振动监测参数选择与判定标准

合集下载

电梯振动监测与诊断技术研究

电梯振动监测与诊断技术研究

电梯振动监测与诊断技术研究电梯是现代楼宇的必备组成部分,其使用频繁,对于人们的日常生活产生了非常大的便利。

然而,在电梯的使用过程中,经常会出现各种问题,其中一种主要的问题是电梯振动。

虽然有一些电梯已经具备了振动保护功能,但是由于各种因素的影响,电梯振动问题却一直存在。

为了更好地解决电梯振动问题,电梯振动监测与诊断技术应运而生。

电梯振动监测与诊断技术是指对电梯在运行中的振动信号进行实时监测、采集、处理和分析,并利用专业的技术手段,对电梯的振动状态进行诊断和判定,及时发现并解决振动问题。

该技术的研究和应用可以大大提高电梯的安全性和可靠性。

一、振动传感器的选择和安装振动传感器是电梯振动监测与诊断技术的核心部分,其主要功能是对电梯在运行中的振动信息进行采集。

因此,在选择振动传感器时,需要根据电梯的使用情况和振动特征进行选择,以确保传感器采集到的振动数据具有较高的精度和可靠性。

同时,在振动传感器的安装过程中,还需要注意安装位置和固定方式,以避免因传感器松动或振动信号失真而导致的采集误差。

二、振动特征参数的提取和分析振动参数是评价电梯振动状况的重要指标,包括加速度、速度、位移等参数。

在采集到电梯振动信号后,需要对其进行特征参数提取和分析,以确定电梯振动的频率、振幅等特征,从而为后续的诊断、控制和维护工作提供依据。

三、振动信号的诊断和故障判定电梯振动信号的诊断和故障判定是电梯振动监测与诊断技术的重要环节。

在振动信号分析的基础上,可以通过信号处理、模式识别等方法,判断电梯振动是否正常,并诊断是否存在各种故障。

通过对振动信号的分析和诊断,可以及时发现电梯运行过程中的问题,并采取相应的措施,避免意外事故的发生。

四、电梯振动的控制和维护除了诊断和判定电梯振动问题外,电梯振动监测与诊断技术还可以用于电梯振动的控制和维护。

通过分析电梯振动的特征参数,可以实时调整电梯的运行状态和速度,从而使电梯运行更加稳定。

另外,在振动监测的过程中,还可以对电梯设备进行定期的维护和检修,以确保设备的稳定运行和安全使用。

爆破振动监测试验方案

爆破振动监测试验方案

爆破振动监测试验方案一、背景介绍爆破工程是一种常见的工程施工方式,但在施工过程中,由于产生的爆破振动可能会对周边环境造成损害,因此需要进行爆破振动监测,以评估振动对建筑物、地下管线等结构的影响程度。

