1牛顿第二定律瞬时性问题
专题10牛顿第二定律的瞬时性问题-2024年新高二物理暑假查漏补缺(全国通用)

专题10 牛顿第二定律的瞬时性问题加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,牛顿第二定律的瞬时性问题具体可简化为以下两种模型:1.轻绳、轻杆和接触面:不发生明显形变就能产生弹力,在瞬时性问题中其弹力可以突变.这类问题一般要结合物体在状态突变后的运动来分析状态突变瞬间的加速度,因为状态突变瞬间是状态突变之后运动的初状态。
时性问题中,弹簧的弹力瞬间突变为零。
1.如图所示,在图1、2、3中的小球a、b和c完全相同,轻弹簧S1和S2完全相同,连接的轻绳l1和l2也完全相同,通过轻弹簧或轻绳悬挂于固定点O,整个系统处于静止状态。
现将图1中的轻绳l1剪断、图2中的轻弹簧S1剪断、图3中的轻绳l2剪断,将图1中的小球a的加速度大小记为a1,将图2中的小球b的加速度大小记为a2,将图3中的小球c的加速度大小记为a3,重力加速度大小为g。
则在剪断瞬间()A.a1=3g,a2=2g,a3=g B.a1=2g,a2=2g,a3=0C.a1=2g,a2=g,a3=g D.a1=2g,a2=g,a3=0【答案】D【解析】图1中,对三个小球体整体分析有F1=3mg剪断图1中的轻绳l1时,弹簧S1不能发生突变,弹力与剪断前相同,对小球体a分析有F1−mg=ma1解得a1=2g剪断图2中的轻弹簧S1,弹簧弹力突变为0,对小球体b、c分析有2mg=2ma2解得a2=g此时轻绳l2弹力为0。
剪断图3中的轻绳l2时,弹簧S1不能发生突变,弹力与剪断前相同,即此时小球体c受力仍然平衡,图3中的小球c的加速度大小记为a3=0综合上述可知a1=2g,a2=g,a3=0故选D。
2.物块A1、A2的质量均为m,B1、B2的质量均为2m,A1、A2用一轻杆连接,B1、B2用轻质弹簧连接。
两个装置都放在水平的支托物M上,处于平衡状态,如图所示。
今突然迅速地撤去支托物M,在除去支托物的瞬间,A1、A2加速度分别为a1和a2,B1、B2的加速度分别为a1′和a2′,则()A.a1=0,a2=2g,a1′=0,a2′=2g B.a1=0,a2=2g,a1′=g,a2′=2gC.a1=g,a2=g,a1′=0,a2′=2g D.a1=g,a2=g,a1′=g,a2′=g【答案】C【解析】A1、A2用一轻杆连接,它们的加速度始终相等,在除去支托物的瞬间,由它们组成的系统只受重力的作用,根据牛顿第二定律可知,它们的加速度a1=a2=g因为在除去支托物的瞬间,弹簧上的弹力不能突然消失(主要是弹簧不能突然恢复原长),所以B1的受力不变,加速度仍为零,即a1′=0而B2受到的竖直向上的支持力突然消失,受到的竖直向下的重力2mg和弹簧弹力2mg不变,加速度大小a2′=2g 综上分析,选项C正确,ABD错误。
牛顿第二定律瞬时性问题专题训练附详细答案

