加速度的瞬时变化问题
牛顿第二定律瞬时性问题专题(个人整理)

B. 剪断绳的瞬间 C. 剪断弹簧的瞬间
D. 剪断弹簧的瞬间
析:剪断绳时a=0,剪断弹簧时a=g/2
• 例2、如图甲两球质量均为m,两根轻绳1和2,突 然迅速剪断1,剪断瞬间A、B的加速度为多少?
变式1:将轻绳2改变成轻质弹簧,如图乙,则情 况又如何?
变式2:如图乙中A、B质量分别为3m和2m,则 剪断线1瞬间,情况又如何?
பைடு நூலகம்
变式1 (2020·福建龙岩市期末质量检查)如图5所示,在倾角为θ=30°
的光滑固定斜面上,物块A、B质量均为m.物块A静止在轻弹簧上端,
物块B用细线与斜面顶端相连,A、B靠在一起,但A、B之间无弹力.
已知重力加速度为g,某时刻将细线剪断,下列说法正确的是
A.细线剪断前,弹簧的弹力为mg
B.细线剪断前,细线的拉力为mg
a
A
B
例3 (多选) 如图4所示,质量均为m的木块A和B用一轻弹簧相连,竖 直放在光滑的水平面上,木块A上放有质量为2m的木块C,三者均处 于静止状态.现将木块C迅速移开,若重力加速度为g,则在木块C移开 的瞬间
√A.弹簧的形变量不改变
B.弹簧的弹力大小为mg
√C.木块A的加速度大小为2g
D.木块B对水平面的压力大小迅速变为2mg
细线剪断瞬间,对 A、B 系统,加速度大小:a=2mgs2inmθ-F=41g,故 D 正确.
变式2 如图6所示,A球质量为B球质量的3倍,光滑固定斜面的倾角 为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆 相连,系统静止时,挡板C与斜面垂直,弹簧、轻杆均与斜面平行, 重力加速度为g,则在突然撤去挡板的瞬间有 A.图甲中A球的加速度大小为gsin θ B.图甲中B球的加速度大小为2gsin θ C.图乙中A、B两球的加速度大小均为gsin θ
牛顿第二定律瞬时性问题专题

牛顿第二定律在瞬时问题中的实例分析
自由落体运动
当物体仅受重力作用时,根据牛顿第二定律可以得出自由落体的加速度为9.8m/s²,进而分析自由落体的 运动规律。
弹性碰撞
当两个物体发生弹性碰撞时,根据牛顿第二定律可以计算出碰撞后的速度和方向。
牛顿第二定律在瞬时问题中的实践意义
工程应用
在机械工程、航空航天等领域中,牛顿第二定律被广泛应用于分析各种瞬时作用力和运 动状态变化的问题。
牛顿第二定律瞬时性问题是指物体在受到力的作用时,其加速度立即产生,而不需要经过一段时间的 延迟。这一特性在经典力学中得到了广泛的应用和认可。
牛顿第二定律瞬时性问题的研究涉及到物体运动状态的改变和力的作用方式,对于理解力学的基本原理 和解决实际问题具有重要的意义。
虽然牛顿第二定律瞬时性问题的理论已经相当成熟,但在实际应用中仍然存在一些挑战和限制,需要进 一步研究和探讨。
随着科学技术的发展,未来研究将更 加注重实验研究和观测技术的提升, 以实现更精确的瞬时测量和更深入的 物理机制探索。
跨学科合作将成为研究的重要方向, 通过与物理学、数学、工程学等领域 的交叉融合,拓展牛顿第二定律瞬时 性问题的研究领域和应用范围。
05 结论
CHAPTER
牛顿第二定律瞬时性问题的总结
牛顿第二定律适用于宏观低速的物体,即适用于速度远小于 光速的物体。
惯性参考系
牛顿第二定律只在惯性参考系中成立,即在不受外力作用的 参考系中成立。
02 瞬时性问题解析
CHAPTER
瞬时性问题的定义
瞬时性问题的定义
在牛顿第二定律中,瞬时性问题是指物体在受到力的作用后,其加速度立即产生 ,而不需要经过一段时间的延迟。
安全保障
瞬间加速度问题

3
D. 3 g
3
课后练习
1.如图所示,A、B两小球分别连在弹簧两端,B端用细线固定在倾 角为30°光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A、B 两球的加速度分别为 ( )
g
A.都等于 2
MA MB C. M B
•
g 2
和0
B. g 和 0
2
D.0和 M A M B • g
MB
2
2. 如图所示,木块A与B用一轻弹簧相连,
竖直放在木块C上,三者静置于地面上,
它们的质量之比是1∶2∶3.设所有接触
面都光滑,在沿水平方向抽出木块C的瞬
间,木块A和B的加速度分别是
aA= ,aB=
.