本文就爆破振动监测试验方案进行介绍。

二、测试仪器与设备1. 振动监测仪:使用精度高、响应速度快的振动监测仪,能够准确测量振动的频率、加速度、速度等参数。

2. 数据采集设备:连接振动监测仪和电脑的数据采集设备,负责将采集到的数据传输到电脑中进行记录和分析。

3. 电脑及软件:用于接收和处理采集到的振动数据,通过相应的软件进行数据分析和结果展示。

三、测试方案1. 测试点选取:根据爆破工程的具体情况,选择合适的测试点位。

测试点选取应包括建筑物、地下管线等结构可能受到影响的区域,以及距离爆破源较远的控制点,用于对比分析。

2. 测试参数设定:根据国家相关标准规定,设定合适的测试参数,包括测试时间、测试频率范围、振动监测仪的放置位置等。

3. 数据采集与记录:按照测试参数设定,在测试点位安置好振动监测仪,并连接数据采集设备和电脑。

开始爆破施工后,振动监测仪将自动进行数据采集,采集完成后将数据传输到电脑中进行记录。

4. 数据分析与结果展示:利用相关软件分析采集到的数据,将数据转化为振动参数图表,并进行数据统计和结果分析。

将分析结果进行清晰明了的展示,包括振动图、数据表格等形式。

四、注意事项1. 安全第一:测试人员在进行测试时,应遵守相关安全操作规范,确保人身安全。

2. 工程保护:在测试前,应评估爆破活动可能对周边工程造成的潜在影响,并采取相应的保护措施。

3. 仪器校准:振动监测仪应定期进行校准,以确保测试结果的准确性和可靠性。

4. 数据质量控制:在数据采集过程中,应确保数据的连续性和稳定性,避免误差的干扰。

五、测试结果与分析根据爆破振动监测数据的分析,可评估爆破活动对建筑物、地下管线等结构的影响程度,并根据评估结果进行相应的工程调整和改进措施。

立式泵电机振动标准

立式泵电机振动标准

立式泵电机振动标准立式泵电机是工业领域中常见的设备,用于输送液体、提供动力等各种应用。

振动是评估电机运行状态和性能的关键指标之一。

为了确保设备安全、可靠运行,制定相应的振动标准显得尤为重要。

本文将深入研究立式泵电机振动标准,并探讨其在工业应用中的重要性。

一、立式泵电机振动的重要性性能评估:电机振动是评估设备性能的关键指标之一。

通过监测振动水平,可以判断设备是否正常运行,避免潜在故障。

寿命预测:振动数据可用于预测电机和泵的寿命。

异常振动可能是设备故障的早期指示器,及时发现并解决问题可以延长设备寿命。

安全性:高水平的振动可能导致设备的不稳定性和安全风险。

通过确保振动处于安全水平,可以减少设备损坏和生产中断的风险。

二、立式泵电机振动标准ISO 10816标准系列:ISO 10816系列标准是用于测量机械振动的一组国际标准,其中包括了不同类型设备的振动测量指南。

对于立式泵电机,可以参考ISO 10816-7《机械振动评估-第7部分:旋转机械的振动测量和评估》。

API标准:美国石油学会(API)发布了一些与泵和电机相关的标准,可能包括对振动限值和评估方法的要求。

国家标准:不同国家可能制定自己的立式泵电机振动标准,根据当地工业特点和标准化组织的需求。

三、立式泵电机振动标准中的关键参数振动幅值:衡量设备振动的强度,通常以毫米或微米为单位。

频率:振动的频率分量,不同频率的振动可能表示不同类型的故障,例如轴承故障、不平衡等。

加速度:用于描述振动的加速度水平,通常以m/s²为单位。

评估标准:标准中可能包含了不同振动水平的评估标准,用于判断设备是否正常、边缘正常或存在异常。

四、振动数据的采集与分析传感器安装:安装加速度传感器或振动传感器以收集设备的振动数据。

数据采集系统:使用数据采集系统记录和存储振动数据,以便后续分析和评估。

频谱分析:对振动数据进行频谱分析,识别并定位不同频率的振动成分,以判断可能的故障类型。

振动监测基础知识

振动监测基础知识

一、名词和术语1. 振动的基本参量:幅值、周期(频率)和相位机械振动是指物体围绕其平衡位置附近来回摆动并随时间变化的一种运动。

振动通常以其幅值、周期(频率)和相位来描述,它们是描述振动的三个基本参量。

a.幅值:表示物体动态运动或振动的幅度,它是机械振动强度的标志,也是机器振动严重程度的一个重要指标。

机器运转状态的好坏绝大多数情况是根据振动幅值的大小来判别的。

针对机械设备的振动信号,选择有效的特征参数指标,是实现状态监测的关键,常用的特征参数包括:有量纲参数: 均方根(RMS),峰值(Peak),峰峰值(Peak-Peak)。

均方根(RMS):表征信号的能量,其定义为:均方根是对机组进行状态监测最重要的指标,由于均方根振动信号的能量,当机组正常运转时,振动信号的能量处于比较稳定的状态,当机组某个零部件出现异常后,信号的能量增加,当增知到超过设定阅值时,就可以判断出机组出现异常、对于速度信号的评估,通常用均方根表示。

均方根的稳定性和趋势性较好,许多标准都采用均方根来作为状态监测的参数.ISO 10816是针对通用机械的状态监测标准,采用速度信号的RMS作为特征参数。

VDI 3834作为唯一一个针对风电机组的振动标准,采用速度和加速度的RMS作为监测指标.峰值是指某段采集的信号中的最高值和最低值,其中,最高值表示为Peak(+),最低值表示为Peak(-),由于加速度信号主要表征受力的大小,因此通常用峰值来表征加速度的大小.峰峰值(Peak-Peak)是指某段采集的信号中,最高值和最低值之间的差值,它是峰值(+)和峰值(-)之间的范围,由于峰峰值描述的是信号值的变化范围大小,因此对于位移信号,通常用峰峰值表示。

