数的开方单元测试

合集下载

数的开方测试题及答案

数的开方测试题及答案

数的开方测试题及答案数的开方测试题及答案【篇一:八年级数学数的开方单元测试题】班级_______姓名________一、选择题:(每题4分,共28分)1、10的平方根为………………………………………………….()2a、10 b、?c、d、?2、下列各式计算正确的是……………………………………….()(?5)2??525??54a、b、c、 d、?100?103、下列说法正确的是……………………………………………..() 3a、两个无理数的和一定是无理数b、2是分数;c、1和2之间的无理数只有2d、2是4的平方根4、若一个数的立方根等于这个数的算术平方根,则这个数是….()5、?4的平方根是…………………………………………………()a、2b、-2c、?2d、?4 6、在数轴上n点表示的数可能是…….()a、 b、 c、d、27、下列各式中正确的是…………………………………………()2(?6)??664?25??5?a、=8 b、c、 d、?8??28、若?x有意义,则x?x一定是……………………………..()a、正数b、非负数c、负数d、非正数二、填空题:(每空3分,共27分)1、当x 时,-2x有意义2、写出一个无理数a,使3a4,则a为3、若x-12是225的算术平方根,则x的立方根是4、化简2?=5、 (a+2)2+|b-1|+-c=0,则a+b+c=y?x2?9?9?x2x?2+1,则3x?4y=1 6、若7、若一个正数的两个平方根为2m-6与3m+1,则这个数是有理数有________________________,无理数有_________________________.三、解答题:1、求下列各式的值:(每题7分,共14分) 4199??1?6??8?25 (2)9271616 (1)2、求下列各式中的x值:(每题7分,共14分)23(1)121x?64 (2)3x?24?03、若a=a?2ba?3b是a+3b的算术平方根,b=2a?b?a2是1?a2的立方根,求a与b的值。

第11章 数的开方数学八年级上册-单元测试卷-华师大版(含答案)

第11章 数的开方数学八年级上册-单元测试卷-华师大版(含答案)

第11章数的开方数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、如图,数轴上点N表示的数可能是( )A. B. C. D.2、估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间3、下列关于的叙述,错误的是()A.在数轴上可以找到表示的点B.面积为5的正方形边长是C. 介于2和3之间D. 表示5的平方根4、9的算术平方根是()A.3B.﹣3C.±3D.5、﹣8的立方根是()A. B.2 C.﹣2 D.6、下列命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数的符号一致;④如果一个数的立方根等于它本身,那么它一定是1或0.其中正确有()个.A.1B.2C.3D.47、整数部分是()A.1B.2C.3D.48、估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间9、下列各式正确的是()A.2a 2﹣a 2=2B. + =C.( )2=25 D. =110、一块正方形的瓷砖,面积为cm2,它的边长大约在()A.4cm~5cm之间B.5cm~6cm之间C.6cm~7cm之间D.7cm~8cm之间11、下列各式中计算正确的是()A. B. C. D.12、-27的立方根与9的平方根的和是()A.0B.6C.-6D.0或-613、下列计算正确的是()A. =±3B.|﹣3|=﹣3C. =3D.﹣3 2=914、下列等式正确的是( )A. B. C. D.15、下列运算中,正确的是()A. + =B.﹣a+2a=aC.(a 3)3=a 6D.=﹣3二、填空题(共10题,共计30分)16、的平方根是________17、比较大小________ .18、计算:________.19、试举一例,说明“两个无理数的和仍是无理数”是错误的:________.20、的平方根是±3,的立方根是2,则的值是________.21、实数a、b在数轴上的位置如图所示,则化简|a﹣b|+a的结果为________.22、比较大小:________ (用“”或“”填空).23、的倒数为________;的算术平方根为________;比较实数的大小:________ .24、1﹣的相反数是________;﹣64的立方根是________.25、的整数部分是________。

数的开方单元检测题及答案

数的开方单元检测题及答案

数的开方单元测试一、选择题。

(每题4分,共28分)1.下列各数:3.141592 ,- 3 ,0.16 ,0.01 ,–π,0.1010010001…,227,35 ,0.2 ,8 中无理数的个数是………………………………………………………()A.2个B.3个C.4个D.5个2.25的平方根是…………………………………………………………………………()A.±5 B.-5 C.5 D.± 53.-8的立方根是…………………………………………………………………………()A.±2 B.-2 C.2 D.不存在4.a=15,则实数a在数轴上对应的点的大致位置是…………………………………()A.B.C.D.5.一个正数的算术平方根是a,那么比这个正数大2的数的算术平方根是………()A.a2+2 B.±a2+2 C.a2+2 D.a+26.下列说法正确的是……………………………………………………………………()A.27的立方根是3,记作27=3 B.-25的算术平方根是5C.a的立方根是± a D.正数a的算术平方根是 a7.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17是17的平方根,其中正确的有…………………………()A.0个B.1个C.2个D.3个二、填空题。

(每题4分,共40分)8.9的算术平方根是___________;9.比较大小:32_______32 (用“<”或“>”填空);10.若∣x∣=3,则x=_______;0 1 2 3 4 50 1 2 3 4 511.-27的立方根是___________;12.2的相反数是___________;13.平方根等于本身的数是_______________;14.写出所有比11小且比3大的整数_____________________;15.81的算术平方根是___________;16.建筑工人李师傅想用钢材焊制一个面积为6平方米的正方形铁框,请你帮离师傅计算一下,他需要的钢材总长至少为____________米(精确到0.01);17.观察思考下列计算过程:因为112=121,所以121=11,同样,因为1112=12321,所以12321=111,则1234321=________,可猜想123456787654321=___________。

第12章 数的开方单元测试

第12章 数的开方单元测试

第12章 数的开方单元测试(时间:60分钟 满分:120分)一、选择题(每小题2分,共30分。

请将你认为正确的答案填写在题目前的括号内) ( )1.与数轴上的点成一一对应关系的数是( ) A .整数 B .有理数 C .无理数 D .实数 ( )2.下列各组数中互为相反数的是( )A .-3.与-12D .│-2 ( )3.下列四种说法:①负数有一个负的立方根;②1的平方根与立方根都是1;③4•的平方根的立方根是;④互为相反数的两个数的立方根仍为相反数。

