牛顿第二定律瞬时加速度问题

合集下载

核心素养微专题 四 牛顿第二定律瞬时性问题的两种模型

核心素养微专题 四   牛顿第二定律瞬时性问题的两种模型

=2gsinθ ,故A错误、C正确;B
球的受力情况未变,瞬时加速度为零,故B正确、D错误。
4.“儿童蹦极”中,拴在腰间左右两侧的是弹性良好的 橡皮绳。质量为m的子轩如图所示静止悬挂,左右两橡 皮绳的拉力大小均恰为mg,若此时子轩左侧橡皮绳在腰 间断裂,则子轩此时 A.加速度、速度都为零 ( )
A.在AC被突然剪断的瞬间,BC对小球的拉力不变 B.在AC被突然剪断的瞬间,小球的加速度大小为gsinθ C.在BC被突然剪断的瞬间,小球的加速度大小为 D.在BC被突然剪断的瞬间,小球的加速度大小为gsinθ
g cos
mg 【解析】选B、C。据题意,在AC剪断前有:TBC= , cos
剪断后有:TBC′=mgcosθ ,且mgsinθ =ma,所以A错误、 B正确;在BC剪断前:TAC=mgtanθ ,剪断之后据弹力瞬间 保持原值的特性,有:TAC′=TAC=mgtanθ ,其合力为F合 =
最大静摩擦力为f=μ mg=4 N,根据牛顿第二定律得小球
Ff 的加速度:a= =8 m/s2;合力方向向左,所以向左加 m
速,选项B正确;剪断弹簧的瞬间,轻绳对小球的拉力瞬 间为零,此时小球所受的合力为零,则小球的加速度为 零,选项D错误、C正确。
【强化训练】 1.(多选)如图所示,质量为m的小球被一根橡皮筋AC和 一根绳BC系住,当小球静止时,橡皮筋处在水平方向上。 下列判断中正确的是 ( )
小记为a1,S1和S2相对于原长的伸长分别记为Δ l1和Δ l2,
重力加速度大小为g,在剪断的瞬间 ( )
A.a1=3g C.Δ l1=2Δ l2
B.a1=0 D.Δ l1=Δ l2
【点睛】 (1)剪断细线前,三个物块均处于平衡状态,可根据平衡 条件分析此时的弹簧弹力。 (2)剪断细线瞬间,S1、S2均为弹簧模型。

牛顿第二定律专题3瞬时加速度计算

牛顿第二定律专题3瞬时加速度计算

FOB
⑴弹簧在A处剪断瞬间, FOA立即消失, mg和FOB不变,mg和FOB的合力大小 仍然等于剪断弹簧前FOA的大小
mg sin
A
O θ
FOA
FOB
FOB g ⑵弹簧在B处剪断瞬间, 同理 a2 m cos
状态和过程分析是物理解题的生命线.
FOA a1 g cot m
A B
2mg 解:施加外力前,弹簧的压缩量 l0 ① k 撤去外力前,整体和A球受力分析如
图所示.撤去外力F瞬间,外力F立 即消失,而弹簧弹力不能突变.整 体具有竖直向上的加速度a
k (l0 l )
a
N
k (l0 l ) 2mg 2ma ②
N mg ma ③
联立①②③式解出A对B的压力
mg
例7.如图所示,小球被两根弹簧系住,弹 簧OB轴线与水平方向 夹角为θ,此时小球 刚好对地面无压力,如果将弹簧OB在B处 剪断,则小球的加速度为多大?
θ
B
A
解:剪断弹簧前, 小球受力分析如图所示.
O
FOA mg cot
FOB
mg sin
弹簧在B处剪断瞬间, FOB立即消失, mg和FOA不变,小球将受到地面对它的 支持力N,它与重力平衡,小球受到的 合外力为FOA,根据牛顿第二定律得
F
θ
mg
解:剪断细线前, 小球所受mg和F的合力与T等大反向,大小 等于T=mgtanθ,弹簧弹力F=mg/cosθ 细线剪断瞬间,T立即消失,弹簧弹力不变,仍为F=mg/cosθ, 小球所受mg和F的合力不变,仍为mgtanθ,加速度大小a= gtanθ,方向水平向右,与竖直方向的夹角为900. 2 小球再回到原处时,由圆周运动规律 ∴F1 = mg cosθ