牛顿第二定律瞬时性问题一、单选题1.如图所示,置于粗糙水平面上的物块A、B用轻质弹簧连接,在水平恒力F的作用下物块A、B以相同的加速度a向右运动,已知物块A的质量是物块B质量的2倍,它们与水平面间的动摩擦因数均为μ,重力加速度为g,现撤去水平恒力F,则在此瞬间()A.物块A的加速度大小为0B.物块B的加速度大小为0C.物块A的加速度大小为132a gμ+()D.物块B的加速度大小为a gμ+2.用细绳拴一个质量为m的小球,小球将一固定在墙上的水平轻质弹簧压缩了x(小球与弹簧不拴连),如图所示。
将细绳剪断后()A.小球立即获得kxm加速度B.小球在细绳剪断瞬间起开始做平抛运动C.小球落地的时间等于2h gD.小球落地的速度等于2gh3.如图所示,两个质量分别为m1=2 kg,m2=3 kg的物体置于光滑的水平面上,中间用轻质弹簧测力计连接。
两个大小分别为F1=30 N,F2=20 N的水平拉力分别作用在m1,m2上,则()A.弹簧测力计的示数是25 NB.弹簧测力计的示数是50 NC.在突然撤去力F2的瞬间,m1的加速度大小为5 m/s2D.在突然撤去力F1的瞬间,m1的加速度大小为13 m/s24.如图所示,质量均为m的A、B两个小球用轻弹簧连接,用PO、QO两段细线悬吊处于静止状态,PO与水平方向的夹角θ=30°,QO与水平方向的夹角α=60°,重力加速度为g,则剪断PO瞬间,A、B两球的加速度分别为()A .g ,0B .12g ,0 C .g ,g D .3g ,3g 5.如图所示长度相同的轻质细线1L 和轻弹簧3L 分别系有两个完全相同的灯笼甲和乙,1L 、3L 的上端都系在天花板上,下端用轻质水平细线2L 连接,使1L 和3L 与竖直方向的夹角都为θ,两个灯笼处于静止状态,不计空气阻力,将灯笼视为质点。
现将细线2L 从中间剪断,则剪断瞬间甲、乙两灯笼的加速度大小之比为( )A .1B .sin θC .cos θD .tan θ6.如图所示,悬挂在空中的三个物块A 、B 、C 的质量满足23A B C m m m ==,A 与天花板之间、A 与B 之间均用轻细绳相连,B 与C 之间用轻弹簧相连,当系统静止后,突然剪断A ,B 间的细绳,则此瞬间A 、B 、C 的加速度分别为(重力加速度为g ,取向下为正) ( ) A .g -、52g 、0 B .0、53g 、0 C .56g -、53g 、0 D .0、g 、g 7.如图所示,质量为m 的小球用水平弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态。
牛顿第二定律的瞬时性问题

绳子未断时,受力如图,由共点力平衡条件得
刚剪短弹簧Ⅰ瞬间,细绳弹力突变为0,故小球只受重力,加速度为g,竖直向下,故A 正确,C错误; 刚剪短细线瞬间,弹簧弹力和重力不变,受力如图
由几何关系,F合=T1sinθ=T2=ma,因而
因而B正确,D错误;
故选A、B.
马鞍山中加双语学校 高一物理组
课题导入
专题:瞬时加速度
马鞍山中加双语学校 高一物理组
上午7时7分40秒
目标引领
1、理解a与F合的瞬时对应关系
2、会分析瞬时问题的两种模型 3、学会解决此类问题的基本方法
马鞍山中加双语学校 高一物理组
上午7时7分40秒
独立自学
【例题】 小球 A、B 的质量分别为 m 和 2m,用轻弹簧相连,然后用细线悬挂而静止, 如图所示,在剪断细线瞬间,A、B 的加速度各是多少?方向如何?