• 3.如图所示,弹簧S1的上端固定在天花板上, 下端连一小球A,球A与球B之间用线相连.球B
⑶轻绳的弹力如何突变? 由物体的受力和物体的运动状态决定 ⑷刚性杆、绳(线)或接触面都可以认为是一种不发生明显形变就
能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,不 需要形变恢复时间,一般题目中所给杆、细线和接触面在不加 特殊说明时,均可按此模型来处理。
Ⅱ“弹簧”和“橡皮绳” :
(1)轻:其质量和重力均可视为等于零,同一弹簧两端及其 中间各点的弹力大小相等。 (2)弹簧既能承受拉力,也能承受压力;橡皮绳只能承受
解析 (1)因此时水平面对小球的弹力为零,小球在 绳没有断时受到绳的拉力FT和弹簧的弹力F作用而处 于平衡状态,依据平衡条件得
竖直方向有:FTcosθ=mg,水平方向有:FTsinθ=F 解得弹簧的弹力为:F=mgtanθ=10 N
(2)剪断绳后小球在竖直方向仍平衡,水平面支持力 平衡重力FN=mg 由牛顿第二定律得小球的加速度为 a= F F=N8 m/s2,方向向左.
曲线运动中的加速度计算

曲线运动中的加速度计算曲线运动是物体在运动过程中沿着曲线路径运动的一种形式。
在曲线运动中,物体的速度和方向都在不断变化,因此需要使用加速度来描述物体在曲线上的运动状态。
本文将探讨曲线运动中的加速度计算方法。
一、加速度的定义和计算公式加速度是描述物体在单位时间内速度变化率的物理量。
在一维直线运动中,加速度可以通过速度变化量除以时间来计算。
然而,在曲线运动中,由于速度方向的变化,我们需要考虑速度的瞬时变化率,即瞬时加速度。
瞬时加速度的计算公式为:a = lim(dt→0) Δv/Δt,其中a表示瞬时加速度,Δv 表示速度的变化量,Δt表示时间的变化量。
二、曲线运动中的速度变化在曲线运动中,物体的速度不仅可以改变大小,还可以改变方向。
速度的变化可以分为两个方面:切向速度和法向速度。
1. 切向速度:物体在曲线上某一点的切线方向上的速度。
切向速度的变化决定了物体在曲线上沿切线方向的加速度。
2. 法向速度:物体在曲线上某一点的法线方向上的速度。
法向速度的变化决定了物体在曲线上沿法线方向的加速度。
三、加速度的分解与计算在曲线运动中,可以将加速度分解为切向加速度和法向加速度,分别与切向速度和法向速度相关。
1. 切向加速度的计算:切向加速度描述了物体在曲线上沿切线方向的加速度变化。
切向加速度的计算公式为:at = dv/dt,其中at表示切向加速度,dv表示切向速度的变化量,dt表示时间的变化量。
2. 法向加速度的计算:法向加速度描述了物体在曲线上沿法线方向的加速度变化。
法向加速度的计算公式为:an = v^2/r,其中an表示法向加速度,v表示物体的速度,r表示曲率半径。
四、曲线运动中的加速度计算实例为了更好地理解曲线运动中的加速度计算方法,我们来看一个实例。
假设一个物体以匀速v在半径为r的圆周上做匀速圆周运动。
此时,物体的速度方向始终垂直于圆周。
根据圆周运动的特点,我们可以得知切向速度始终为0,即物体沿切线方向没有加速度。
3.牛顿第二定律

(二)分析的基本思路:
1.对研究对象的初状态进行受力分析,根 据条件列方程求出有关物理量;
2. 根据力的变化情况,对研究对象的末 状态进行受力分析,列方程求解。
例1、两球质量均为m,两根轻绳1和2,
突然迅速剪断1,剪断瞬间A、B的加速度为多少?来自1A2
B
▪ 原题、两球质量均为m,两根轻绳1和2,突 然迅速剪断1,剪断瞬间A、B的加速度为多 少? 变式1:将轻绳2改变成轻质弹簧,则情 况又如何?