牛顿第二定律的瞬时性问题

牛顿第二定律的瞬时性问题
马鞍山中加双语学校 高一物理组
绳子未断时,受力如图,由共点力平衡条件得
刚剪短弹簧Ⅰ瞬间,细绳弹力突变为0,故小球只受重力,加速度为g,竖直向下,故A 正确,C错误; 刚剪短细线瞬间,弹簧弹力和重力不变,受力如图
由几何关系,F合=T1sinθ=T2=ma,因而
因而B正确,D错误;
故选A、B.
马鞍山中加双语学校 高一物理组
课题导入
专题:瞬时加速度
马鞍山中加双语学校 高一物理组
上午7时7分40秒
目标引领
1、理解a与F合的瞬时对应关系
2、会分析瞬时问题的两种模型 3、学会解决此类问题的基本方法
马鞍山中加双语学校 高一物理组
上午7时7分40秒
独立自学
【例题】 小球 A、B 的质量分别为 m 和 2m,用轻弹簧相连,然后用细线悬挂而静止, 如图所示,在剪断细线瞬间,A、B 的加速度各是多少?方向如何?
(3)求物体在状态变化前后所受的合外力,利用牛顿第二 定律,求出瞬时加速度。
马鞍山中加双语学校 高一物理组
• 2-1:如下图所示,A、B两木块间连一轻 质弹簧,A、B质量相等,一起静止地放在
一块光滑木板上,若将此木板突然抽去, 在此瞬间,A、B两木块的加速度分别是
• A.aA=0,aB=2g • B.aA=g,aB=g • C.aA=0,aB=0 • D.aA=g,aB=2g
突变 压力
微小不
既可有拉力也可有
可以突变

支持力
马鞍山中加双语学校 高一物理组
实例分析
如图所示,质量m的球与弹簧Ⅰ和水平细线Ⅱ相连,Ⅰ、Ⅱ的另 一端分别固定于P、Q.球静止时,Ⅰ中拉力大小T1,Ⅱ中拉力大 小T2,当仅剪断Ⅰ、Ⅱ中的一根的瞬间,球的加速a应是( ) A.若断Ⅰ,则a=g,竖直向下 B.若断Ⅱ,则a= T2 /m ,方向水平向左 C.若断Ⅰ,则a= T1 /m ,方向沿Ⅰ的延长线 D.若断Ⅱ,则a=g,竖直向下

专题四:利用牛顿第二定律求瞬时加速度

专题四:利用牛顿第二定律求瞬时加速度

瞬间,甲、乙两图中的A 、 B两球的加速度分别是多大?
[答案] 甲图中:aA=g aB=g 乙图中:aA=2g aB=0 甲 乙


【例5】如图所示,轻质弹簧的上端与一质量为m的木块1相连, 下端与另一质量为M的木块2相连,整个系统置于水 平放置的光滑木板3上,并处于静止状态,现将木板3 沿水平方向突然抽出,设抽出后的瞬间,1、2的加速
F=80N
【例3】 .如图所示,物体甲、乙质量均为m。弹簧和 悬线的质量可以忽略不计。当悬线被烧断的 瞬间,甲、乙的加速度数值应是下列哪一种情况:
A.甲是0,乙是g B.甲是g,乙是g C.甲是0,乙是0 D.甲是g/2,乙是g


【例4】如图所示,两个质量相同的小球A和B,甲图中两球用
不可伸长的细绳连接,然后用细绳0A悬挂起来;乙图中两 球间用轻弹簧连接,也用细绳0A悬挂起来,则剪断细绳0A
a=5m/s2
F
思考:
ቤተ መጻሕፍቲ ባይዱ
1.如果将该例题中的轻质弹簧变成橡皮筋, 结果该如何?
2.如果将该例题中的轻质弹簧变成轻绳或轻杆, 结果又如何?
【例2】 一轻弹簧上端固定,下端挂一100N的重物,
处于平衡状态,现再施加80N的力将重物向 下拉,当重新达到平衡后放手,则在刚释放 的瞬间重物的加速度是____________ a=8m/s2 (已知:g=l0m/s2且始终在弹性限度内)
瞬间,其弹力的大小往往可
以看成不变。
小球脱离后的 瞬间弹簧对天 花板的拉力看 成不变.
【例1】如图所示,轻质弹簧一端固定,另一端拴着一质量为
2千克的小球,小球置于光滑的水平地面上处于平衡状 态(弹簧处于原长),现对小球施加一大小为10N,方 向水平向右的拉力,当小球达到新的平衡后,将拉力F 撤去,则在将拉力F撤去的瞬间,小球的加速度为多大?