正确的有( )个。

A .1 B .2 C .3 D .4 ( )4.下列各式成立的是( )A =±2B >0( )5.在下列各数中,0.5,54,-0,03745,13,其中无理数的个数为( ) A .2 B .3 C .4 D .5( )6.下列比较两个实数大小正确的是( )A >223B .-π.12<0.5 D .2+( )7.一个正方形的面积扩大为原来的n 倍,则它的边长扩大为原来的( )A .n 倍B .2n 倍CD .2n 倍 ( )8.若一个数的平方根等于它的立方根, 则这个数是( )A .0B .1C .-1D .±1( )9.(05年绍兴市中考)“数轴上的点并不都表示有理数,如图中数轴上的点P”,这种说明问题的方式体现的数学思想方法叫做( ) A .代入法 B .换元法 C .数形结合 D .分类讨论m n ( )10.(05年宜昌市中考.课改卷)实数m 、n 在数轴上的位置如图所示,•则下列不等关系正确的是( )A .n<mB .n 2<m 2C .n>mD .│n │<│m │ ( )11.下列叙述中正确的是( )A .正数的平方根不可能是负数B .无限小数都是无理数C .实数和实数上的点一一对应D .带根号的数是无理数( )12.下列语句:①无理数的相反数是无理数;②一个数的绝对值一定是非负数;③有理数比无理数小;④无限小数不一定是无理数,其中正确的是( ) A .①②③ B .②③④ C .①②④ D .②④ ()13.(2006年常德市)下列计算正确的是( )A±4 B .=1 C .24=4 D =2 ( )14.一个数的算术平方根是a ,则比这个数小5的数是( ) A .a+5 B .a-5 C .a 2 +5 D .a 2 -5( )15.(2005根据你发现的规律,判断Q =n•为大于1的整数)的值的大小关系为( )A .P<QB .P=QC .P>QD .与n 的取值有关 二、填空题(每小题2分,共24分)16.若一个正数的平方根是2a-1和-a+2,则a=______,这个数是_______.17_________________.18.在下列数中:1.732,|,0.643,-(-1)2n(n 为正整数),有理数有_______;无理数有________.19.数轴上表示的点在表示的点的________侧. 20.在下列各式中填入“>”或“<”:,,21的相反数是________的绝对值是_____.22.从1到100之间所有自然数的平方根的和为________. 23+│y-1│+(z+2)2=0,则xyz=________.24.如果将2m ,m ,1-m 这三个实数在数轴上所对应的点从左到右依次排列,•那么m 的取值范围是________.25.在数轴上与表示数1的点所表示的数是_________. 26.实数a 、b 在数轴上对应点的位置如图所示:0ab则化简│b-a │.27.(2006湖州市)青蛙在如图8×8的正方形(每个小正方形的边长为1)•网格的格点A•开始连续跳六次正好跳回到点A ,则所构成的封闭图形的面积的最大值是________.三、解答题(共46分)28.(10分)比较下列实数的大小.(1) (2)______7; (3)-4______-3π;(4)π; (5)12______0.5. 29.(6分)如图所示的圆圈中有5个实数,判断哪些是无理数,哪些是有理数,并计算其中有理数的和与无理数的积之差.30.(6分)化简:31.(6分)已知:225x2=16,且8y3-27=0.试求x+y的值。

第11章 数的开方数学八年级上册-单元测试卷-华师大版(含答案)

第11章 数的开方数学八年级上册-单元测试卷-华师大版(含答案)

第11章数的开方数学八年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、算术平方根比原数大的是( )。A.正实数B.负实数C.大于0而小于1的数D.不存在2、下列说法正确的是()A.9 的平方根是 3B.无限小数都是无理数C. 是分数D.任何数都有立方根3、若a=﹣0.32, b=﹣3﹣2, c=(﹣)﹣2, d=(﹣)0,则a、b、c、d大小关系正确的是()A.a<b<c<dB.b<a<d<cC.a<d<c<bD.a<b<d<c4、在实数﹣2,6,0,1中,最小的实数是()A.-2B.6C.0D.15、在实数﹣2,,0,﹣1中,最小的数是()A.﹣2B.C.0D.﹣16、下列计算错误的是()A.2011 0=1B. =±9C.()-1=3D.2 4=167、在数轴上,实数a,b对应的点的位置如图所示,且这两个点关于原点对称,下列结论中,正确的是()A.a+b=0B.a﹣b=0C.|a|<|b|D.ab>08、一个正数的平方根是2m+3和m+1,则这个数为()A.﹣B.C.D.1或9、如图,在数轴上点A所表示的数为a,则a的值为()A. B. C. D.10、给出四个数0,,﹣1,其中最小的是()A.0B.C.D.﹣111、如图所示:数轴上点A所表示的数为a,则a的值是()A. +1B. +1C.D. -112、下列计算正确的是()A. B. C.D.13、面积为11的正方形边长为x,则x的范围是()A.1<x<3B.3<x<4C.5<x<10D.10<x<10014、若a,b为实数,且|a+|+=0,则(ab)2014的值是()A.-1B.±1C.0D.115、右边运算中错误的有():①=4;②;③;④;⑤±.A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、比较大小:________ .17、计算:________.18、化简(π﹣3.14)0+|1﹣2 |﹣的结果是________.19、计算:(sin30°)﹣1﹣(2016)0+|1﹣|=________ .20、若m<2 <m+1,且m为整数,则m=________.21、已知≈2.493,≈7.882,则≈________.22、已知满足则=________;23、计算﹣sin45°=________.24、一个数的平方根等于它本身,则这个数应是________。

第11章 数的开方 华东师大版数学八年级上册单元测试卷(含答案)

第11章 数的开方 华东师大版数学八年级上册单元测试卷(含答案)

