3m 1m 22m 1+m 2g ,所以m 1∶m 2=1∶2. 答案:(1)m 1m 2m 1+m 2g (2)1∶2 点睛:对于连接体问题要注意合理选择研究对象正确受⼒分析,运⽤⽜顿第⼆定律即可解决.学科素养升级练1.解析:C 放在某⼀⽊块上前,对于A 、B 整体,根据⽜顿第⼆定律得F =2ma ,对B 分析可知T =ma ,可得T =F2.在C 放在A 上⾯后,三者⼀起加速,对整体有F =3ma 1,对B 有T 1=ma 1,联⽴可得T 1=F3,则绳上的拉⼒变⼩,故A 错误.在C 放在B 上⾯后,对整体有F =3ma 2,对B 有T 2=2ma 2,对C ⽊块有f =ma 2,联⽴可得T 2=23F ,f =F3,故B 错误,C 正确.由⽜顿第⼆定律分析可得C 放在A 上时有a 1=F 3m ,C 放在B 上时有a 2=F3m,两个加速度相同,故D 错误.答案:C2.解析:设A 球和B 球的质量均为m ,刚开始释放时A 球受到重⼒和⽀持⼒作⽤,根据⽜顿第⼆定律可得其加速度为a A =g sin θ,B 球受到重⼒、⽀持⼒和摩擦⼒作⽤,根据⽜顿第⼆定律可得mg sin θ-µmg cos θ=ma B ,解得a B =0.5g sin θ,所以A 错误,B 正确.A 球的加速度为零时,弹簧的弹⼒与A 球重⼒沿斜⾯⽅向的分⼒⼤⼩相等,⽅向相反,即N =mg sin θ,以B 球为研究对象,受到重⼒、弹簧弹⼒、斜⾯⽀持⼒和摩擦⼒,沿斜⾯⽅向根据⽜顿第⼆定律可得N +mg sin θ-µmg cos θ=ma B ,解得a B =1.5g sin θ,所以C 正确.当A 、B 球的速度第⼀次相等时,弹簧第⼀次最短,所以D 错误.答案:BC3.解析:对于A 、B 整体,由⽜顿第⼆定律有F A +F B =(m A +m B )a ,设A 、B 间的作⽤为F N ,则对B 据⽜顿第⼆定律可得F N +F B =m B a ,⼜m B =2m A ,联⽴解得F N =16-4t 3(N),当t =4 s 时F N =0,A 、B 两物体分离,此后B 做匀加速直线运动,故B 正确;当t =4.5 s 时A 物体的加速度为零⽽速度不为零,故C 错误;t >4.5 s 后,A 所受合外⼒反向,即A 、B 的加速度⽅向相反,故D 错误;0~4 s 内,A 、B 的加速度相等,a =F A +F B m A +m B =11-2t 3,当t =0 s 时a 0=113m/s 2,当t =3 s 时a 3=53 m/s 2,可得a 3a 0=511,故A 正确.答案:AB4.解析:(1)当汽车以a =2 m/s 2向右匀减速⾏驶时,⼩球受⼒分析如图甲所⽰,由⽜顿第⼆定律得:F T cos θ=mg ①F T sin θ-F N =ma ②联⽴①②代⼊数据得:F T =50 N ,F N =22 N.由⽜顿第三定律可知,⼩球对车后壁的压⼒为22 N.(2)当汽车向右匀减速⾏驶时,设车后壁弹⼒为0时(临界条件)的加速度为a 0,受⼒分析如图⼄所⽰:由⽜顿第⼆定律得:F T sin θ=ma 0③联⽴①③代⼊数据得:a 0=g tan θ=10×34m/s 2=7.5 m/s 2,因为a =10 m/s 2>a 0,所以⼩球飞起来,F N ′=0设此时细线与竖直⽅向的夹⾓为α,如图丙所⽰,由⽜顿第⼆定律得:F T ′= mg 2+ma 2=40 2 N≈56.56 N .答案:(1)50 N 22 N (2)56.56 N 0 5.解析:(1)冰车的受⼒⽰意图如图甲所⽰,将物块对斜⾯的压⼒F N沿⽔平⽅向和竖直⽅向正交分解,可知竖直⽅向合⼒为零,⽔平⽅向合⼒不为零,因此冰车在⽔平⽅向合⼒作⽤下由静⽌变为运动,且在物块滑离斜⾯前沿⽔平冰⾯做加速运动.(2)①冰⾯上的⼈在车后⽅推车时车的受⼒情况如图⼄所⽰,物块的受⼒情况如图丙所⽰.由于冰车保持静⽌,对冰车应⽤⽜顿第⼆定律,有F1=F N sin θ,对物块应⽤⽜顿第⼆定律,有F′N=mg cos θ,mg sin θ=ma1,根据⽜顿第三定律得F N=F′N,解得a1=g sin θ,F1=mg cos θsin θ.②当物块和冰车保持相对静⽌⼀起加速运动时,它们的加速度a2必然沿⽔平⽅向,物块的受⼒⽰意图如图丁所⽰.对物块应⽤⽜顿第⼆定律,有mg tan θ=ma2,对物块和冰车的整体应⽤⽜顿第⼆定律,有F2=(m+M)a2,解得a2=g tan θ,F2=(m+M)g tan θ.(3)正确的猜想:F N1<F N2;理由:第(1)问所述情况中物块沿斜⾯下滑的同时,冰车沿⽔平冰⾯后退,在⼀⼩段时间内物块发⽣的位移x(以冰⾯为参考系)如图戊所⽰,物块加速度a的⽅向与位移x的⽅向⼀致.将加速度a沿垂直斜⾯和沿斜⾯两⽅向正交分解,可知,a有垂直斜⾯向下的分量,结合图丙中的受⼒分析,可知F N1<mg cos θ;⽽第(2)问①所述情况中F N2=mg cos θ,因此,F N1<F N2.。
