银行家算法
简述银行家算法

简述银行家算法银行家算法,也称为银行家安全算法,是一种用于避免系统资源的死锁现象的算法。
在操作系统中,当多个进程需要同时访问同一组资源并且它们的访问不可分割时,就会产生死锁现象。
在这种情况下,所有的进程都会被阻塞,无法进行任何工作。
银行家算法通过对系统资源的分配和管理,可以避免死锁现象的发生。
它主要包括以下几个步骤:1. 初始化系统:在系统启动时,需要确定每种类型的资源的数量和可用数量,并记录每个进程需要的最大资源数和已经分配的资源数。
2. 进行资源请求:当一个进程需要资源时,会向系统发送一个资源请求。
该请求指定了进程需要的资源类型和数量。
如果系统中有足够的资源可以分配给该进程,那么分配成功并将资源分配给该进程。
3. 检查资源分配是否安全:在分配资源之前,需要检查分配后系统是否处于安全状态。
安全状态是指在分配后,所有进程都能够完成它们的工作并释放所有资源。
如果系统处于安全状态,则分配资源并通知进程可以执行它们的任务。
4. 回收资源:当进程完成任务后,会释放它所占用的所有资源并通知系统。
系统会将这些资源重新分配给其他进程。
在银行家算法中,对于每个进程,都会维护一个资源请求向量和一个安全向量。
资源请求向量包含了进程当前所需要的资源数量,安全向量包含了系统中未分配的资源数量。
当系统收到一个资源请求时,会将该请求向量加入到系统资源向量中,并检查是否存在一个安全序列,该安全序列满足所有进程都可以完成它们的任务并释放它们所占用的所有资源。
如果存在这样的安全序列,则分配资源并通知进程可以执行它们的任务;如果不存在,则拒绝资源请求并等待其他进程的资源释放。
通过使用银行家算法,可以避免系统中的死锁现象,保证所有进程都可以完成它们的任务。
这种算法被广泛应用于操作系统和其他复杂的软件系统中,是保障系统安全性的重要工具。
银行家算法

1.5银行家算法源程序 1.5银行家算法源程序
#include <iostream> using namespace std; #define MAXPROCESS 50 /*最大进程数*/ /*最大进程数* #define MAXRESOURCE 100 /*最大资源数*/ /*最大资源数* int AVAILABLE[MAXRESOURCE]; /*可用资源数组*/ /*可用资源数组* int MAX[MAXPROCESS][MAXRESOURCE]; /*最大需求矩阵*/ /*最大需求矩阵* int ALLOCATION[MAXPROCESS][MAXRESOURCE]; /*分配矩阵*/ /*分配矩阵* int NEED[MAXPROCESS][MAXRESOURCE]; /*需求矩阵*/ /*需求矩阵* int REQUEST[MAXPROCESS][MAXRESOURCE]; /*进程需要资 /*进程需要资 源数* 源数*/ bool FINISH[MAXPROCESS]; /*系统是否有足够的资源 /*系统是否有足够的资源 分配* 分配*/ int p[MAXPROCESS]; int m,n; /*记录序列*/ /*记录序列* /*m个进程,n个资源*/ /*m个进程,n个资源*
银行家算法基本步骤

银行家算法基本步骤引言在计算机科学中,银行家算法是一种用于避免死锁的算法。
它被广泛应用于操作系统和并发编程中。
本文将详细介绍银行家算法的基本步骤,以及其在资源分配和死锁预防方面的应用。
死锁的产生和预防什么是死锁死锁是指多个进程无法继续执行,因为每个进程都在等待其他进程所持有的资源。
这种情况下,系统无法进行任何进一步的进程调度,导致系统长时间无响应或崩溃。
死锁产生的条件死锁产生的必要条件有以下四个: 1. 互斥条件:资源只能被一个进程占有。
2. 请求和保持条件:进程已经保持了某个资源,但又请求其他进程占有的资源。
3. 不可抢占条件:已分配的资源不能被强制性地收回。
4. 循环等待条件:多个进程之间形成了环形等待资源的关系。
死锁的预防方法预防死锁的方法包括以下几种: 1. 打破互斥条件:允许多个进程同时访问资源。
2. 打破请求和保持条件:进程在申请资源时一次性申请所有所需资源。
3. 打破不可抢占条件:允许操作系统从进程中抢占资源。
4. 打破循环等待条件:对资源进行线性排序,按顺序分配。
银行家算法原理银行家算法是一种死锁预防算法。
它基于资源分配以及对进程资源请求的判断,通过控制资源的分配来预防死锁的发生。
银行家算法的基本原理是:一个进程只有在请求资源时,系统能够保证分配给该进程资源后,仍然能够满足其他进程的资源需求,才将资源分配给该进程。
银行家算法基本步骤银行家算法的基本步骤如下:1. 初始化•设置进程数目和资源数目。
•设置每个进程的最大资源需求量、已分配资源量和尚需资源量。
•设置系统可用的资源数量。
2. 运行时•接收进程的资源请求。
•判断请求的资源是否小于等于系统剩余可用资源。
•判断请求的资源是否小于等于该进程尚需资源量。
•模拟分配资源给进程,更新进程的已分配资源量和尚需资源量。
•判断分配资源后是否会导致系统进入不安全的状态。
•若分配资源后进程仍然安全,则将资源分配给进程。
•若分配资源后进程不安全,则拒绝分配资源,进程继续等待。
银行家算法总结