峰-峰值等于正峰和负峰之间的最大偏差值,峰值等于峰-峰值的 1/2。

只有在纯正弦波的情况下,均方根值才等于峰值的0.707 倍,平均值等于峰值的0.637倍。

而平均值在振动测量中一般则很少使用。

爆破作业振动监测方案

爆破作业振动监测方案

爆破作业振动监测方案一、监测目的爆破作业振动监测的主要目的是:1、评估爆破振动对周边环境的影响程度,包括建(构)筑物、道路、桥梁、地下管线等设施的安全性。

2、验证爆破设计参数的合理性,为优化爆破方案提供依据。

3、确保爆破作业符合相关法规和标准的要求,避免对周边环境和人员造成不必要的损害。

二、监测依据1、《爆破安全规程》(GB6722-2014)2、相关工程的设计文件和施工方案3、国家和地方有关环境保护、安全管理的法律法规三、监测范围根据爆破工程的规模、地形地貌、周边环境等因素,确定监测范围。

一般来说,监测范围应包括距离爆破点最近的建(构)筑物、重要设施以及可能受到影响的人员密集区域。

四、监测内容1、振动速度振动速度是评估爆破振动影响的主要参数,包括水平方向(X 轴、Y 轴)和垂直方向(Z 轴)的振动速度。

2、振动频率振动频率反映了振动的特性,对于不同类型的建(构)筑物和设施,其对振动频率的敏感度不同。

3、持续时间爆破振动的持续时间也是一个重要的监测指标,它与振动能量的释放和传播有关。

五、监测设备1、振动传感器选用高精度、高灵敏度的振动传感器,如压电式加速度传感器或速度传感器。

2、数据采集仪能够实时采集、存储和传输振动数据的设备,具备良好的稳定性和可靠性。

3、计算机及分析软件用于对采集到的数据进行处理、分析和生成报告。

六、监测点布置1、在建(构)筑物的基础、柱子、墙壁等关键部位布置监测点,每个监测点应至少布置三个方向的传感器。

2、对于重要的设施,如桥梁的桥墩、桥台,地下管线的检查井等,应根据其结构特点合理布置监测点。

3、在人员密集区域,如居民区、学校、医院等,应适当增加监测点的密度,以全面了解振动影响情况。

七、监测时间1、爆破前进行背景振动监测,了解周边环境的自然振动情况,为后续数据分析提供参考。

2、爆破时在爆破作业过程中,实时采集振动数据,确保振动参数在控制范围内。

3、爆破后对爆破后的振动影响进行持续监测,观察建(构)筑物和设施的稳定情况。

爆破振动监测方案

爆破振动监测方案

爆破振动监测方案爆破工程是一种常见的施工方式,它在矿山、隧道建设、道路拓宽等领域有着广泛的应用。

然而,爆破工程会产生较大的振动,给周围环境和结构物带来潜在的安全风险。

为了有效控制爆破振动,我们需要制定一套科学合理的爆破振动监测方案。

1. 监测目的爆破振动监测的主要目的是保护周围环境和结构物的安全。

通过监测爆破振动的参数,如振动速度、振动加速度等,可以及时判断振动是否超过预定的安全限值,从而采取相应的措施进行风险控制。

2. 监测方案爆破振动监测方案应包括监测设备的选用、监测点的布设以及监测参数的设置等内容。

2.1 监测设备的选用在爆破振动监测中常用的设备有振动传感器、数据采集仪等。

振动传感器用于测量振动参数,数据采集仪用于接收并存储振动信号。

在选用设备时,应考虑设备的准确性、稳定性和适应性,以确保监测结果的准确性和可靠性。

2.2 监测点的布设监测点的布设应充分考虑爆破工程的施工特点和结构物的分布情况。

一般来说,监测点应位于离爆破源较近的区域,并覆盖主要的观测对象,如结构物、管线等。

监测点的数量和位置应根据实际情况进行合理调整,以保证监测结果的全面性和代表性。

2.3 监测参数的设置监测参数的设置是爆破振动监测方案中的重要环节。

合理设置监测参数能够更准确地评估爆破振动的影响程度。

监测参数的设置应参考相关标准和规范,如国家标准《爆破振动测量规范》等。

常见的监测参数包括振动速度、振动加速度、频率等。

3. 监测方法爆破振动监测可采用实时监测和事后分析两种方法,具体应根据实际情况选择合适的监测方法。

3.1 实时监测方法实时监测方法可以通过在线监测系统进行。

监测系统应具备实时数据传输和处理功能,并能够及时将监测结果反馈给工程现场人员。