牛顿第二定律应用----瞬时性问题

牛顿第二定律应用----瞬时性问题

L1
θ
y
L1
θ
律得:物体的加速度 mgsinθ=ma .
θ a=gsinθ
a
x
mg
例2、若将图1(a)中的细线L1改为长度相同、质 量不计的轻弹簧,如图2(b)所示,其他条件不变 ,现将L2线剪断,求剪断瞬时物体的加速度。( 重力加速度为g) OL L1 θ 1 L2
图2(b)
解:剪断细线前, 小球所受mg和弹簧F的 合力与T等大反向,大小等于T=mgtanθ, 弹簧弹力F=mg/cosθ
答案、C
解析:如图,AB静止时,对AB
A B
x
kx-2mg=0
A B
F
y
受力F时,对AB有
K(x+y)-2mg-F=0
撤去力F时,AB受到的合 力为F,对AB有 F=2ma
对 A有 FN-mg=ma
解之得
FN=1.5N
2、如图4所示,A、B的质量分别为 mA=0.2kg , mB=0.4kg , 盘 C 的 质 量 mC=0.6kg,现悬挂于天花板O处,处于静 止状态.当用火柴烧断O处的细线瞬间,木 块A的加速度aA= ,木块B对盘C的压力 NBC= N.(取g=10m/s2) O
A
解:撤去木板C前, 对A、B球进行受力分析
kx m g ①
N kx 2m g ②
C
kx A
B
N
撤去木板C瞬时,A和B的重力及弹簧 的弹力不变 ,B物体受到的支持力突 然变为零,所以
kx mg aA 0 m 2mg aB 1.5 g 2m
F T m mg
θ
细线剪断瞬间,T立即消失,弹簧弹力不变, 仍为F=mg/cosθ,小球所受mg和F的合力不 变,仍为mgtanθ,加速度大小a=gtanθ,方 向水平向右,

牛顿第二定律之瞬时性问题

牛顿第二定律之瞬时性问题

牛顿第二定律之瞬时性问题智慧物理【总结】一、瞬时性问题1.牛顿第二定律的表达式为:F 合= 。

加速度由物体所受 决定,。

加速度的方向与物体所受 的方向一致;当物体所受合外力发生突变时,加速度也随着发生 ,而物体运动的速度 发生突变。

2.两种模型的区别(1)轻绳、轻杆和接触面:不发生明显形变就能产生弹力,剪断或脱离后,不需要时间恢复形变,原有弹力立即消失或 ,即会发生突变。

(2)轻弹簧、蹦床和橡皮条:当轻弹簧两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生 ,所以在瞬时问题中,其弹力大小认为是 的,即此时弹簧弹力不突变。

二、解题思路1.分析瞬时变化前物体的受力情况;2.分析瞬时变化后哪些力变化或消失;3.求出变化后物体所受合力,根据牛顿第二定律列方程;4.求瞬时加速度。

【专题练习】一、填空题1.如图所示,A B 、两小球用细线连接,C D 、两小球用轻弹簧连接,双手分别提起A C 、两球,使四个小球均在空中处于静止状态,双手同时释放A C 、瞬间(空气阻力不计,重力加速度为g ),小球B 的加速度大小为____________,小球D 的加速度大小为____________。

2.如图所示,两系统均处于静止状态,绳和弹簧质量不计。

重力加速度为g ,则剪断OA 、OC 上端绳的瞬时,物体A 、B 、C 、D 的瞬时加速度分别为:a A=______a B=______ac =______a D=______3.如图甲、乙所示,图中细线均不可伸长,两小球均处于平衡状态且质量相同.如果突然把两水平细线剪断,剪断瞬间小球A的加速度的大小为________,方向为________;小球B 的加速度的大小为________,方向为________;图甲中倾斜细线OA与图乙中弹簧的拉力之比为________(θ、重力加速度g已知).4.如图所示,质量为m的小球用一根细线和一根轻弹簧悬挂起来,小球静止时,细线水平,而弹簧与竖直成θ角。