(3)求物体在状态变化前后所受的合外力,利用牛顿第二 定律,求出瞬时加速度。
马鞍山中加双语学校 高一物理组
• 2-1:如下图所示,A、B两木块间连一轻 质弹簧,A、B质量相等,一起静止地放在
一块光滑木板上,若将此木板突然抽去, 在此瞬间,A、B两木块的加速度分别是
• A.aA=0,aB=2g • B.aA=g,aB=g • C.aA=0,aB=0 • D.aA=g,aB=2g
突变 压力
微小不
既可有拉力也可有
可以突变
计
支持力
马鞍山中加双语学校 高一物理组
实例分析
如图所示,质量m的球与弹簧Ⅰ和水平细线Ⅱ相连,Ⅰ、Ⅱ的另 一端分别固定于P、Q.球静止时,Ⅰ中拉力大小T1,Ⅱ中拉力大 小T2,当仅剪断Ⅰ、Ⅱ中的一根的瞬间,球的加速a应是( ) A.若断Ⅰ,则a=g,竖直向下 B.若断Ⅱ,则a= T2 /m ,方向水平向左 C.若断Ⅰ,则a= T1 /m ,方向沿Ⅰ的延长线 D.若断Ⅱ,则a=g,竖直向下
牛二瞬时性

答案 C
2.(单选)如图 3 所示,质量 m=1 kg 的 小球放在光滑水平面上,一水平放 置的轻弹簧一端与墙相连,另一端 与小球相连,一不可伸长的轻质细绳一 图3 端与小球相连,另一端固定在天花板上,细绳与竖直方向 成 45° 角,此时小球处于静止状态,且水平面对小球的弹力 恰为零.取 g=10 m/s2,则在烧断轻绳的瞬间,下列说法正 确的是 A.小球所受合外力为零 B.小球加速度大小为 10 m/s2,方向向左 C.小球加速度大小为 10 2 m/s2,方向向左 D.小球所受合外力的方向沿左下方与竖直方向成 45° 角 ( )
m+ M C.a1=a2=g,a3=0,a4= M g m+ M m+ M D.a1=g,a2= M g,a3=0,a4= M g
解析:在抽出木板的瞬间,物块 1、2 与刚性轻杆接触处的 形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定 律知 a1=a2=g;而物块 3、4 间的轻弹簧的形变还来不及改变, 此时弹簧对 3 向上的弹力大小和对物块 4 向下的弹力大小仍为 mg,因此物块 3 满足 mg=F,a3=0;由牛顿第二定律得物块 4 F+Mg M+m 满足 a4= M = M g,所以 C 正确.
答案 CD
[典例]
[双选](2013· 郑州模拟)如图 1-2-6 所示, 光滑的水
平地面上有三块木块 a、b、c,质量均为 m,a、c 之间用轻质细 绳连接。现用一水平恒力 F 作用在 b 上,三者开始一起做匀加速 运动,运动过程中把一块橡皮泥粘在某一木块上面,系统仍加速 运动,且始终没有相对滑动。则在粘上橡皮泥并达到稳定后,下 列说法正确的是 ( )
图4
间用一轻弹簧相连, 轻弹簧能承受的最大拉力为 FT.现用水 平拉力 F 拉质量为 3m 的木块,使三个木块一起加速运动, 则以下说法正确的是 A.质量为 2m 的木块受到四个力的作用 B.当 F 逐渐增大到 FT 时,轻弹簧刚好被拉断 C.当 F 逐渐增大到 1.5FT 时,轻弹簧还不会被拉断 D.当 F 撤去瞬间,m 所受摩擦力的大小和方向不变 ( )
高中物理牛顿运动定律的应用 牛顿第二定律的应用之瞬时性问题

-牛顿运动定律的应用牛顿第二定律的应用之瞬时性问题牛顿第二定律的“瞬时性”指:物体的加速度与物体所受合外力的瞬时对应关系分析物体的瞬时问题,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度,此类问题应注意两种基本模型的建立。
刚性绳(或接触面):1.认为是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,不需要考虑形变恢复时间。
一般题目所给细线和接触面在不加特殊说明时,均可按此模型处理。
2. 弹簧(或橡皮绳):此类物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,其弹力的大小往往可以看成不变【名师点睛】即为该时刻物体所受a为某一瞬时的加速度,FF1. 物体的加速度a与物体所受合外力瞬时对应。
合合的合力。
物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动2.看变分析。
求物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及其变化。