1 A
2
B
▪ 原题、两球质量均为m,两根轻绳1和2,突 然迅速剪断1,剪断瞬间A、B的加速度为多 少? 变式2、变式1中整个装置以a匀加速上升, 则情况又怎样?
a
1
A
2
B
例2、(1)如图 (A)所示,一质量为m的物体系于长度分别为, 的两根细线上,的一端悬挂在天花板上,l1与竖直方向夹角为 θ,l2水平拉直,物体处于平衡状态。现将线剪断l2 ,求剪断 瞬时物体的加速度。
牛顿第二定律的瞬时性问题
牛顿第二定律的瞬时作用:
牛顿第二定律揭示的加速度a与合外力F 的正比关系是“瞬时”的依存关系。有 力,就有加速度,任一时刻的合外力对 应着该时刻的瞬时加速度。力改变,加 速度亦同时改变。
应用一:瞬时变化问题
(一)三个理想模型的理解: 1.轻绳(不计质量的刚性绳) (1)不可伸长——沿绳索方向的速度大小相
等、方向相反。 (2)不能承受压力,拉力必沿绳的方向。 (3)内部张力处处相等,且与运动状态无关。 (4)弹力可以突变。 注意刚性绳与弹性绳的区别,弹性绳的弹力不
能突变。一般没特别说明,绳是指刚性绳。
2.轻弹簧(不计质量)
(1)弹簧的弹力是连续变化的,不能突 变。
瞬时加速度问题

C.g/4,竖直向下; D.g/4,竖直向上;
6.如图所示,一根轻弹簧竖直直立在水平面上,下端固定。在弹簧正上方有一个物块从高处自由下落到弹簧上端O,将弹簧压缩。当弹簧被压缩了x0时,物块的速度减小到零。从物块和弹簧接触开始到物块速度减小到零过程中,物块的加速度大小a随下降位移大小x变化的图象,可能是下图中的:【】
(3)求物体在状态变化后所受的合外力,利用牛顿第二定律,求出瞬时加速度。
1.如图所示,小球A、B的质量分别为m和2m,用轻弹簧相连,然后用细线悬挂而静止,在剪断弹簧的瞬间,求A和B的加速度各为多少?
2.如图所示,木块A和B用一弹簧相连,竖直放在木板C上,三者静止于地面,它们的质量比是1:2:3,设所有接触面都是光滑的,当沿水平方向迅速抽出木块C的瞬时,A和B的加速度aA=,aB=。
A.22m/s2竖直向上B.22m/s2竖直向下
C.2m/s2竖直向上D.2m/s2竖直向下
【练习】:
1.如图所示,质量为M的框架放在水平地面上,一轻弹簧上端固定一个质量为m的小球,小球上下振动时,框架始终没有跳起.当框架对地面压力为零瞬间,小球的加速度大小为:【】
A.gB. gC.0D. g
2.如图所示,A、B两小球质量分别为MA和MB连在弹簧两端,B端用细线固定在倾角为30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A、B两球的加速度分别为:【】
【解决此类问题的基本方法】:
(1)分析原状态(给定状态)下物体的受力情况,求出各力大小(若物体处于平衡状态,则利用平衡条件;若处于加速状态则利用牛顿运动定律);
(2)分析当状态变化时(烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力变化,哪些力不变,哪些力消失(被剪断的绳、弹簧中的弹力,发生在被撤去物接触面上的弹力都立即消失);
牛顿第二定律的瞬时性问题

绳子未断时,受力如图,由共点力平衡条件得
刚剪短弹簧Ⅰ瞬间,细绳弹力突变为0,故小球只受重力,加速度为g,竖直向下,故A 正确,C错误; 刚剪短细线瞬间,弹簧弹力和重力不变,受力如图
由几何关系,F合=T1sinθ=T2=ma,因而
因而B正确,D错误;
故选A、B.