物理瞬时加速度问题

物理瞬时加速度问题

牛顿运动定律:瞬时加速度问题知识点睛牛顿第二定律:物体的加速度跟所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,即m Fa ,ma F ,适用于惯性参考系中宏观、低速的物体;牛顿第二定律具有以下性质:①矢量性:加速度的方向与合外力方向一致;②瞬时性:ma F 对于过程中的每一瞬间都成立,a 和F 具有瞬时对应关系;③相对性:mFa 求得的a 是相对于惯性参考系地面而言的;④独立性:若F 是物体所受的合外力,则a 为实际加速度;若F 是某一方向上的合外力,则a 是该方向上的加速度关于力的瞬时性:(1) 物体运动的加速度a 与其所受的合外力F 有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之前或之后的力无关,不等于零的合外力作用在物体上,物体立即产生加速度;若合外力的大小或方向改变,加速度的大小或方向也立即(同时)改变;若合外力变为零,加速度也立即变为零,也就是说物体运动的加速度可以突变(2) 对于中学物理的几个理想模型,如刚性绳、轻杆、轻弹簧、接触面等产生的弹力能否突变,关键要看在受力时形变是否明显,若形变不明显,则可以突变;若形变明显,则不能突变,详细如下: 比较模型 刚性绳 轻杆 接触面 弹性绳 轻弹簧 形变类型 拉伸 拉伸、压缩、扭曲 压缩 拉伸拉伸、压缩弹力方向沿着绳指向 绳收缩方向能沿着杆也可以 和杆成任意角度 垂直于接触面 指向受力物体 沿着绳指向 绳收缩方向 沿着弹簧指向弹簧 恢复原长的方向 形变大小 形变不明显 形变不明显 形变不明显 形变明显 形变明显 能否突变 可以突变可以突变可以突变不能突变不能突变例题精讲例题1:如图1,一质量为m 的物体系于长度分别为1l 和2l 的两根细绳上,1l 的一端悬挂在天花板上,与竖直方向夹角为 , 2l 水平拉直,物体处于平衡状态图1 图2(1)现将2l 线剪断,求剪断瞬间物体的加速度? 下面是某同学对该题的一种解法:设1l 线上拉力为1F ,2l 线上拉力为2F ,重力为mg ,物体在三力作用下保持平衡:mg F cos 1,21sin F F , tan 2mg F ,剪断2l 线的瞬间,2F 突然消失,物体即在2F 反方向上获得加速度,因为ma mg tan ,所以加速度 tan g a ,方向沿2F 反方向 你认为这个结果正确吗?请对该解法作出评价并说明(2)若将图中的细线1l 改为长度相同、质量不计的轻弹簧,如图2所示,其他条件不变,求解步骤与(1)完全相同,即 tan g a ,你认为这个结果正确吗?请说明理由解析:(1)结果不正确,因为2l 被剪断瞬间,轻绳1l 上张力大小发生了突变,此瞬间 cos 1mg F ,它与重力沿绳方向的分力抵消,重力垂直于绳方向的分力 sin mg 产生加速度 sin g a (2)结果正确,因为2l 被剪断瞬间,弹簧1l 的长度不能发生突变,即1F 大小方向都不变,它与重 力的合力与2F 方向相反,大小与2F 相等,所以物体的加速度大小为 tan g a例题2:光滑水平面上有一质量kg 1 m 的小球,小球与水平轻弹簧和与水平方向夹角 为 30的轻绳的一端相连,如图,此时小球处于静止状态,且水平面对小球的弹力恰好为零,当剪断轻绳的瞬间,小球加速度的大小和方向如何?此时轻弹簧弹力与水平面对球的弹力比值是多少?解析:小球在绳末断时受三个力的作用, 绳剪断的瞬间,作用于小球的拉力T 立即消失,但弹簧的形变还存在,故弹簧的弹力F 存在.(1)绳未断时:F T 30cos ,mg T 30sin ,解得:N 20 T , N 310 F(2)绳断的瞬间:0 T ,在竖直方向支持力mg N ,水平方向F 大小方向不变,且ma F 所以310mFa 2/s m ,此时3 N F 说明:当将弹簧改为轻绳时,斜向上拉绳剪断的瞬间,水平绳的拉力立即为零.例题3:如图,木块B A 、用轻弹簧相连,放在悬挂的木箱C 内,处于静止状态,它们质量之比是3:2:1当剪断细绳的瞬间,各物体的加速度大小及其方向?解析:设A 的质量为m ,则C B 、的质量分别为m 2、m 3在未剪断细绳时,C B A 、、均受平衡力作用,受力如图所示。