先看不变量,再化量;加速度与合外力瞬时一一对应。
轻绳(线、弹簧、橡皮绳)即其质量和重力均可视为等于零,同一根绳(线、弹簧、橡皮绳)的两3.端及其中间各点的弹力大小相等。
绳(线、橡皮绳)只能发生拉伸形变,只能产生拉力;而轻弹簧既能发生拉伸形变,又能产生压4. 轻缩形变,所以轻弹簧既能承受拉力,也能承受压力。
无论轻绳(线)所受拉力多大,轻绳(线)的长度不变,即轻绳(线)发生的是微小形变,因此轻5.绳(线)中的张力可以突变。
由于弹簧和橡皮绳受力时,发生的是明显形变,所以弹簧和橡皮绳中的弹力不能发生突变。
两者之间的弹力为零,注意弹簧轻弹簧的弹力不能突变;两物体相互分离的瞬间,6. 涉及弹簧问题时,但注意该时刻它们的速度和加速度仍相等。
7. 加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变。
AB m 的小球之间用一根轻弹簧(即不计其质量)连接,并两个质量均为【典例1】如图所示,用、AB 两球的加、球均保持静止。
1牛顿第二定律瞬时性问题

瞬时性问题【模型解析】(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理.(2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变.【典型例题】例1.如图,物体A、B用轻质细线2相连,然后用细线1悬挂在天花板上,求剪断轻细线1的瞬间两个物体的加速度a1、a2大小分别为()A.g,0B.g,g C.0,g D.2g,g例1题图例2题图例3题图例2.如图所示,吊篮P悬挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断瞬间,吊蓝P和物体Q的加速度大小是()A.a P=a Q=g B.a P=2g,a Q=0C.a P=g,a Q=2g D.a P=2g,a Q=g例3.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a1、a2、a3、a4.重力加速度大小为g,则有()A.a1=a2=a3=a4=0B. a1=a2=a3=a4=gC.a1=a2=g,a3=0,a4=m+MM g D.a1=g,a2=m+MM g,a3=0,a4=m+MM g例4.细绳拴一个质量为m的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连.平衡时细绳与竖直方向的夹角为53°,如图所示.以下说法正确的是(已知cos 53°=0.6,sin 53°=0.8)()A .小球静止时弹簧的弹力大小为35mg B .小球静止时细绳的拉力大小为35mg C .细线烧断瞬间小球的加速度立即为gD .细线烧断瞬间小球的加速度立即为53g 【课后练习】 (5.7.10.12为多选,其余为单选).1.如图所示,竖直放置在水平面上的轻质弹簧上放着质量为3kg 的物体A ,处于静止状态。
牛顿第二定律应用----瞬时性问题

L1
θ
y
L1
θ
律得:物体的加速度 mgsinθ=ma .
θ a=gsinθ
a
x
mg
例2、若将图1(a)中的细线L1改为长度相同、质 量不计的轻弹簧,如图2(b)所示,其他条件不变 ,现将L2线剪断,求剪断瞬时物体的加速度。( 重力加速度为g) OL L1 θ 1 L2
图2(b)
解:剪断细线前, 小球所受mg和弹簧F的 合力与T等大反向,大小等于T=mgtanθ, 弹簧弹力F=mg/cosθ
答案、C
解析:如图,AB静止时,对AB
A B
x
kx-2mg=0
A B
F
y
受力F时,对AB有
K(x+y)-2mg-F=0
撤去力F时,AB受到的合 力为F,对AB有 F=2ma
对 A有 FN-mg=ma
解之得
FN=1.5N
2、如图4所示,A、B的质量分别为 mA=0.2kg , mB=0.4kg , 盘 C 的 质 量 mC=0.6kg,现悬挂于天花板O处,处于静 止状态.当用火柴烧断O处的细线瞬间,木 块A的加速度aA= ,木块B对盘C的压力 NBC= N.(取g=10m/s2) O
A
解:撤去木板C前, 对A、B球进行受力分析
kx m g ①
N kx 2m g ②
C
kx A
B
N
撤去木板C瞬时,A和B的重力及弹簧 的弹力不变 ,B物体受到的支持力突 然变为零,所以