第11章 数的开方时间:60分钟满分:100分一、选择题(每小题3分,共30分) 1.64的立方根是( )A.4B.-4C.-8D.±82.若x2=(-0.7)2,则x=( )A.-0.7B.0.7C.±0.7D.0.493.在下列实数,81100,3.141 592 643,1π,7,711中有理数有( )A.5个B.3个C.4个D.2个4.下列计算正确的是( )A.(-3)2=-3B.36=±6C.39=3D.-3-8=25.观察下表,被开方数a的小数点的位置移动和它的算术平方根a的小数点的位置移动符合一定的规律.若a=180,- 3.24=-1.8,则被开方数a的值为( ) a0.000 0010.000 10.01110010 000 1 000 000a0.0010.010.1110100 1 000A.32.4B.324C.32 400D.-3 2406.若a是最小的正整数,b是最大的负整数,c是平方根等于本身的数,则a,b,c三数之和是( )A.-1B.0C.1D.27.直径为1个单位长度的圆上有一点A,现将点A与数轴上表示3的点重合,并将圆沿数轴无滑动地向左滚动一周,如图.若点A到达数轴上的点B处,则点B表示的数是( )A.2π-3B.π-3C.3-πD.3-2π8.已知|a|=5,b2=49,且|a+b|=a+b,则a-b的值为( )A.2或12B.2或-12C.-2或12D.-2或-129.一个长方体的体积为162 cm3,它的长、宽、高的比为3∶1∶2,则它的表面积为( )A.198 cm2B.162 cm2C.99 cm2D.81 cm210.如图,网格中小正方形的边长均为1,把阴影部分剪拼成一个正方形,正方形的边长为a.若4-a的整数部分和小数部分分别是x,y,则x(x-y)= ( )A.-2B.-2+6C.6D.2-6二、填空题(每小题3分,共18分)11.任意写一个无理数 .(满足-2到-1之间)12.若一个数的算术平方根是8,则这个数的立方根是 .13.已知a,b互为相反数,c,d互为倒数,则a3+b3+38cd的值为 .14.已知x-2的平方根是±7,且3x+y―2=4,则y的值为 .15.通过计算发现:13=1,13+23=3,13+23+33=6,13+23+33+43=10,仔细观察上面几道题的计算结果,请猜想13+23+…+1003= .16.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[2]=1.现对36进行如下操作:36[36]=6[6]=2[2]=1,这样对36进行3次操作后就会变为1.(1)类似地,对81进行 次上述操作后会变为1;(2)在只需要进行2次上述操作后就会变为1的所有正整数中,最大的是 .三、解答题(共52分)17.计算:(1)(4分)0.04+3-8-1―16; (2)(4分)16+3-27-(-3)2-|3-π|.2518.求下列各式中x的值.(1)(4分)4(x-3)2=9;(2)(4分)(x+10)3+125=0.19.(6分)已知M=3是m+3的算术平方根,N=2m-4n+3n―4是n-4的立方根,求M―N-3N的值.20.(8分)一个数值转换器,如图所示:(1)当输入的x为16时,输出的y值是 ;(2)若输入有效的x值后,始终输不出y值,请写出所有满足要求的x的值,并说明你的理由;(3)若输入x值后,转换器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况;(4)若输出的y是3,请直接写出两个满足要求的x的值.21.(10分)木工李师傅现有一块面积为4 m2的正方形胶合板,准备做装饰材料用,他设计了如下两种方案.方案一:以正方形胶合板的边长为边裁出一块面积为3 m2的长方形装饰材料.方案二:沿着边的方向裁出一块面积为3 m2的长方形装饰材料,且其长宽之比为3∶2.李师傅设计的两种方案是否可行?若可行,请帮助解决如何裁剪;若不可行,请说明≈0.7)理由.(参考数据:1222.(12分)有两个十分喜欢探究的同学小明和小芳,他们善于将所做的题目进行归类,下面是他们的探究过程.(1)解题与归纳:①小明摘选了以下各题,请你帮他完成填空.22= ;52= ;62= ;02= ;(-3)2= ;(-6)2= .②归纳:对于任意实数a,有a2= =③小芳摘选了以下各题,请你帮她完成填空.(4)2= ;(9)2= ;(25)2= ;(36)2= ;(49)2= ;(0)2= .④归纳:对于任意非负实数a,有(a)2= .(2)应用:根据他们归纳得出的结论,解答问题.数a,b在数轴上的位置如图所示,化简:a2-b2-(a-b)2-(b―a)2.参考答案与解析1.A2.C 因为x2=(-0.7)2,所以x2=0.49,所以x=±0.7.3.B 81100=910,是有理数.根据有理数的定义可知,81100,3.141 592 643,711是有理数,共3个.4.D (-3)2=3,36=6,39≠3,-3-8=2.5.C 由题表可知被开方数a的小数点每向左或向右移动2位,算术平方根a的小数点就相应地移动1位.因为- 3.24=-1.8,所以32400=180,所以a=32 400.6.B ∵a是最小的正整数,∴a=1.∵b是最大的负整数,∴b=-1.∵c是平方根等于本身的数,∴c=0,∴a+b+c=1+(-1)+0=0.7.C 由题意知,在数轴上点A与点B之间的距离为π×1=π,且点B在点A的左侧,所以点B表示的数是3-π.8.D ∵|a|=5,∴a=±5.∵b2=49,∴b=±7.∵|a+b|=a+b,∴a+b>0,∴a=±5,b=7.∴当a=5, b=7时,a-b=5-7=-2;当a=-5,b=7时,a-b=-5-7=-12,∴a-b的值为-2或-12.9.A 由题意可设长方体的长、宽、高分别是3x cm,x cm,2x cm,则3x·x·2x=162,即6x3=162,x3=27,所以x=3,所以该长方体的长、宽、高分别是9 cm,3 cm,6 cm,所以它的表面积为2×(9×3+9×6+3×6)=198(cm2).10.B 由题意得S阴影=12×2×2×2+12×2×2=6,∴a2=6.∵a>0,∴a=6.∵4<6<9,∴2<6<3,∴1<4-6<2,∴4-a的整数部分x=1,小数部分y=3-6,∴x(x-y)=1×(1-3+6) =-2+6.11.-2(答案不唯一) ∵1<2<4,即1<2<2,∴-2<-2<-1,∴满足-2到-1之间的无理数可以为-2.12.4 由一个数的算术平方根是8可得,这个数为64,64的立方根是4,∴这个数的立方根为4.13.2 因为a,b互为相反数,所以a3与b3也互为相反数,故a3+b3=0.因为c,d互为倒数,所以cd=1,所以原式=0+38=0+2=2.14.15 由题意得x-2=49,∴x=51.∵3x+y―2=4,∴x+y-2=64,∴y=64+2-x=15.15.5 05013=1,13+23=1+2=3,13+23+33=1+2+3=6,13+23+33+43=1+2+3+4=10,可猜想13+23+…+1003=1+2+3+…+100=5 050.16.(1)3;(2)15 (1)81[81]=9[9]=3[3]=1,故对81进行3次上述操作后会变为1.(2)最大的是15,15[15]=3[3]=1,而16[16]=4[4]=2[2]=1,即在只需要进行2次上述操作后就会变为1的所有正整数中,最大的是15.17.解:(1)原式=0.2+(-2)-925=0.2-2-35=-2.4.(4分)(2)原式=4-3-3-(π -3)=4-3-3-π+3=-2-π+3.(4分)18.解:(1)因为4(x-3)2=9,所以(x-3)2=94,所以x-3=32或x-3=-32,解得x=92或x=32.(4分)(2)因为(x+10)3+125=0,所以(x+10)3=-125,所以x+10=3-125,所以x+10=-5,解得x=-15.(4分)19.解:因为M=3是m+3的算术平方根,所以m+3=32=9,即m=6. (2分)因为N=2m ―4n +3n ―4是n-4的立方根,所以2m-4n+3=3,将m=6代入2m-4n+3=3,解得n=3,所以 N=33―4=-1, (4分)所以 M ―N -3N =3―(―1)-3-1 =2+1=3. (6分)20.解:(1)2(2分)因为16的算术平方根是4,4是有理数,所以4不能输出.因为4的算术平方根是2,2是有理数,所以2不能输出.因为22,2是无理数,故输出2.(2)0,1.理由:因为0和1的算术平方根是它们本身,0和1是有理数,所以当x 为0或1时,始终输不出y 值.(4分)(3)x<0.当x<0时,导致开平方运算无法进行. (6分)(4)3或9.(答案不唯一)(8分)21.解:方案一可行.(1分)因为正方形胶合板的面积为4 m 2,所以正方形胶合板的边长为4=2(m).(2分)因为以正方形胶合板的边长为边裁一块面积为3 m 2的长方形装饰材料,所以所裁长方形的宽为3÷2=1.5(m).(3分)因此裁出一个长为2 m,宽为1.5 m 的长方形装饰材料是可行的.(5分)方案二不可行.理由如下:设所裁长方形装饰材料的长为3x m 、宽为2x m,则3x·2x=3,(6分)即x 2=12,解得x=12(负值已舍去),所以所裁长方形装饰材料的长为312m.(8分)因为312≈3×0.7=2.1,所以312>2,所以方案二不可行.(10分)22.解:(1)①2 5 6 0 3 6(3分)②|a|=(5分)③4 9 25 36 49 0(7分)④a(8分)(2)由题中数轴得,a<0,b>0,b>a,所以b-a>0, (9分)原式=|a|-|b|-|a-b|-(b-a)=-a-b+(a-b)-(b-a)=-a-b+a-b-b+a=a-3b. (12分)。