马鞍山中加双语学校 高一物理组
课题导入
专题:瞬时加速度
马鞍山中加双语学校 高一物理组
上午7时7分40秒
目标引领
1、理解a与F合的瞬时对应关系
2、会分析瞬时问题的两种模型 3、学会解决此类问题的基本方法
马鞍山中加双语学校 高一物理组
上午7时7分40秒
独立自学
【例题】 小球 A、B 的质量分别为 m 和 2m,用轻弹簧相连,然后用细线悬挂而静止, 如图所示,在剪断细线瞬间,A、B 的加速度各是多少?方向如何?
(3)求物体在状态变化前后所受的合外力,利用牛顿第二 定律,求出瞬时加速度。
马鞍山中加双语学校 高一物理组
• 2-1:如下图所示,A、B两木块间连一轻 质弹簧,A、B质量相等,一起静止地放在
一块光滑木板上,若将此木板突然抽去, 在此瞬间,A、B两木块的加速度分别是
• A.aA=0,aB=2g • B.aA=g,aB=g • C.aA=0,aB=0 • D.aA=g,aB=2g
突变 压力
微小不
既可有拉力也可有
可以突变
计
支持力
马鞍山中加双语学校 高一物理组
实例分析
如图所示,质量m的球与弹簧Ⅰ和水平细线Ⅱ相连,Ⅰ、Ⅱ的另 一端分别固定于P、Q.球静止时,Ⅰ中拉力大小T1,Ⅱ中拉力大 小T2,当仅剪断Ⅰ、Ⅱ中的一根的瞬间,球的加速a应是( ) A.若断Ⅰ,则a=g,竖直向下 B.若断Ⅱ,则a= T2 /m ,方向水平向左 C.若断Ⅰ,则a= T1 /m ,方向沿Ⅰ的延长线 D.若断Ⅱ,则a=g,竖直向下
牛顿第二定律瞬时加速度问题

瞬时加速度问题1.求解思路:求解物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度.2.牛顿第二定律瞬时性的“两类”模型(1)刚性绳(轻杆或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.3.在求解瞬时加速度时应注意的问题(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变.典型例题分析1、如图所示,质量为0.2 kg的物体A静止在竖直的轻弹簧上,质量为0.6 kg的物体B由细线悬挂在天花板上,B与A刚好接触但不挤压,现突然将细线剪断,则剪断后瞬间A.B间的作用力大小为(g取10 m/s2)()A.0.5 N B.2.5 N C.0 N D.1.5 N【解析】剪断细线前,A、B间无压力,则弹簧的弹力F=m A g=0.2×10=2 N,剪断细线的瞬间,对整体分析,N=m B g-m B a=0.6×10 N-0.6×7.5 N=1.5 N.故选D项【答案】D2、如图所示,天花板上固定有一光滑的定滑轮,绕过定滑轮且不可伸长的轻质细绳左端悬挂一质量为M的铁块;右端悬挂有两质量均为m的铁块,上下两铁块用轻质细线连接,中间夹一轻质弹簧处于压缩状态,此时细线上的张力为2mg,最初系统处于静止状态.某瞬间将细线烧断,则左端铁块的加速度大小为( )A.14gB.13gC.23gD.13g 【解析】 根据题意,烧断细线前轻绳上的张力为2mg ,可得到M =2m ,以右下端的铁块为研究对象,根据平衡条件可知,细线烧断前弹簧的弹力为mg ,细线烧断前的瞬间,铁块M 与右端上面的铁块m 间轻绳的故C 项正确.【答案】 C3、“儿童蹦极”中,拴在腰间左右两侧的是弹性极好的橡皮绳..质量为m 的小明如图所示静止悬挂时,两橡皮绳的拉力大小均恰为mg ,若此时小明右侧橡皮绳在腰间断裂,则小明此时( )A .加速度为零,速度为零B .加速度a =g ,沿原断裂橡皮绳的方向斜向下C .加速度a =g ,沿未断裂橡皮绳的方向斜向上D .加速度a =g ,方向竖直向下 解析 根据题述,腰间左右两侧的橡皮绳中弹力等于重力.若此时小明右侧橡皮绳在腰间断裂,则小明此时所受合力方向沿原断裂橡皮绳的方向斜向下,大小等于mg ,所以小明的加速度a =g ,沿原断裂橡皮绳的方向斜向下,B 项正确.答案B4、(多选)如图所示,A 、B 、C 三球质量分别为3m 、2m 、m ,轻质弹簧一端固定在斜面顶端、另一端与A 球相连,A 、B 间固定一个轻杆,B 、C 间由一轻质细线连接.倾角为θ=30°的光滑斜面固定在地面上,弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态.已知重力加速度为g.将细线烧断的瞬间,下列说法正确的是( )A .A 、B 两个小球的加速度均沿斜面向上,大小均为g 10B .B 球的加速度为g 2,方向沿斜面向下C .A 、B 之间杆的拉力大小为mgD .A 、B 之间杆的拉力大小为1.2mg解析A、B项,烧断细线前,以A、B、C组成的系统为研究对象,系统静止,处于平衡状态,合力为零,则弹簧的弹力为F=(3m+2m+m)gsinθ=6mgsinθ.