kx mg aA 0 m 2mg aB 1.5 g 2m
F T m mg
θ
细线剪断瞬间,T立即消失,弹簧弹力不变, 仍为F=mg/cosθ,小球所受mg和F的合力不 变,仍为mgtanθ,加速度大小a=gtanθ,方 向水平向右,
牛顿第二定律应用(瞬时性问题)

牛顿第二定律应用(瞬时性问题)方法突破 分析物体在某一时刻的瞬时加速度,关键是分析物体在瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度.此类问题应注意两种模型的建立.(1)中学物理中的“线”和“绳”是理想化模型,具有以下几个特性:①轻:其质量和重力均可视为等于零,且一根绳(或线)中各点的张力大小相等,其方向总是沿绳且背离受力物体的方向.②不可伸长:即无论绳受力多大,绳的长度不变,由此特点可知,绳中的张力可以突变.刚性杆、绳(线)和接触面都可以认为是一种不发生明显形变就能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,不需要形变恢复时间,一般题目中所给杆、细线和接触面在不加特殊说明时,均可按此模型来处理.(2)中学物理中的“弹簧”和“橡皮绳”也是理想化模型,具有以下几个特性:①轻:其质量和重力均可视为等于零,同一弹簧两端及其中间各点的弹力大小相等.②弹簧既能承受拉力,也能承受压力;橡皮绳只能承受拉力,不能承受压力.③由于弹簧和橡皮绳受力时,恢复形变需要一段时间,所以弹簧和橡皮绳中的力不能突变.【例题1】如图所示,将质量均为m 的小球A 、B 用绳(不可伸长)和弹簧(轻质)连结后,悬挂在天花板上.若分别剪断绳上的P 处或剪断弹簧上的Q 处,下列对A 、B 加速度的判断正确的是( )A.剪断P 处瞬间,A 的加速度为零,B 的加速度为gB.剪断P 处瞬间,A 的加速度为2g ,B 的加速度为零C.剪断Q 处瞬间,A 的加速度为零,B 的加速度为零D.剪断Q 处瞬间,A 的加速度为2g ,B 的加速度为g【例题2】 在如图所示的装置中,小球m 用两根绳子拉着,绳子OA 水平,若将绳子OA 剪断,问剪断瞬间小球m 的加速度大小?方向如何?【例题3】如图所示,底板光滑的小车上用两个量程为20N , 完全相同的弹簧秤甲和乙系住一个质量为1kg 的物块,在水平地面上,当小车做匀速直线运动时,两弹簧秤的示数均为10N ,当小车做匀加速直线运动时,弹簧秤甲的示数变为8N 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
瞬时性问题
【模型解析】
(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理.
(2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变.
【典型例题】
例1.如图,物体A、B用轻质细线2相连,然后用细线1悬挂在天花板上,求剪断轻细线1的瞬间两个物体的加速度a1、a2大小分别为()
A.g,0B.g,g C.0,g D.2g,g
例1题图例2题图例3题图
例2.如图所示,吊篮P悬挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断瞬间,吊蓝P和物体Q的加速度大小是()
A.a P=a Q=g B.a P=2g,a Q=0
C.a P=g,a Q=2g D.a P=2g,a Q=g
例3.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a1、a2、a3、a4.重力加速度大小为g,则有()
A.a1=a2=a3=a4=0
B. a1=a2=a3=a4=g
C.a1=a2=g,a3=0,a4=m+M
M g D.a1=g,a2=
m+M
M g,a3=0,a4=
m+M
M g
例4.细绳拴一个质量为m的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连.平衡时细绳与竖直方向的夹角为53°,如图所示.以下说法正确的是(已知cos 53°=0.6,sin 53°=0.8)()
2
A .小球静止时弹簧的弹力大小为35mg
B .小球静止时细绳的拉力大小为35
mg C .细线烧断瞬间小球的加速度立即为g
D .细线烧断瞬间小球的加速度立即为53
g 【课后练习】 (5.7.10.12为多选,其余为单选).