《数的开方》综合练习题

《数的开方》练习试题1一、填空题1.若一个实数的算术平方根等于它的立方根,则这个数是_________; 2.数轴上表示5-的点与原点的距离是________; 3.2-的相反数是 ,3的倒数是 ,13-的相反数是 ;4.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;5.计算:_______10_________,112561363=-=--,2224145-= ; 6.若一个数的平方根是8±,则这个数的立方根是 ; 7.当______m 时,m -3有意义;当______m 时,33-m 有意义;8.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 9.22)(a a =成立的条件是___________; 10.若1122a a a a --=--,则a 满足条件________; 11.已知0)3(122=++-b a ,则=332ab; 12.若最简二次根式5231-+-+-y x y x y x 与与是同类根式,则=x ,=y ________; 二、选择题13 14 15 16 17 18 19 2013.下列运算正确的是( ) A 、7272+=+ B 、3232=+ C 、428=⋅ D 、228= 14.在实数0、3、6-、236.2、π、23、14.3中无理数的个数是( )A 、1B 、2C 、3D 、415.下列二次根式中与26-是同类二次根式的是( ) A 、18 B 、30 C 、48 D 、54 16.下列说法错误的是( )A 、1)1(2=-B 、()1133-=-C 、2的平方根是2±D 、()232)3(-⨯-=-⨯-17.下列说法中正确的有( )①带根号的数都是无理数;②无理数一定是无限不循环小数; ③不带根号的数都是有理数;④无限小数不一定是无理数; A 、1个B 、2个C 、3个D 、4个18.一个等腰三角形的两边长分别为25和32,则这个三角形的周长是( ) A 、32210+ B 、3425+ C 、32210+或3425+ D 、无法确定 19.如果321,32-=+=b a ,则有( )A 、b a >B 、b a =C 、b a <D 、ba 1= 20.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )A 、1B 、9C 、4D 、5 三、计算题1.)32)(32(-+ 2.86127728⨯-+3.()()()62261322+-+- 4.22)2332()2332(--+5.61422164323+⨯- 6.321)37(4732+--÷--四、解方程1.()64392=-x 2.8)12(3-=-x五、解答题3.已知2323,2323-+=+-=y x ,求下列各式的值。