牛顿第二定律的应用复习讲义

牛顿第二定律的应用复习讲义

第2讲牛顿第二定律的基本应用一、瞬时问题1.牛顿第二定律的表达式为:F合=ma,加速度由物体所受合外力决定,加速度的方向与物体所受合外力的方向一致.当物体所受合外力发生突变时,加速度也随着发生突变,而物体运动的速度不能发生突变.2.轻绳、轻杆和轻弹簧(橡皮条)的区别(1)轻绳和轻杆:剪断轻绳或轻杆断开后,原有的弹力将突变为0.(2)轻弹簧和橡皮条:当轻弹簧和橡皮条两端与其他物体连接时,轻弹簧或橡皮条的弹力不能发生突变.自测1如图1,A、B、C三个小球质量均为m,A、B之间用一根没有弹性的轻质细绳连在一起,B、C之间用轻弹簧拴接,整个系统用细线悬挂在天花板上并且处于静止状态.现将A上面的细线剪断,使A的上端失去拉力,则在剪断细线的瞬间,A、B、C三个小球的加速度分别是(重力加速度为g)()A.1.5g,1.5g,0 B.g,2g,0C.g,g,g D.g,g,0二、超重和失重1.超重(1)定义:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象.(2)产生条件:物体具有向上的加速度.2.失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象.(2)产生条件:物体具有向下的加速度.3.完全失重(1)定义:物体对支持物的压力(或对竖直悬挂物的拉力)等于0的现象称为完全失重现象.(2)产生条件:物体的加速度a=g,方向竖直向下.4.实重和视重(1)实重:物体实际所受的重力,它与物体的运动状态无关.(2)视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力.此时弹簧测力计的示数或台秤的示数即为视重.判断正误(1)超重就是物体所受的重力增大了,失重就是物体所受的重力减小了.()(2)物体做自由落体运动时处于完全失重状态,所以做自由落体运动的物体不受重力作用.()(3)物体具有向上的速度时处于超重状态,物体具有向下的速度时处于失重状态.()三、动力学的两类基本问题1.由物体的受力情况求解运动情况的基本思路先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再由运动学的有关公式求出速度或位移.2.由物体的运动情况求解受力情况的基本思路已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力.3.应用牛顿第二定律解决动力学问题,受力分析和运动分析是关键,加速度是解决此类问题的纽带,分析流程如下:受力情况(F合)F合=ma加速度a运动学公式运动情况(v、x、t)自测2(2019·山东菏泽市第一次模拟)一小物块从倾角为α=30°的足够长的斜面底端以初速度v0=10 m/s沿固定斜面向上运动(如图2所示),已知物块与斜面间的动摩擦因数μ=33,g取10 m/s2,则物块在运动时间t=1.5 s时离斜面底端的距离为()A.3.75 m B.5 m C.6.25 m D.15 m1.两种模型加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具体可简化为以下两种模型:2.解题思路分析瞬时变化前后物体的受力情况⇒列牛顿第二定律方程⇒求瞬时加速度3.两个易混问题(1)图3甲、乙中小球m1、m2原来均静止,现如果均从图中A处剪断,则剪断绳子瞬间图甲中的轻质弹簧的弹力来不及变化;图乙中的下段绳子的拉力将变为0(2)由(1)的分析可以得出:绳的弹力可以突变而弹簧的弹力不能突变.例1(多选)(2019·广西桂林、梧州、贵港、玉林、崇左、北海市第一次联合调研)如图4所示,质量均为m 的木块A和B用一轻弹簧相连,竖直放在光滑的水平面上,木块A上放有质量为2m的木块C,三者均处于静止状态.现将木块C迅速移开,若重力加速度为g,则在木块C移开的瞬间()A.弹簧的形变量不改变B.弹簧的弹力大小为mgC.木块A的加速度大小为2g D.木块B对水平面的压力大小迅速变为2mg变式1如图5所示,在动摩擦因数μ=0.2的水平面上有一个质量m=1 kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,此时小球处于静止状态,且水平面对小球的弹力恰好为零.在剪断轻绳的瞬间(g取10 m/s2),最大静摩擦力等于滑动摩擦力,下列说法正确的是()A.小球受力个数不变B.水平面对小球的弹力仍然为零C.小球将向左运动,且a=8 m/s2D.小球将向左运动,且a=10 m/s2变式2如图6所示,A球质量为B球质量的3倍,光滑固定斜面的倾角为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,系统静止时,挡板C与斜面垂直,弹簧、轻杆均与斜面平行,重力加速度为g,则在突然撤去挡板的瞬间有()A.