1.如图所示,竖直放置在水平面上的轻质弹簧上放着质量为3kg 的物体A ,
处于静止状态。
若将一个质量为3kg 的物体B 竖直向下轻放在A 上的一瞬间,
则B 对A 的压力大小为(取g=10m/s 2)( C )
A .30N
B .0
C .15N
D .12N 1题图
2.如图所示,一弹簧的下端固定在地面上,一质量为0.05kg 的木块B 固定在弹簧的上端,一质量为0.05kg 的木块A 置于木块B 上,A 、B 两木块静止时,弹簧的压缩量为2cm ;再在木块A 上施一向下的力F ,当木块A 下移4cm 时,木
块A 和B 静止,弹簧仍在弹性限度内,g 取10m/s 2.撤去力F 的瞬间,关于B 对
A 的作用力的大小,下列说法正确的是( C )
A.2.5N
B.0.5N
C.1.5N
D.1N
3.如图在小木板上固定一个弹簧秤(弹簧秤的质量可忽略不计),弹簧秤下吊一光滑小
球一起放在斜面上,木板固定时,弹簧秤的示数为F 1,放手后木
板沿斜面下滑,稳定时弹簧秤的示数是F 2,测得斜面的倾角为θ。
则( C )
A.放手后弹簧为拉伸状态,小球加速度为gsin θ-μgcos θ
B.放手后弹簧为压缩状态,小球加速度为gsin θ-g μcos θ 3题图
C.木板与斜面的动摩擦因数为 2
1cot F F θ
D.木板与斜面的动摩擦因数2
cos F mg θ 4题图
4.如右图所示,在倾角为θ的光滑斜面上有两个用劲度系数为k 的轻质弹簧相连的物块
A 、
B ,质量均为m ,开始时两物块均处于静止状态.现向下压A 再静止释放使A 开始运
动,当物块B 刚要离开挡板时,A 的加速度的大小和方向为( B )
A .0
B .2gsin θ,方向沿斜面向下
A B
F
C .2gsin θ,方向沿斜面向上
D .gsin θ,方向沿斜面向下
5.如图所示,A 和B 的质量分别是1kg 和2kg ,弹簧和悬线的质量不计,在A 上面的悬
线烧断的瞬间( AC )
A.A 的加速度等于3g
B.A 的加速度等于g
C.B 的加速度为零
D.B 的加速度为g
5题图 6题图 7题图
6.如右图,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相
连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然
抽出,设抽出后的瞬间,木块1,2的加速度大小分别为a 1、a 2.重力加速度大小为g 则有
( C )
A . A .120,a a g ==
B .12,a g a g ==
C .120,m M a a g M +== D.12,m M a g a g M +==
7.如图所示,A 、B 的质量分别为m A =3kg ,m B =2kg ,分别固定在轻弹簧两端,盘C 的质
量m C =1kg ,现悬挂于天花板O 处,A 、B 、C 均处于静止状态。
当烧断O 处的细线瞬间,
以下说法正确的是(g 取10m/s2)( AD )
A .木块A 的加速度a A = 0
B .木块A 的加速度a A = 10m/s 2
C .木块B 的加速度a B = 10m/s 2
D .木块C 的加速度a C = 20m/s 2
8.如图所示,两个质量分别为m 1=2 kg 、m 2=3 kg 的物体置于光滑的水平面上,中间用
轻质弹簧秤连接.两个大小分别为F 1=30 N 、F 2=20 N 的水平拉力分别作用在m 1、m 2上,则( BD )
A .弹簧秤的示数是30 N
B .弹簧秤的示数是26 N
C .在突然撤去F 2的瞬间,m 1的加速度大小为5 m/s 2
D .在突然撤去F 1的瞬间,m 1的加速度大小为13 m/s 2
9.如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定一个质量为m 的小
球,小球上下振动时,框架始终没有跳起.当框架对地面压力为零瞬间,小球的加速度大
小为:( D )
4 A. g B . m m M - g C. 0 D. m m
M - g
10.如图所示,用倾角为︒30的光滑木板AB 托住质量为m 的小球,小球用轻弹簧系住,当小球处于静止状态时,弹簧恰好水平.则当木板AB 突然向下撤离的瞬间( D )
A 、小球将开始做自由落体运动
B 、小球将开始做圆周运动
C 、小球加速度大小为g
D 、小球加速度大小为g 332
11.如图所示,将完全相同的两小球A 、B 用长m L 8.0=的细绳,悬于以
s m v /4=向右匀速运动的小车顶部,两球与小车前后壁接触,由于某种原因,小车突然停止,求此时悬线的拉力之比
A F :
B F (2/10s m g =)
12.在光滑水平面上有一质量kg m 1=的小球,小球与水平轻
弹簧和与水平方向夹角为︒30的轻绳的一端相连,如图所示,
此时小球处于静止状态,且水平面对小球的弹力恰好为零,当
剪断轻绳的瞬间,小球加速度的大小和方向如何?此时轻弹簧的弹力与水平面对球的弹力比值是多少?
A B 30
B A。