牛顿运动定律八大题型

一:两类基本问题
类型二:已知运动求受力
【例2】一个滑雪的人,质量m=50kg,以 v0=2m/s的初速度沿山坡匀加速滑下,山 坡的倾角θ=370,在t=5s的时间内滑下的 路程x=60m,求滑雪人与山坡之间的动 摩擦因数μ(不计空气阻力)。
拓展1:若滑雪者以16m/s的初速度从坡底向上冲,试求 t1=1.0s和t2=3.0s两个时刻,滑雪者距离坡底的距离? 拓展2:若滑雪者回到坡底后仍能在水平面上继续滑行, 且μ值不变,不计转弯消耗,求它最后停在何处?
六:连接体问题
【变式1】光滑水平面上静止叠放着n个 完全相同的木块,质量均为m。今给第一 个木块一个水平方向的恒力F的作用,使 得n个木块一起向右做加速运动,如图所 示。求此时第k和k+1个木块之间的相互 作用力大小。
二:变加速问题
【变式】如图所示,自由下落的 小球,从它接触竖直放置的弹簧 开始,到小球速度为零的过程中, 小球的速度和加速度的变化情况 是( ) A.加速度变大,速度变小 B.加速度变小,速度变大 C.加速度先变小后变大,速度先变大后变小 D.加速度先变小后变大,速度先变小后变大
二:变加速问题
【拓展】质量为40kg的雪 撬在倾角θ=37°的斜面 上向下滑动(如图甲), 所受的空气阻力与速度成 正比。今测得雪撬运动的 v-t图像如图7乙所示,且 AB是曲线的切线,B点 坐标为(4,15),CD是 曲线的渐近线。试求空气 的阻力系数k和雪撬与斜 坡间的动摩擦因数μ。
二:瞬时性问题
【变式】如图所示,两根轻弹簧与两个质量都 为m的小球连接成的系统,上面一根弹簧的上端 固定在天花板上,两小球之间还连接了一根不 可伸长的细线。该系统静止,细线受到的拉力 大小等于4mg。在剪断了两球之间的细线的瞬间, 球A的加速度和球B的加速度分别是( )
【专题】瞬时加速度问题和连接体问题

• 两个或两个以上的物体连接组成的物体系统, 称为连接体。
二、外力和内力
• 如果以物体系统为研究对象,受到系统之外的作用力即为系 统受到的外力;系统内各个物体间的相互作用力为内力。 • 如果以物体系统整体为研究对象,应用牛顿第二定律列方程 时,不用考虑内力。
三、连接体问题的分析方法
M
F
f2
θ
T
Mg
例1. 如图示,两物块质量为M和m,用绳连接后放在倾 角为θ的斜面上,物块和斜面的动摩擦因素为μ,用沿斜 面向上的恒力F 拉物块M 运动,求中间绳子的张力.
解:画出M 和m 的受力图如图示: 由牛顿第二定律,
对M有 F - T - Mgsinθ-μMgcosθ= Ma (1) 对m有 T - mgsinθ-μmgcosθ= ma (2) ∴a = F/(M+m)-gsinθ-μgcosθ (3)
N,且N (m M ) g
F f (m M · )a
◆ 一质量为M,倾角为的楔形木块,静置在水平桌面上,与桌面间的滑动 摩擦系数为。一质量为m的物块,置于楔形木块的斜面上,物块与斜面的 接触是光滑的。为了保持物块相对斜面静止,可用一水平力F推楔形木块, 如右图所示。求水平力F的大小等于多少? mg,斜面支持力 Q, 由于m与M 再对 m进行研究:受重力 ma。 一起向左加速而相对静止, mg与Q合力向左,且合力等于 · tg 则如图所示,由数学知识可知, 即a g 再回到整体:由于
(3)代入(2)式得 T= m(a+ gsinθ+μgcosθ) = mF/( M+m) 由上式可知: N2 T 的大小与运动情况无关 T 的大小与θ无关
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、牛顿第二定律的瞬时性
瞬时加速度问题的两种基本模型: (1) 刚性绳、线、硬杆 ( 或接触面 ) 是一种不发生 明显形变就能产生弹力的物体,若剪断(或脱离
)后,其中弹力立即消失,不需要形变恢复时间,
即线的拉力可突变.一般题目中所给细线和接
触面在不加特殊说明时,均可按此模型处理.