以C为研究对象知,细线的拉力为mgsinθ.烧断细线的瞬间,由于弹簧弹力不能突变,弹簧弹力不变,以A、B组成的系统为研究对象,由牛顿第二定律得:F-(3m+2m)gsinθ=(3m+2m)a AB.答案AD5、如图所示,弹簧p和细绳q的上端固定在天花板上,下端用小钩勾住质量为m的小球C,弹簧、细绳和小钩的质量均忽略不计.静止时p、q与竖直方向的夹角均为60°.下列判断正确的有()A.若p和球突然脱钩,则脱钩后瞬间q对球的拉力大小为mgB.若p和球突然脱钩,则脱钩后瞬间球的加速度大小为gC.若q和球突然脱钩,则脱钩后瞬间p对球的拉力大小为mgD.若q和球突然脱钩,则脱钩后瞬间球的加速度大小为g6、(多选)如图,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a 上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断,将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g,在剪断的瞬间,()A.a1=3g B.a1=0 C.Δl1=2Δl2D.Δl1=Δl2[审题突破](1)剪断前,S1的弹力为________,S2的弹力为________,a物块所受合力为________;(2)剪断瞬间,两弹簧弹力________,物块a所受合力为________.[解析]设物体的质量为m,剪断细绳的瞬间,绳子的拉力消失,弹簧还没有来得及改变,所以剪断细绳的瞬间a受到重力和弹簧S1的拉力F T1,剪断前对bc和弹簧S2组成的整体分析可知F T1=2mg,故a受到的合=mg,根据胡克定律F=kΔx可得Δl1=2Δl2,C正确、D错误.[答案]AC7.如图所示,物块1、2 间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为aA .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +M M gD .a 1=g ,a 2=m +M M g ,a 3=0,a 4=m +M M g解析:选C.在抽出木板的瞬间,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a 1=a 2=g ;而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对物块3向上1、四个质量均为m 的小球,分别用三条轻绳和一根轻弹簧连接,处于平衡状态,如图所示.现突然迅速剪断轻绳A1、B1,让小球下落,在剪断轻绳的瞬间,设小球1、2、3、4的加速度分别用a1、a2、a3和a4表示,则( )A .a 1=g ,a 2=g ,a 3=2g ,a 4=0B .a 1=0,a 2=2g ,a 3=0,a 4=2gC .a 1=g ,a 2=g ,a 3=g ,a 4=gD .a 1=0,a 2=2g ,a 3=g ,a 4=g2、(多选)在动摩擦因数μ=0.2的水平面上有一个质量为m =2 kg 的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零.当剪断轻绳的瞬间,取g =10 m/s 2,以下说法正确的是( )A .此时轻弹簧的弹力大小为20 NB .小球的加速度大小为8 m/s 2,方向向左C .若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s 2,方向向右D .若剪断弹簧,则剪断的瞬间小球的加速度为0答案ABD解析在剪断轻绳前,小球受重力、绳子的拉力以及弹簧的弹力处于平衡,根据共点力平衡得,弹簧的弹力:F=mgtan45°=20×1=20 N,故A项正确;在剪断轻绳的瞬间,弹簧的弹力仍然为20 N,小球此时受重力、支持力、弹簧弹力和摩擦力四个力作用;小球所受的最大静摩擦力为:f=μmg=0.2×20 N=4 N,根据牛顿第二定律得小球的加速度为:a=(F-f)/m=8 m/s2;合力方向向左,所以向左加速.故B项正确;剪断弹簧的瞬间,轻绳对小球的拉力瞬间为零,此时小球所受的合力为零,则小球的加速度为零,故C项错误,D项正确.3、如图所示,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度大小为( )A.0 B.g C.g D.g。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加速度的瞬时变化问题
例.(2001年上海)如图4(甲)所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态.