华师大八年级数学上《第11章数的开方》单元测试含答案解析.doc

第11章数的开方一、选择题1.在-3, 0, 4,低这四个数中,最大的数是()A.在1到2之间B.在2到3之间C.在3到4之间D. 8. 在已知实数:・1, 0,吉,・2中,最小的一个实数是 A. - 1 B. 0 C. £ D. - 2 29. 下列四个实数中,绝对值最小的数是( )A.・5B. -忑C. 1D. 410. 在・2, 0, 3,頁这四个数中,最大的数是( )A. - 2B. 0C. 3D. ^611. 在1, -2, 4,逅这四个数中,比0小的数是( A. -2 B. 1C. A /3D. 412. 四个实数・2, 0, -V2,1中,最大的实数是( A. -2 B. 0 C. - V2D. 113. 与无理数阿最接近的整数是( )A. 4B. 5C. 6D. 7A. -3B. 0C. 4D.后2.下列实数中,最小的数是( )A. -3B. 30.1D. 03.在实数1、0、-1、-2中,最小的实数是( )A ・・2 B.・1 C. 1 D. 04.实数 1, - 1, -寺,0,四个数中,最小的数是(A. 0B. 1C. - 1 一 'I5.在实数-2, 0, 2, 3中 ,最小的实数是()A. -2B. 0C. 2D. 36. a, b 是两个连续整数, 若a<V7<b,则a, b 分别是A. 2, 3B. 3, 2C. 3, 4D. 6, 8 7.估算、‘悩・2的值( )()在4到5之间 ( )14. 如图,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3 - <5的点P应落在线15. 估计匹尸介于( )A. 0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0. 7与0. 8之间16. 若m=^-X ( -2),则有( )2A. 0<m<1B. - 1<m<0C. - 2<m< - 1D. - 3<m< - 217. 如图,表示衙的点在数轴上表示时,所在哪两个字母之间( )A B C D~6 1 ~~2~;5 3 "A. C 与DB. A 与BC. A 与CD. B 与C18. 与1+頁最接近的整数是( )A. 4B. 3C. 2D. 119. 在数轴上标注了四段范围,如图,则表示旋的点落在( )/ Y V *、、,2^3^A.段①B.段②C.段③D.段④20. 若a= ( -3) ,3 - ( - 3) 14, b= ( -0. 6) ,2 - ( - 0. 6) 14, c= ( - 1.5) 11 - ( - 1.5) 13,则下列有关a、b、c的大小关系,何者正确?( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a21. 若k<V90<k+1 (k 是整数),则k二()A. 6B. 7C. 8D. 922. 估计舟履的运算结果应在哪两个连续自然数之间()A. 5 和6B. 6 和7C. 7 和8D. 8 和923. 估计用的值在( )A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间二、填空题24. 把7的平方根和立方根按从小到大的顺序排列为_.25. 若a<V6<b,且a、b是两个连续的整数,贝lj申二_.26. 若两个连续整数x、y满足x<{j+1Vy,则x+y的值是J___ £(用“〉”、“二”填空)27. 黄金比妬28. 请将2、舟、码这三个数用“〉”连结起来—.29. 它元的整数部分是—.30. 实数履・2的整数部分是_・第11章数的开方参考答案与试题解析一、选择题1.在・3, 0, 4,頁这四个数中,最大的数是()A. -3B. 0C. 4D. V6【考点】实数大小比较.【分析】根据有理数大小比较的法则进行判断即可.【解答】解:在-3, 0, 4,真这四个数中,-3<0<V6<4,最大的数是4.故选C.【点评】本题考查了有理数大小比较的法则,解题的关键是牢记法则,正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小是本题的关键.2. 下列实数中,最小的数是()A. -3B. 3C. 4-D. 0 3【考点】实数大小比较.【分析】在数轴上表示出各数,再根据数轴的特点即可得出结论.【解答】解:如图所示:故选A.【点评】本题考查的是实数的大小比较,利用数形结合求解是解答此题的关键.3. 在实数1、0、-1、-2中,最小的实数是()A. -2B. -1C. 1D. 0【考点】实数大小比较.【分析】先在数轴上表示出各数,再根据数轴的特点进行解答即可.【解答】解:如图所示:• • ------ •0 ------- >■2 0 1 2・・•由数轴上各点的位置可知,- 2在数轴的最左侧,・••四个数中-2最小.故选A.【点评】本题考查的是实数的大小比较,熟知数轴上的任意两个数,右边的数总比左边的数大是解答此题的关键.4. 实数1,・1,・寺,0,四个数中,最小的数是()A. 0B. 1C. - 1D.-吉2【考点】实数大小比较.【专题】常规题型.【分析】根据正数>o>负数,几个负数比较大小时,绝对值越大的负数越小解答即可.【解答】解:根据正数>0>负数,几个负数比较大小时,绝对值越大的负数越小,可得1 >0> - *> - 1, 所以在1, -1, -寺,0中,最小的数是-1.故选:C.【点评】此题主要考查了正、负数、0和负数间的大小比较.几个负数比较大小时,绝对值越大的负数越小,5. 在实数-2, 0, 2, 3中,最小的实数是()A. -2B. 0C. 2D. 3【考点】实数大小比较.【专题】常规题型.【分析】根据正数大于0, 0大于负数,可得答案.【解答】解:-2<0<2<3,最小的实数是・2,故选:A.【点评】本题考查了实数比较大小,正数大于0, 0大于负数是解题关键.6. a, b是两个连续整数,若a<V7<b,则a, b分别是()A. 2, 3B. 3, 2C. 3, 4D. 6, 8【考点】估算无理数的大小.【分析】根据A/4<V7<V9,可得答案.【解答】解:根据题意,可知五<百<肩,可得a二2, 23.故选:A.【点评】本题考查了估算无理数的大小,V4<V7<V9是解题关键.7. 估算、历_2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间【考点】估算无理数的大小.【分析】先估计何的整数部分,然后即可判断何・2的近似值.【解答】解:・・・5<何<6,A3<V27- 2<4,故选C.【点评】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.8. 在已知实数:-1, 0,寺,-2中,最小的一个实数是()A. -1B. 0C. |D. -2【考点】实数大小比较.【专题】常规题型.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小, 由此可得出答案.【解答】解:-2、-1、0、1中,最小的实数是-2.故选:D.【点评】本题考查了实数的大小比较,属于基础题,掌握实数的大小比较法则是关键.9. 下列四个实数中,绝对值最小的数是()A. - 5B.-伍C. 1D. 4【考点】实数大小比较.【分析】计算出各选项的绝对值,然后再比较大小即可.【解答】解:I -5|二5; | - *可也,|1|二1,⑷二4,绝对值最小的是1.故选C.【点评】本题考查了实数的大小比较,属于基础题,注意先运算出各项的绝对值.10. 在-2, 0, 3,頁这四个数中,最大的数是()A. -2B. 0C. 3D.【考点】实数大小比较.【专题】常规题型.【分析】根据正数大于0, 0大于负数,可得答案.【解答】解:-2V0V低V3,故选:C.【点评】本题考查了实数比较大小,血<3是解题关键.11•在1, -2, 4, 这四个数中,比0小的数是()A. -2B. 1C. V3D. 4【考点】实数大小比较.【专题】常规题型.【分析】根据有理数比较大小的法则:负数都小于0即可选出答案.【解答】解:・2、1、4、yW这四个数中比0小的数是・2,故选:A.【点评】此题主要考查了有理数的比较大小,关键是熟练掌握有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12. 四个实数-2, 0, -V2, 1中,最大的实数是()A・・ 2 B. 0 C.・ V2D. 1【考点】实数大小比较.【分析】根据正数大于0, 0大于负数,正数大于负数,比较即可.【解答】解:J -2<-伍V0V1,・・・四个实数中,最大的实数是1.故选:D.【点评】本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.13. 与无理数何最接近的整数是()A. 4B. 5C. 6D. 7【考点】估算无理数的大小.