图甲中A球的加速度大小为g sin θB.图甲中B球的加速度大小为2g sin θC.图乙中A、B两球的加速度大小均为g sin θD.图乙中轻杆的作用力一定不为零1.对超重和失重的理解(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变.(2)在完全失重的状态下,一切由重力产生的物理现象都会完全消失.(3)尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.2.判断超重和失重的方法从受力的角度判断当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时,物体处于失重状态;等于零时,物体处于完全失重状态从加速度的角度判断当物体具有向上的加速度时,物体处于超重状态;具有向下的加速度时,物体处于失重状态;向下的加速度等于重力加速度时,物体处于完全失重状态从速度变化的角度判断①物体向上加速或向下减速时,超重②物体向下加速或向上减速时,失重例2 (2020·湖南衡阳市第一次联考)压敏电阻的阻值随所受压力的增大而减小、某实验小组在升降机水平地面上利用压敏电阻设计了判断升降机运动状态的装置.其工作原理图如图7甲所示,将压敏电阻、定值电阻R 、电流显示器、电源连成电路、在压敏电阻上放置一个绝缘重物,0~t 1时间内升降机停在某一楼层处,t 1时刻升降机开始运动,从电流显示器中得到电路中电流i 随时间t 变化情况如图乙所示,则下列判断不正..确.的是( ) A .t 1~t 2时间内绝缘重物处于超重状态B .t 3~t 4时间内绝缘重物处于失重状态C .升降机开始时可能停在1楼,从t 1时刻开始,经向上加速、匀速、减速,最后停在高楼D .升降机开始时可能停在高楼,从t 1时刻开始,经向下加速、匀速、减速,最后停在1楼变式3 (2019·广东广州市4月综合测试)如图8,跳高运动员起跳后向上运动,越过横杆后开始向下运动,则运动员越过横杆前、后在空中所处的状态分别为( )A .失重、失重B .超重、超重C .失重、超重D .超重、失重变式4 某人在地面上最多可举起50 kg 的物体,若他在竖直向上运动的电梯中最多举起了60 kg 的物体,电梯加速度的大小和方向为(g =10 m/s 2)( )A .2 m/s 2 竖直向上 B.53 m/s 2 竖直向上 C .2 m/s 2 竖直向下 D.53m/s 2 竖直向下1.解题关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相互联系的桥梁.2.常用方法(1)合成法在物体受力个数较少(2个或3个)时一般采用合成法.(2)正交分解法若物体的受力个数较多(3个或3个以上),则采用正交分解法.类型1 已知物体受力情况,分析物体运动情况例3 (2019·安徽宣城市期末调研测试)如图9,质量为m =1 kg 、大小不计的物块,在水平桌面上向右运动,经过O 点时速度大小为v =4 m/s ,对此物块施加大小为F =6 N 、方向向左的恒力,一段时间后撤去该力,物块刚好能回到O 点,已知物块与桌面间动摩擦因数为μ=0.2,重力加速度g =10 m/s 2,求:(1)此过程中物块到O 点的最远距离;(2)撤去F 时物块到O 点的距离.变式5(2020·山东等级考模拟卷·15)如图10甲所示,在高速公路的连续下坡路段通常会设置避险车道,供发生紧急情况的车辆避险使用,本题中避险车道是主车道旁的一段上坡路面.一辆货车在行驶过程中刹车失灵,以v0=90 km/h的速度驶入避险车道,如图乙所示.设货车进入避险车道后牵引力为零,货车与路面间的动摩擦因数μ=0.30,取重力加速度大小g=10 m/s2.(1)为了防止货车在避险车道上停下后发生溜滑现象,该避险车道上坡路面的倾角θ应该满足什么条件?设最大静摩擦力等于滑动摩擦力,结果用θ的正切值表示.(2)若避险车道路面倾角为15°,求货车在避险车道上行驶的最大距离.(已知sin 15°=0.26,cos 15°=0.97,结果保留两位有效数字.类型2已知物体运动情况,分析物体受力情况例4(2019·安徽安庆市第二次模拟)如图11甲所示,一足够长的粗糙斜面固定在水平地面上,斜面的倾角θ=37°,现有质量m=2.2 kg的物体在水平向左的外力F的作用下由静止开始沿斜面向下运动,经过2 s撤去外力F,物体在0~4 s内运动的速度与时间的关系图线如图乙所示.已知sin 37°=0.6,cos 37°=0.8,取g=10 m/s2,求:(1)物体与斜面间的动摩擦因数和水平外力F的大小;(2)物体在0~4 s内的位移大小.