现将l2线剪断,求剪断瞬时物体的加速度.
(1)下面是某同学对该题的一种解法:
解:设l1线上拉力为T1,l2线上拉力为T2,重力为mg,物体在三力作用下保持平衡:T1cosθ=mg,T1sinθ=T2,T2=mg tanθ
剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mg tanθ=ma,所以加速度a=g tanθ,方向于T2反方向.
你认为这个结果正确吗?请对该解法作出评价并说明理由.
(2)若将如图4(甲)中的细线l1改为长度相同、质量不计的轻弹簧,如图4(乙)所示,其他条件不变,求解的步骤与(1)完全相同,即a=g tanθ,你认为这个结果正确吗?请说明理由.
错误剖析:本题考查的是运用牛顿定律分析瞬时力和瞬时加速度,要求考生能对“弹性绳”和“刚性绳”两种理想模型的性质做出正确的判断,由于不能伸长的绳上力的改变不需要绳的长度改变,因而其弹力可以在瞬间变化,而弹性绳弹力的改变必须通过改变绳的长度才能实现,因而其弹力不能在瞬间变化.出现错误的考生一般是没有注意这两种模型的区别,将两种情况相混淆.
思路点拨:水平细线剪断瞬间拉力突变为零,图甲中OA绳拉力由T突变为T',但是图乙中OB弹簧要发生形变需要一定时间,弹力不能突变。
(1)对A球受力分析,如图5(a),剪断
水平细线后,球A将做圆周运动,剪断瞬间,
小球的加速度方向沿圆周的切线方向。
(2)水平细线剪断瞬间,B球受重力G和
弹簧弹力
不变,如图5(b )所示,则
正确解答
解:(1)错.
因为l 2被剪断的瞬间,l 1上的张力大小发生了变化.
(2)对.
因为l 2被剪断的瞬间,弹簧l 1的长度未及发生变化,T 1大小和方向都不变.