【分析】根据无理数的意义和二次根式的性质得出履无転,即可求出答案.【解答】解:・・•履<俑<负,・••何最接近的整数是仮,V36=6,故选:C.【点评】本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道负在5和6之间,题目比较典型.14. 如图,已知数轴上的点A、B、C、D分别表示数・2、1、2、3,则表示数3 ■爸的点P应落在线段()4 9 兮9 £,-3 -1 0 ^2 3 4A. A0±B. 0B±C. BC±D. CD ±【考点】估算无理数的大小;实数与数轴.【分析】根据估计无理数的方法得出0<3-丽<1,进而得出答案.【解答】解:・・・2<馅<3,A0<3 - V5<b故表示数3 -頁的点P应落在线段OB上.故选:B.【点评】此题主要考查了估算无理数的大小,得出后的取值范围是解题关键.15. 估计茫1丄介于( )A. 0.4与0.5之间B. 0.5与0.6之间C. 0. 6与0. 7之间D. 0. 7与0. 8之间【考点】估算无理数的大小.【分析】先估算旋的范围,再进一步估算圣丄,即可解答・【解答】解:V2. 22=4. 84, 2. 32=5, 29,:.2, 2<V5<2. 3,2.2-1 2.3-1・.・一-—=0. 6, ―-— =0. 65, 2 2V5 _ 1AO. 6<———<0. 65.2A/E _ 1所以' 7介于0. 6与0. 7之间.£故选:C.【点评】本题考查了估算有理数的大小,解决本题的关键是估算、‘用的大小.16. 若( -2),则有( )2A. 0<m<1B. - 1<m<0C. - 2<m< - 1D. - 3<m< - 2【考点】估算无理数的大小.【分析】先把m化简,再估算任大小,即可解答.【解答】解;m半X ( -2)二■伍,・・・1<V2<2,A■ 2< -近 V - 1,故选:C.【点评】本题考查了公式无理数的大小,解决本题的关键是估算迈的大小.17. 如图,表示衙的点在数轴上表示时,所在哪两个字母之间()一 4 B C D0 1 ~L5~2~25 3A. C 与DB. A 与BC. A 与CD. B 与C【考点】估算无理数的大小;实数与数轴.【专题】计算题.【分析】确定出7的范围,利用算术平方根求出的范围,即可得到结果.【解答】解:V6.25<7<9,・・・2. 5<A/7<3,则表示听的点在数轴上表示时,所在C和D两个字母之间.故选A【点评】此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.18. 与1朋最接近的整数是()A. 4B. 3C. 2D. 1【考点】估算无理数的大小.【分析】由于4<5<9,由此根据算术平方根的概念可以找到5接近的两个完全平方数,再估算与1+葩最接近的整数即可求解.【解答】解:・・・4<5<9,A2<V5<3.又5和4比较接近,・・・葩最接近的整数是2,・••与1+真最接近的整数是3,故选:B.【点评】此题主要考查了无理数的估算能力,估算无理数的时候,“夹逼法”是估算的一般方法,也是常用方法.19. 在数轴上标注了四段范围,如图,则表示近的点落在()「②、: Y V 7、、,22―2728~Z9 VA.段①B.段②C.段③D.段④【考点】估算无理数的大小;实数与数轴.【分析】根据数的平方,即可解答.【解答】解:2. 6^6. 76, 2. 72=7. 29, 2. 82=7. 84, 2. 92=8. 41, 32=9,V7. 84<8<8.41,・・・2・8<V8<2. 9,・•・仮的点落在段③,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.20. 若a二(・3)"・(・ 3) ", b二(・0. 6) 12・(・ 0. 6) 14, c=(・ 1.5) 11・(-1.5) 13,则下列有关a、b、c的大小关系,何者正确?( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a【考点】实数大小比较.【分析】分别判断出a・b与c・b的符号,即可得出答案.【解答】解:Ta - b二(-3) ” - ( -3) 14 - ( -0. 6) 12+ ( -0.6) 14= - 313 - 314 -些寻V0,5 5a < b,•/c - b=(・ 1.5) 11 - (- 1.5) 13・(・ 0.6) 12+ (・ 0.6) 14=(・ 1.5) n+1.5,3・ 0. 61Jo. 6“>0,・ \ c > b,c > b > a.故选D.【点评】此题考查了实数的大小比较,关键是通过判断两数的差,得出两数的大小.21 ・若k<V90<k+1 (k 是整数),则k二( )A. 6B. 7C. 8D. 9【考点】估算无理数的大小.【分析】根据勺示9, {而二10,可知9<価<10,依此即可得到k的值.【解答】解:TkvJ亦Vk+1 (k是整数),9<A/90<10,・•・k=9.故选:D.【点评】本题考查了估算无理数的大小,解题关键是估算的取值范围,从而解决问题.22. 估计后需+伍的运算结果应在哪两个连续自然数之间()A. 5 和6B. 6 和7C. 7 和8D. 8 和9【考点】估算无理数的大小;二次根式的乘除法.【分析】先把各二次根式化为最简二次根式,再进行计算.占 +届=2 后平+3逅二2+3個【解答】解:••・・6V2+3@V7,•I、矽養应的运算结果在6和7两个连续自然数之间,故选:B.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.最后估计无理数的大小.23. 估计的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【考点】估算无理数的大小.【专题】计算题.【分析】由于9<11<16,于是翻<届<岳,从而有3<VTi<4.【解答】解:V9<11<16,/. Va< V T L< V16,A3<V11<4.故选c.【点评】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.二、填空题24. 把7的平方根和立方根按从小到大的顺序排列为_ -街<需<听_.【考点】实数大小比较.【专题】计算题.【分析】先分别得到7的平方根和立方根,然后比较大小.【解答】解:7的平方根为-衍,^7; 7的立方根为2厅,所以7的平方根和立方根按从小到大的顺序排列为-听<需<衔.故答案为:■衔<齿<衔.【点评】本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.25. 若a<V6<b,且a、b是两个连续的整数,贝I] J二8 .【考点】估算无理数的大小.【分析】先估算出航的范围,即可得出a、b的值,代入求出即可.【解答】解:・・・2<低V3,3—2, b—3,r.a b=8.故答案为:&【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出、用的范围.26. 若两个连续整数x、y满足xV徧1Vy,则x+y的值是7 .【考点】估算无理数的大小.【分析】先估算的范围,再估算叮g+1,即可解答.【解答】解:・・・2<妬<3,・・・3<岳+1<4,Vx<V5+Ky,x—3, y—4,A x+y=3+4=7.故答案为:7.【点评】本题考查了估算无理数的大小,解决本题的关键是估算的范围.A/R - 1 127. 黄金比一> 4 (用“〉”、y“二”填空)2【考点】实数大小比较.【分析】根据分母相同,比较分子的大小即可,因为2<^5<3,从而得出伍-1>1,即可比较大小.【解答】解:・・・2<爸<3,A 1 < V5 ・ 1<2,•后1、1■■I• •r "八'2 2故答案为:>.【点评】本题考查了实数的大小比较,解题的关键是熟练掌握、用在哪两个整数之间,再比较大小.28. 请将2、号、低这三个数用“〉”连结起来号”斥>2・【考点】实数大小比较.【专题】存在型.【分析】先估算出馅的值,再比较出其大小即可.【解答】解:・・・、念2.236, "1=2.5, ••寺 >后>2.故答案为:-|>V5>2.【点评】本题考查的是实数的大小比较,熟记A/5^2. 236是解答此题的关键.29. 皿的整数部分是3 .【考点】估算无理数的大小.【分析】根据平方根的意义确定负的范围,则整数部分即可求得.【解答】解:V9<13<16,/.V13的整数部分是3.故答案是:3.【点评】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.30. 实数728-2的整数部分是3 .【考点】估算无理数的大小.【分析】首先得出姮的取值范围,进而得出姬・2的整数部分.【解答】解:・・・5<履<6,AV28 - 2的整数部分是:3.故答案为:3.【点评】此题主要考查了估计无理数大小,得出履的取值范围是解题关键.。