(2)弹簧(或橡皮绳)的特点是形变量大,形变 恢复需要较长时间,在瞬时问题中,其弹 力的大小往往可以看成不变,即弹力不能 突变,但当弹簧的一端不与有质量的物体 连接时,轻弹簧的形变也不需要时间,弹 力可以突变.
例 题
如图所示,天花板上用
细绳吊起两个用轻弹簧相连的质量相同
的小球。两小球均保持静止。当突然剪 断细绳时,上面的小球A与下面的小球B 的加速度为 A.aA=g,aB=g (
C
)
B.aA=g,aB=0
C.aA=2g,aB=0 D.aA=0,aB=g
a= m
F
瞬时性
针对训练:(2010 年全国卷 Ⅰ)如图,轻弹簧上端与一质量为 m 的木块 1 相连,下端与另 一质量为 M 的木块 2 相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木 板沿水平方向突然抽出,设抽出后的瞬间,木块 1、2 的加速度大小分别为 a1、a2.重力加速 度大小为 g.则有( ) A.a1=g,a2=g B.a1=0,a2=g m+M m+M C.a1=0,a2= g D.a1=g,a2= g M M
先分析m2 的受力情况:
T 2 a 8m / s m2
N2 m2 G2
T
m1
F
N m1 m2
G F
再分析m1m2整体受力情况:
F =(m1+m2)a=24N
三、简单的连接体问题
小结: 1、已知外力求内力: 先用整体法求加速度,
再用隔离法求内力 2、已知内力求外力:
先用隔离法求加速度, 再用整体法求外力
C
如图所示,小球M处于静止状态,弹簧与竖直方向的夹 角为θ,烧断BO绳的瞬间,试求小球M的加速度的大小和方 向。
答案:gtanθ
方向水平向右
例与练
1、如图所示,质量为2kg 的m1和质量为1kg 的m2 两个物体叠放在一起,放在水平面,m1 与m2、m1 与水平面间的动摩擦因数都是0.3,现用水平拉力F 拉m1,使m1 和m2一起沿水平面运动,要使m1 和 m2之间没有相对滑动,水平拉力F最大为多大? 先分析m2的受力情况:
f2 =μN2=μm2g=3N f2 =m2a
f2 2 a 3m / s m2
N2
m2
f2
G2
•2.如图所示,在光滑的水平面上,有等质量的 五个物体,每个物体的质量为m.若用水平推 力F推1号物体,求: •(1)它们的加速度是多少? •(2)2、3号物体间的压力为多少?
解:因各个物体的加速度相同,可以五个物体整体 为研究对象求出整体的加速度.再以3、4、5号物 体为研究对象求出2、3号物体间的压力. 对整体 F=5ma 对3、4、5号物体 T=3ma 得 a=F/5m; T=3F/5
附 : 瞬 时 加 速 度 的 分 析
轻绳:绳的弹力可发生突变。当其他条件 发生变化的瞬间,绳的弹力可以瞬时产生、 瞬时改变或瞬时消失。(当绳被剪断时, 绳的弹力瞬间消失)
轻弹簧:弹簧的弹力不能发生突变。当其 他条件发生变化的瞬间,可以认为弹簧的 弹力不变。(当弹簧被剪断时,弹簧的弹 力瞬间消失)
先分析AB整体的受力情况:
F合 =F =30N
F
A B
NB F FB GB
F合 a 10m / s 2 mA mB
N
再分析B的受力情况:
AB
G
B
FB =mBa=10N
例2:如图所示,质量为2kg 的m1和质量为1kg 的m2两个物体用水平细线连接,放在光滑的水平 面上,现用水平拉力F拉m1,使m1 和m2一起沿水 平面运动,若细线能承受的最大拉力为8N,求水 平拉力F的最大值。
简单连接体问题
• 连接体:两个(或两个以上)相互作用的物体具 有相同的加速度的整体叫连接体。如几个物 体叠放在一起,或并排挤放在一起,或者用 细线细杆连接起来。 • 内力与外力: • 连接体间的相互作用力叫内力; • 外部对连接体的作用力叫外力。
外力
内力
F1
FAB
A B
例1:如图所示,质量为2kg 的正方体A和质量为1kg 的正方体B两个物体靠在一起,放在光滑的水平面上, 现用水平力F=30N推A,求A对B作用力的大小。