变式6(2019·福建宁德市5月质检)某天,小陈叫了外卖,外卖小哥把货物送到他家阳台正下方的平地上,小陈操控小型无人机带动货物,由静止开始竖直向上做匀加速直线运动,一段时间后,货物又匀速上升53 s,最后再匀减速1 s恰好到达他家阳台且速度为零.货物上升过程中,遥控器上显示无人机在上升过程的最大速度为1 m/s,高度为56 m.货物质量为2 kg,受到的阻力恒为其重力的0.02倍,重力加速度大小g=10 m/s2.求:(1)无人机匀加速上升的高度;(2)上升过程中,无人机对货物的最大作用力大小.1.(2019·江西赣州市上学期期末)电梯顶上悬挂一根劲度系数是200 N /m 的弹簧,弹簧的原长为20 cm ,在弹簧下端挂一个质量为0.4 kg 的砝码.当电梯运动时,测出弹簧长度变为23 cm ,g 取10 m/s 2,则电梯的运动状态及加速度大小为( )A .匀加速上升,a =2.5 m/s 2B .匀减速上升,a =2.5 m/s 2C .匀加速上升,a =5 m/s 2D .匀减速上升,a =5 m/s 22.(多选)一人乘电梯上楼,在竖直上升过程中加速度a 随时间t 变化的图线如图1所示,以竖直向上为a 的正方向,则人对地板的压力( )A .t =2 s 时最大B .t =2 s 时最小C .t =8.5 s 时最大D .t =8.5 s 时最小3.(2020·广东东莞市调研)为了让乘客乘车更为舒适,某探究小组设计了一种新的交通工具,乘客的座椅能随着坡度的变化而自动调整,使座椅始终保持水平,如图2所示.当此车匀减速上坡时,乘客(仅考虑乘客与水平面之间的作用)( )A .处于超重状态B .不受摩擦力的作用C .受到向后(水平向左)的摩擦力作用D .所受合力竖直向上4.(2019·河北衡水中学第一次调研)如图3所示,一根弹簧一端固定在左侧竖直墙上,另一端连着A 小球,同时水平细线一端连着A 球,另一端固定在右侧竖直墙上,弹簧与竖直方向的夹角是60°,A 、B 两小球分别连在另一根竖直弹簧两端.开始时A 、B 两球都静止不动,A 、B 两小球的质量相等,重力加速度为g ,若不计弹簧质量,在水平细线被剪断瞬间,A 、B 两球的加速度分别为( )A .a A =aB =gB .a A =2g ,a B =0C .a A =3g ,a B =0D .a A =23g ,a B =05.(2020·吉林“五地六校”合作体联考)如图4所示,质量分别为m 1、m 2的A 、B 两小球分别连在弹簧两端,B 小球用细绳固定在倾角为30°的光滑斜面上,若不计弹簧质量且细绳和弹簧与斜面平行,在细绳被剪断的瞬间,A 、B 两小球的加速度大小分别为( )A .都等于g 2B .0和(m 1+m 2)g 2m 2C.(m 1+m 2)g 2m 2和0 D .0和g 26.(2019·东北三省四市教研联合体模拟)如图5所示,物体A、B由跨过定滑轮且不可伸长的轻绳连接,由静止开始释放,在物体A加速下降的过程中,下列判断正确的是()A.物体A和物体B均处于超重状态B.物体A和物体B均处于失重状态C.物体A处于超重状态,物体B处于失重状态D.物体A处于失重状态,物体B处于超重状态7.(2019·安徽马鞍山市检测)两物块A、B并排放在水平地面上,且两物块接触面为竖直面,现用一水平推力F作用在物块A上,使A、B由静止开始一起向右做匀加速运动,如图6甲所示,在A、B的速度达到6 m/s时,撤去推力F.已知A、B质量分别为m A=1 kg、m B=3 kg,A与水平面间的动摩擦因数为μ=0.3,B 与地面没有摩擦,物块B运动的v-t图象如图乙所示.g取10 m/s2,求:(1)推力F的大小;(2)物块A刚停止运动时,物块A、B之间的距离.8.(2019·河北承德市期末)如图7所示,有一质量为2 kg的物体放在长为1 m的固定斜面顶端,斜面倾角θ=37°,g=10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)若由静止释放物体,1 s后物体到达斜面底端,则物体到达斜面底端时的速度大小为多少?(2)物体与斜面之间的动摩擦因数为多少?(3)若给物体施加一个竖直方向的恒力,使其由静止释放后沿斜面向下做加速度大小为1.5 m/s2的匀加速直线运动,则该恒力大小为多少?9.(2019·安徽黄山市一模检测)如图8所示,一质量为m的小物块,以v0=15 m/s的速度向右沿水平面运动12.5 m后,冲上倾斜角为37°的斜面,若小物块与水平面及斜面间的动摩擦因数均为0.5,斜面足够长,小物块经过水平面与斜面的连接处时无能量损失.求:(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)(1)小物块在斜面上能达到的最大高度;(2)小物块在斜面上运动的时间.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