单元测试《第11章 数的开方》


. 小的无理数
2008y
. = .
30.著名的海伦公式 S=
告诉我们一种求三角形面
+|y﹣1|+(z+2) =0,则(x+z)
积的方法,其中 p 表示三角形周长的一半,a、b、c 分别三角形的三边长, 小明考试时,知道了三角形三边长分别是 a=3cm,b=4cm,c=5cm,能帮助
三、解答题(共 40 分) 26.若 5x+19 的算术平方根是 8,求 3x﹣2 的平方根. 27.计算: (1) + ;
2 2
13.如果 ±2 .
有意义,那么 x 的值是
±

【考点】二次根式有意义的条件. 【分析】根据二次根式有意义的条件可得:﹣(x ﹣2) ≥0,再解即可. 【解答】解:由题意得:﹣(x ﹣2) ≥0, 解得:x=± 故答案为: , .
2 2 2 2
故答案为±2
【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数 是非负数.
【解答】解:原式=||a|﹣a|=|﹣a﹣a|=|﹣2a|=﹣2a, 故选:B. 【点评】此题主要考查了二次根式的性质和化简,关键是掌握
B.无理数是开方开不尽的数 D.绝对值最小的数不存在
无理数是开放开不尽的数,故选项 B 正确; 无限不循环小数是无理数,故选项 C 错误; 绝对值最小的数是 0,故选项 D 错误; 故选 B.
2 2
(2)偶次方; (3)二次根式(算术平方根). 当它们相加和为 0 时,必须满足其中的每一项都等于 0.根据这个结论可以求解这类 题目.
6.若
=1﹣x,则 x 的取值范围是(

A.x>1 B.x≥1 C.x<1 D.x≤1 【考点】二次根式的性质与化简.

数的开方单元试题(含答案)