小结:(1)牛顿第二定律是力的瞬时作用规律,加速度和力同时产生、同时变化、同时消失。
分析物体在某一时刻的瞬时加速度,关键是分析该瞬时前后的受力情况及其变化。
(2)明确两种基本模型的特点:
A. 轻绳的形变可瞬时产生或恢复,故绳的弹力可以瞬时突变。
B. 轻弹簧(或橡皮绳)在两端均联有物体时,形变恢复需较长时间,其弹力的大小与方向均不能突变。
针对训练:
1、一轻弹簧上端固定,下端挂一重物,平衡时,弹簧早长了4cm ;再将重物向下拉1cm ,
然后放下,则在刚释放在瞬间重物的加速度是(g 取10m/s 2)( )
A 、2.5m/s 2
B 、7.5m/s 2
C 、10m/s 2
D 、12.5m/s 2
2.如图所示,质量为M 的框架放在水平地面上,一轻弹簧上
端固定一个质量为m 的小球,小球上下振动时,框架始终没有跳
起.当框架对地面压力为零瞬间,小球的加速度大小为( )
A.g
B.m m M - g
C.0
D. m m M +g 3.如图所示,A 、B 两小球分别连在弹簧两端,B 端用细线固定
在倾角为30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,
A 、
B 两球的加速度分别为( )
A.都等于
2g B. 2g 和0 C.2g M M M B B A ⋅+和0 D.0和2
g M M M B B A ⋅+ 4.(2000年上海)匀速上升的升降机顶部悬有一轻质弹簧,弹簧下端挂有一小球.若升降机突然停止运动,在地面上的观察者看来,小球在继续上升的过程中
A.速度逐渐减小
B.速度先增大后减小
C.加速度逐渐增大
D.加速度逐渐减小
5、如图3-22所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的
一端各与小球相连,另一端分别用销钉M 、N 固定于杆上,小球处于
静止状态。
设拔出销钉M 瞬间,小球加速度的大小为12m/s 2。
若不拔
去销钉M 而拔去销钉N 瞬间,小球的加速度可能是(取g=10m/s 2)
A 、22m/s 2,竖直向上
B 、22m/s 2,竖直向下
C 、2m/s 2,竖直向上
D 、2m/s 2,竖直向下
6. 如图1所示,在原来静止的木箱内,放有A 物体,A 被一伸
长的弹簧拉住且恰好静止,现突然发现A 被弹簧拉动,则木箱的运
动情况可能是( )
A. 加速下降
B. 减速上升
C. 匀速向右运动
D. 加速向左运动
7. 一个质量不计的轻弹簧,竖直固定在水平桌面上,一个小球从弹簧的正上方竖直落下,从小球与弹簧接触开始直到弹簧被压缩到最短的过程中,小球的速度和加速度的大小变化情况是( )
A. 加速度越来越小,速度也越来越小
B. 加速度先变小后变大,速度一直是越来越小
C. 加速度先变小,后又增大,速度先变大,后又变小
D. 加速度越来越大,速度越来越小
8、如图3-24所示,吊篮P 悬挂在天花板上,与吊篮质量相等的物体Q 被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断的瞬间,吊篮P 和物休Q
)
A 、 a p =a Q =g
B
、a p =2g, a Q =g C 、a p =g, a Q =2g D 、a p =2g, a Q =0
9如图3-5所示,一根轻质弹簧上端固定,下端挂一质量为M 的平盘,
盘中有一物体质量为m ,当盘静止时,弹簧的长度比其自然长度伸长了L ,
今向下拉盘使弹簧再伸长△L 后停止,然后松手放开,设弹簧总处在弹性
限度内,则松开手时盘对物体的支持力等于:
A 、(1+△L/L)mg;
B 、(1+△L/L)(M+m)g ;
C 、mg L L ∆;
D 、g m M L L )(+∆
P N M 图3-5
10、如图3-23所示,三个相同的小球A 、B 、C 彼此用轻弹簧1和2连接,球A 上端用轻细线系住挂起来,求:(1)线被剪断的瞬间,各球的加速度?(2)若线不剪断,而在B 球的下端点把弹簧2剪断,则在剪断的瞬间,各球的加速度又如何?
11、如图3-25所示,木块A 与B
三者静置于地面,它们的质量之比是1:2:3水平方向迅速抽出木块C 的瞬时,A 和B 的加速度分别是多少?
12、如图3-27所示,物块B 和C 分别连接在轻质弹簧两端,将其静置于吊篮A 的水平底板上,已知A 、B 和C 三者质量相等,且均为m ,并知重力加速度为
g ,那么将悬挂吊篮的轻绳烧断的瞬间,则吊篮A 、物块B 和C 的加速
度a
A 、a B
、a C 分别为多少?
13. 如图10所示,一个弹簧台秤的秤盘和弹簧质量均不计,盘内放一个质量的静止物体P ,弹簧的劲度系数。
现施加给P 一个竖直向上的拉力F ,使P 从静止开始向上做匀加速运动。
已知在头0.2s 内F 是变力,在0.2s 以后,F 是恒力,取
,求拉力F 的最大值和最小值。
图3-25 图3-27
图3-23。