瞬时加速度问题
1.求解思路:求解物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度.
2.牛顿第二定律瞬时性的“两类”模型
(1)刚性绳(轻杆或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不
需要形变恢复时间.
(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要
较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.
3.在求解瞬时加速度时应注意的问题
(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.
(2)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变.
典型例题分析
1、如图所示,质量为0.2 kg的物体A静止在竖直的轻弹簧上,质量为0.6 kg的物体B由细线悬挂
在天花板上,B与A刚好接触但不挤压,现突然将细线剪断,则剪断后瞬间A.B间的作用力大小
为(g取10 m/s2)()
A.0.5 N B.2.5 N C.0 N D.1.5 N
【解析】剪断细线前,A、B间无压力,则弹簧的弹力F=m A g=0.2×10=2 N,剪断细线的瞬间,对整体分析,
N=m B g-m B a=0.6×10 N-0.6×7.5 N=1.5 N.故选D项【答案】D
2、如图所示,天花板上固定有一光滑的定滑轮,绕过定滑轮且不可伸长的轻质细绳左端悬挂
一质量为M的铁块;右端悬挂有两质量均为m的铁块,上下两铁块用轻质细线连接,中
间夹一轻质弹簧处于压缩状态,此时细线上的张力为2mg,最初系统处于静止状态.某瞬
间将细线烧断,则左端铁块的加速度大小为( )
A.14g
B.13g
C.23g
D.13g 【解析】 根据题意,烧断细线前轻绳上的张力为2mg ,可得到M =2m ,以右下端的铁块为研究对象,根据
平衡条件可知,细线烧断前弹簧的弹力为mg ,细线烧断前的瞬间,铁块M 与右端上面的铁块m 间轻绳的
故C 项正确.【答案】 C
3、“儿童蹦极”中,拴在腰间左右两侧的是弹性极好的橡皮绳..质量为m 的小明如图所示静止悬挂时,两橡
皮绳的拉力大小均恰为mg ,若此时小明右侧橡皮绳在腰间断裂,则小明此时( )
A .加速度为零,速度为零
B .加速度a =g ,沿原断裂橡皮绳的方向斜向下
C .加速度a =g ,沿未断裂橡皮绳的方向斜向上
D .加速度a =g ,方向竖直向下 解析 根据题述,腰间左右两侧的橡皮绳中弹力等于重力.若此时小明右侧橡皮绳在腰间断裂,则小明此时所
受合力方向沿原断裂橡皮绳的方向斜向下,大小等于mg ,所以小明的加速度a =g ,沿原断裂橡皮绳的方向斜向下,B 项正确.答案B
4、(多选)如图所示,A 、B 、C 三球质量分别为3m 、2m 、m ,轻质弹簧一端固定在斜面顶端、另一端与A 球相
连,A 、B 间固定一个轻杆,B 、C 间由一轻质细线连接.倾角为θ=30°的光滑斜面固定在地面上,弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态.已知重力加速度为g.将细线烧断的瞬间,下列说法正确的是( )
A .A 、
B 两个小球的加速度均沿斜面向上,大小均为g 10
B .B 球的加速度为g 2,方向沿斜面向下
C .A 、B 之间杆的拉力大小为mg
D .A 、B 之间杆的拉力大小为1.2mg
解析A、B项,烧断细线前,以A、B、C组成的系统为研究对象,系统静止,处于平衡状态,合力为零,则弹簧的弹力为F=(3m+2m+m)gsinθ=6mgsinθ.以C为研究对象知,细线的拉力为mgsinθ.烧断细线的瞬间,由于弹簧弹力不能突变,弹簧弹力不变,以A、B组成的系统为研究对象,由牛顿第二定律得:F-(3m+2m)gsinθ=(3m+2m)a AB.答案AD
5、如图所示,弹簧p和细绳q的上端固定在天花板上,下端用小钩勾住质量为m的小球C,弹簧、细绳和小
钩的质量均忽略不计.静止时p、q与竖直方向的夹角均为60°.下列判断正确的有()
A.若p和球突然脱钩,则脱钩后瞬间q对球的拉力大小为mg
B.若p和球突然脱钩,则脱钩后瞬间球的加速度大小为g
C.若q和球突然脱钩,则脱钩后瞬间p对球的拉力大小为mg
D.若q和球突然脱钩,则脱钩后瞬间球的加速度大小为g
6、(多选)如图,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a 上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断,将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g,在剪断的瞬间,()A.a1=3g B.a1=0 C.Δl1=2Δl2D.Δl1=Δl2
[审题突破](1)剪断前,S1的弹力为________,S2的弹力为________,a物块所受合力为________;(2)剪断瞬间,两弹簧弹力________,物块a所受合力为________.
[解析]设物体的质量为m,剪断细绳的瞬间,绳子的拉力消失,弹簧还没有来得及改变,所以剪断细绳的瞬间a受到重力和弹簧S1的拉力F T1,剪断前对bc和弹簧S2组成的整体分析可知F T1=2mg,故a受到的合
=mg,根据胡克定律F=kΔx可得Δl1=2Δl2,C正确、D错误.[答案]AC
7.如图所示,物块1、2 间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量
为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a
A .a 1=a 2=a 3=a 4=0
B .a 1=a 2=a 3=a 4=g
C .a 1=a 2=g ,a 3=0,a 4=m +M M g
D .a 1=g ,a 2=m +M M g ,a 3=0,a 4=m +M M g
解析:选C.在抽出木板的瞬间,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,
所以由牛顿第二定律知a 1=a 2=g ;而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对物块3向上
1、四个质量均为m 的小球,分别用三条轻绳和一根轻弹簧连接,处于平衡状态,如图所示.现突然迅速剪断
轻绳A1、B1,让小球下落,在剪断轻绳的瞬间,设小球1、2、3、4的加速度分别用a1、a2、a3和a4表示,则( )
A .a 1=g ,a 2=g ,a 3=2g ,a 4=0
B .a 1=0,a 2=2g ,a 3=0,a 4=2g
C .a 1=g ,a 2=g ,a 3=g ,a 4=g
D .a 1=0,a 2=2g ,a 3=g ,a 4=g
2、(多选)在动摩擦因数μ=0.2的水平面上有一个质量为m =2 kg 的小球,小球与水平轻弹簧及与竖直方向成
θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零.当剪断轻绳的瞬间,取g =10 m/s 2,以下说法正确的是( )
A .此时轻弹簧的弹力大小为20 N
B .小球的加速度大小为8 m/s 2,方向向左
C .若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s 2,方向向右
D .若剪断弹簧,则剪断的瞬间小球的加速度为0
答案ABD
解析在剪断轻绳前,小球受重力、绳子的拉力以及弹簧的弹力处于平衡,根据共点力平衡得,弹簧的弹力:F=mgtan45°=20×1=20 N,故A项正确;在剪断轻绳的瞬间,弹簧的弹力仍然为20 N,小球此时受重力、支持力、弹簧弹力和摩擦力四个力作用;小球所受的最大静摩擦力为:f=μmg=0.2×20 N=4 N,根据牛顿第二定律得小球的加速度为:a=(F-f)/m=8 m/s2;合力方向向左,所以向左加速.故B项正确;剪断弹簧的瞬间,轻绳对小球的拉力瞬间为零,此时小球所受的合力为零,则小球的加速度为零,故C项错误,D项正确.
3、如图所示,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止
状态.当木板AB突然向下撤离的瞬间,小球的加速度大小为( )
A.0 B.g C.g D.g。

相关文档
最新文档