第11章 数的开方 检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分) 1.(2015·呼伦贝尔)25的算术平方根是( A ) A .5 B .-5 C .±5 D. 5 2.下列说法错误的是( C )A .0的平方根是0B .1的算术平方根是1C .(-4)2的平方根是-4D .9的平方根是±33.实数327,0,-π,16,13,5,0.101 001 000 1…(相邻两个1之间依次多一个0),其中无理数有( B )A .2个B .3个C .4个D .5个4.若一个正数的算术平方根是8,则这个数的相反数的立方根是( D ) A .±8 B .±4 C .4 D .-45.若a ,b 为实数,且(a +1)2=-b -1,则(ab)99的值是( C )A .0B .1C .-1D .±16.下列说法:①无限小数是无理数;②无理数是无限小数;③带根号的数是无理数;④0有平方根,但0没有算术平方根;⑤负数没有平方根,但有立方根;⑥一个正数有两个平方根,它们的和为0.其中正确的有( B )A .2个B .3个C .4个D .5个 7.(2015·资阳)如图,已知数轴上的点A ,B ,C ,D 分别表示数-2,1,2,3,则表示数3-5的点P 应落在线段( B )A .AO 上B .OB 上C .BC 上D .CD 上 8.一个底面为正方形的水池,池深2 m ,容积为11.52 m 3,则此水池的底面边长为( C ) A .9.25 m B .13.52 m C .2.4 m D .4.2 m9.如图,数轴上A ,B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( A )A .-2- 3B .-1- 3C .-2+ 3D .1+ 310.已知,0<x <1,则x ,x 2,1x,x 的大小关系为( B )A .x 2>x >1x >x B.1x >x >x >x 2 C.1x >x >x >x 2 D.x >x >x 2>1x二、填空题(每小题3分,共24分) 11.81的平方根是__±3__. 12.计算:-36+214+327=__-32__. 13.(2015·自贡)若两个连续整数x ,y 满足x <5+1<y ,则x +y 的值是__7__.14.已知2x +1的平方根是±5,则5x +4的立方根是__4__.15.下列说法:①0的平方根是0,0的算术平方根也是0;②-127的立方根是±13;③(-2)2的平方根是±2;④-64的立方根是-2;⑤(-4)2的算术平方根是4;⑥若一个实数的算术平方根和立方根相等,则这个数是0.其中正确的有__①③④__.(填序号)16.将实数-π,-3,-7用“<”连接起来为. 17.已知|a|=5,b 2=3,且ab >0,则a +b 的值为__±8__. 18.仔细观察下列等式:1-12=12,2-25=225,3-310=3310,4-417=4417,….按此规律,第n 个等式是. 三、解答题(共66分) 19.(10分)计算:(1)|-364|+16-3-8-|-25|; (2)53+5-32+|3-2|.解:(1)5 解:(2)565-323+220.(10分)求下列各式中的x.(1)4(x +2)2-8=0; (2)2(x -1)3-54=0. 解:(1)x =-2±2 解:(2)x =421.(7分)已知x -1的平方根是±3,x -2y +1的立方根是3,求x 2-y 2的算术平方根. 解:x 2-y 2=622.(7分)已知一个正数的两个平方根是2m +1和3-m ,求这个正数. 解:这个正数是4923.(7分)若x ,y 均为实数,且x -2+6-3x +2y =8,求xy +1的平方根.解:依题意得⎩⎨⎧x -2≥0,6-3x ≥0,解得x =2,∴y =4,∴±xy +1=±324.(8分)规定新运算“⊗”的运算法则为:a ⊗b =ab +4,试求(2⊗6)⊗8的值. 解:625.(8分)“欲穷千里目,更上一层楼”说的是登得高看得远.如图,若观测点的高度为h ,观测者能看到的最远距离为d ,则d ≈2hR ,其中R 是地球半径(通常取6400 km ).小丽站在海边一块岩石上,眼睛离地面的高度为20 m ,她观测到远处一艘船刚露出海平面,此时该船离小丽约有多少千米?解:16千米26.(9分)已知a,b分别是6-13的整数部分和小数部分,求2a-b的值.解:∵3<13<4,∴-4<-13<-3,2<6-13<3,∴a=2,b=6-13-2=4-13,∴2a-b=13。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数的开方单元测试(一)
一、选择题(每题3分,共30分)
1、下列说法不正确...的是( )
A 如果一个数有两个平方根,那么它的平方根的和为0
B 如果一个数只有一个平方根,那么它的平方根是0
C 任何数的决对值都有平方根
D 任何数的绝对值的相反数都没有平方根
2、一个实数与它倒数之和是2,则它的平方根是( )
A 2
B ±2
C 1
D ±1
3、下列各数中没有平方根的是( )
A-22 B 0 C 12 D (-4)2
4、41
的算术平方根是( )
A 12
B - 12
C 116
D ±12
5、若a 2=(-5)2 b 3=(-5)3 ,则a + b 的值为( )
A 0
B ±10
C 0或10
D 0或-10
6、如果一个数的平方根是a+3及15,那么这个数是( )
A 12
B 18 C-12 D -18
7、如果一个数的平方根与立法根相同,那么这个数是( )
A 0
B ±1
C 0和1
D 0或±1
8、使式子23+x 有意义的实数x 的取值范围是( )
A x ≥0
B x>- 23
C x ≥- 32
D x ≥- 23
9、在31-,0,4.0-,227 ,9,,…(每相邻两个3之间依次多一个0),1? 中,无理数有(


A 0
B 1
C 2
D 3
10、与数轴上的点一一对应的是( )
A 有理数
B 整数
C 无理数
D 实数
二、填空题(每题2分,共30分)
1.若x 2=9,则x=_________
的算术平方根是____________
3.如果正数x 的平方根为a+2与3a-6,那么x=________
4.若m 的平方根是±4,2n 的平方根是±5,则m+2n=__________
5.若一个数的立方根等于这个数的算术平方根,则这个数是________
6.一个负数a 的倒数等于它本身,则2+a =___________
的相反数是_________
8.当b=-1时,2)1(-b =________
9.数轴上到原点的距离等于10的数是________
10.若无理数a 满足不等式1<a <4,请你写出两个你熟悉的无理数____ ___
11.计算=+-+-33328)3()1(
12.比较大小:-3
13.若实数a 、b 满足(a+b-2)2+032=+-a b ,则a-b=______ 14.当m=-3时,=++m m m 22
15.已知2+x 与3-y 互为相反数,则xy=_______
三、解答题(共40分)
1.求出下列各式中x 的值。

(每题5分,共20分)
(1)169x 2=100 (2)x 2-289=0
(3) 27(x-1)3=8 (4)3x 3+24=0
2.若m 、n 是实数,且023=-++n m , 求m 、n 的值(4分)
3.已知0)1(12=-++y x 求20043y x +的值(6分)
4.先阅读第(1)题的解法,再解答第(2)题。

(10分)
(1)已知a 、b 是有理数,并且满足不等式5-a 3=2b+
a -332,求a 、
b 的值。

解:因为5-a 3=2b+
a -332 即5-a 3=(2b-a)+
33
2 所以 2b-a=5
-a=3
2 解得: a=-3
2 b=61
3 (2)设x 、y 是有理数,并且满足x 2+2y+2y=17-42,求x+y 的值。

答案:第十二章 数的开方单元测试(一)
一、选择题:
6. D
7. A
二、填空题:
1、±3
2、 5
3、 9
4、41
5、 0或1
6、 1
7、 3
8、 2
9、±10 10、2,π
11、0 12、< 13、43
14、 0 15、-6 三、解答题
1、(1)x=±1013 (2)x=±17 (3)x=53
(4)x=2 2、m=-3 n=2
3、0
4、由2417222-=++y y x 得
417
22-==+y y x
解得 45
-==y x 或 45
-=-=y x
所以x+y=5-4或x+y=-5-4
故x+y=1或x+y=-9
【测后小结】。

相关文档
最新文档