该方法的优点是能够实时掌握振动参数的变化,及时采取措施进行调整和控制。

3.2 事后分析方法事后分析方法是通过事后处理监测数据来评估爆破振动的影响程度。

监测数据可通过数据采集仪导出并进行分析处理。

爆破振动监测方案

爆破振动监测方案

爆破振动监测方案一、引言二、监测目的1、评估爆破振动对周边建(构)筑物、设施的影响程度,确保其结构安全。

2、验证爆破设计参数的合理性,为优化爆破方案提供依据。

3、积累爆破振动数据,为类似工程提供参考。

4、遵守相关法律法规和标准规范的要求,保障公众安全和环境质量。

三、监测依据1、《爆破安全规程》(GB 6722-2014)2、《建筑抗震设计规范》(GB 50011-2010)(2016 年版)3、《工程测量规范》(GB 50026-2020)4、工程爆破设计文件和相关技术要求四、监测内容1、振动速度包括水平径向、水平切向和垂直方向的振动速度。

振动速度是评估爆破振动影响的主要指标。

2、振动频率了解振动的频谱特性,分析振动能量的分布情况。

3、持续时间记录振动的持续时间,评估振动的累积效应。

五、监测仪器选择1、传感器选用高精度、高灵敏度的速度传感器,如压电式加速度传感器。

传感器的频率响应范围应覆盖爆破振动的主要频段。

2、数据采集仪具备多通道同步采集功能,采样频率满足监测要求。

具有数据存储、传输和分析处理功能。

3、计算机及分析软件用于对采集的数据进行后期处理和分析。

六、监测点布置1、监测点的选择原则优先选择在距离爆破源较近、可能受到较大振动影响的建(构)筑物和设施上布置监测点。

考虑不同地质条件、地形地貌和建筑物结构类型的代表性。

2、具体布置位置建筑物的基础、柱、梁等关键部位。

桥梁的墩台、梁体等部位。

地下管线的检查井、阀门等位置。

3、监测点数量根据工程规模、爆破类型和周边环境的复杂程度确定监测点数量,一般不少于 3 个。

七、监测时间和频率1、监测时间在爆破作业前进行背景振动监测,获取初始数据。

爆破作业期间进行实时监测,记录爆破振动过程。

2、监测频率对于单次爆破,在爆破前 5 分钟开始采集数据,直至爆破振动结束后 5 分钟。

对于多次爆破的工程,根据爆破规模和振动影响程度,确定监测的间隔时间,一般每天监测 1-2 次。

3-振动测试分析技术

3-振动测试分析技术
3 测试位置(监测点)
相对轴位移
§ 3.3振动测试方案
3 测试位置(监测点)
相对轴膨胀
§ 3.3 振动测试方案
4 测试周期:
定期、随机、巡检、在线监测,企业的要求, 国家的规定,分析的需要等。
§ 3.3 振动测试方案
5 振动评定标准:
• 绝对法
根据相应的国际标准、国家标准、行业标准等, 如: ISO, GB, API 等。
直接测量参数的选择
振动位移、振动速度和振动加速度三者的幅值之间的关系 与频率有关,所以,在低频振动场合,加速度的幅值不大 ;在高频振动场合,加速度幅值较大。考虑到三类传感器 及其后续仪器的特性,并根据振动频率范围而推荐选用振 动量测量的范围。
§ 3.2 振动测试的仪器设备
传感器的合理选择
灵敏度
传感器的灵敏度越高,可以感知越小的变化量,即被测量 稍有微小变化时,传感器即有较大的输出。但灵敏度越高 ,与测量信号无关的外界噪声也容易混入,并且噪声也会 被放大。因此,灵敏度高的传感器往往要求有较大的信噪 比。过高的灵敏度会影响其适用的测量范围。
轴承上
75
50
轴上(靠近 轴承)
150
100
3000 25 50
3600 ≥6000
21
12
44
20
§ 3.2 振动测试方案
5 振动评定标准:
绝对法
在制定上述振动标准时,假设: 机组振动为单一频率的正弦波振动; 轴承振动和转子振动基本上有一固定的比
值,因此可利用轴承振动代表转子振动; 轴承座在垂直、水平方向上的刚度基本上
§ 3.2 振动测试的仪器设备
传感器的合理选择 线性范围
传感器都有一定的线性范围,在线性范围内输出与输入成 比例关系。线性范围愈宽,表明传感器的工作量程愈大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

振动监测参数选择与判定标准
机械运动消耗的能量除了做有用功外,其他的能量消耗在机械传动的各种摩擦损耗之中,并产生正常振动。

如果出现非正常的振动,说明机械发生故障。

这些振动信号包含机械内部运动部件各种变化信息。

分辨正常振动和非正常振动,采集振动参数,运用信号处理技术,提取特征信息,判断机械运行的技术状态,这就是振动检测。

在机械设备的振动监测中,往往是将测得的振动参数量值与判断标准进行对比,从而分析判定振动的原因和机器状态的好坏.目前,在现场实际应用中,主要是参照国际标准ISO、某些国外先进标准、我国的部标、专业标准,或结合本行业设备具体情况制定限值来进行分析判定.
(1)振动测量的方位选择
① 测量位置(测点)
测量的位置选择在振动的敏感点,传感器安装方便,对振动信号干扰小的位置,如轴承的附近部位。

② 测量方向
由于不同的故障引起的振动方向不同,一般测量互相垂直的三个方向的振动,即轴向(A向)、径向(H向、水平方向)和垂直方向(V向)。

例如对中不良引起轴向振动;转子不平衡引起径向振动;机座松动引起垂直方向振动。

高频或随机振动测量径向,而低频振动要测量三个方向。

总之测量方向和数量应全面描述设备的振动状态。

(2)测量参数的选择
测量振动可用位移、速度和加速度三个参数表述。

这三个参量代表了不同类型振动的特点,对不同类型振动的敏感性也不同。

① 振动位移
选择使用在低频段的振动测量(<10Hz),振动位移传感器对低频段的振动灵敏。

在低频段的振动,振动速度较小,可能振动位移很大,如果振动产生的应力超过材料的许用应力,就可能发生破坏性的故障。

② 振动速度
选择使用在中频段的振动测量(10~1000Hz)。

在大多数情况下转动机械零件所承受的附加载荷是循环载荷,零件的主要失效形式是疲劳破坏,疲劳强度的
寿命取决于受力变形和循环速度,即和振动位移与频率有关,振动速度又是这两个参数的函数,振动能量与振动速度的平方成正比。

所以将振动速度作为衡量振动严重程度的主要指标。

③ 振动加速度
选择使用在高频段的振动测量(>1000Hz)。

当振动频率大于1000Hz时,动载荷表现为冲击载荷,冲击动能转化为应变能,使材料发生脆性破坏。

多用于滚动轴承的检测。

以上这三个参量可以互为辅助性的补充和参考。

(3)振动判定标准
① 绝对判断标准
此类标准是对某类机器长期使用、维修、测试的经验总结,由行业协会或国家制定图表形式的标准。

使用时测出的振动值与相同部位的判断标准的数值相比较来做出判断。

一般这类标准是针对某些类型重要回转机械而制定的。

例如国际通用标准ISO2372 和ISO3945。

② 相对判断标准
对同一设备的同一部位定期进行检测,按时间先后做出比较,以初始的正常值为标准,以后实测振动值超过正常值的多少来判断。

③ 类比判断标准
在相同工作条件下,多台相同规格的运行设备,对各台设备的同一部位进行振动测量,根据结果判断,如果某台设备的振动值超过其余设备的振动值一倍以上,视为异常。

此方法是在无标准可参考的情况下采用。

以上的各种判断标准要根据不同设备、不同使用条件、不同的环境选择合适的标准。

还要以总结实践经验和参照维修数据进行分析,丰富和修正使用的标准。

④ 振动判断的显示
一般采用统一的颜色来表示设备的运行振动状态。

深绿色--良好;
浅绿色--合格;
浅红色--容许值;
深红色--劣化状态。

任何机械在输入能量转化为有用功的过程中,均会产生振动。

振动的强弱与变化和故障相关,非正常的振动增强表明故障趋于严重。

不同的故障引起的振动特征各异,相同的振动特征可能是不同的故障。

振动信号是在机器运转过程中产生的,就可以在不用停机的情况下检测和分析故障。

相关文档
最新文档