银行家算法总结一、银行家算法银行家算法(Banker’s Algorithm),又称银行家管理算法,是一种专门用于系统资源管理的算法,用于解决操作系统中多个用户对多类资源的竞争请求,从而保证合理地分配公共资源,解决资源分配问题,其目的是为了保证单个进程的安全运行,同时保证系统的安全运行。
二、银行家算法的定义银行家算法是一种用于解决多个用户对多类资源的竞争请求的算法,也称作资源分配算法或资源管理算法,它可以确定是否有足够的资源可供一个或多个进程安全运行,如果有足够的资源可供运行,则可以分配该资源,否则系统将进入不满足安全状态。
三、银行家算法的特点(1)安全性:银行家算法可以确定是否有足够的资源可以满足所有进程的最大要求,使系统处于安全态;(2)在安全态下,银行家算法能够有效地检查一个进程是否可以获得资源,并且可以确定该状态下的最优解;(3)银行家算法可以有效检查一个系统是否处于安全态,它可以检查任意多个资源种类的一组资源分配是否安全;(4)银行家算法可以防止死锁的发生,可以有效地确保非抢占式多处理机系统的安全运行;(5)银行家算法设计简单,容易实现,并十分快速;(6)银行家算法不是最优的,它只是一种有效的搜索算法,其实现效率较低;四、银行家算法的使用1、资源分配问题银行家算法可以用于操作系统中的多个用户对多类资源的竞争请求,以此保证资源的合理分配,从而解决资源分配问题。
它可以有效地检查一个进程是否可以获得资源,同时可以确定该状态下的最优解。
2、进程安全性银行家算法可以用于检查一个系统是否处于安全态,并检查任意多个资源种类的一组资源分配是否安全,可以保证系统的安全运行,从而保证单个进程的安全性。
3、防止死锁银行家算法可以防止死锁的发生,这是由于它可以确定是否有足够的资源可以满足所有进程的最大要求,使系统处于安全态,从而阻止死锁发生。
银行家算法——精选推荐

银⾏家算法在操作系统的运⾏当中,多个进程由于对于临界资源的竞争或者进程推进的顺序不对可能会产⽣死锁现象。
⼀、产⽣死锁的四个条件1、互斥条件2、保持和请求条件3、不剥夺条件4、环路等待条件⼆、处理死锁的基本⽅法1、预防死锁(不会发⽣死锁)2、避免死锁()3、监测死锁4、解除死锁(死锁已经发⽣之后的补救措施)三、预防死锁去掉产⽣死锁的后三个条件,这样死锁不会产⽣四、避免死锁死锁可能会产⽣,但是我们要去避免它。
这⾥需要介绍银⾏家算法。
1、所谓银⾏家算法是是指,系统在为进程分配资源之前,⾸先计算此次资源分配的安全性,如果是安全的,则进⾏分配;如果这次分配会导致进⼊不安全状态,不进⾏分配。
所谓的安装状态是指存在⼀个进程序列,如果按照这个顺序为各个进程分配资源,则所有的进程都能顺利运⾏完成,这是我们说系统是安全的,这个序列叫做安全序列。
2、银⾏家算具体过程这⾥⾸先是⼏个符号定义可⽤资源向量available i,i=1,2,3,...,N资源需求矩阵need j i,i=1,2,3,...,N.j=1,2,3,...,K,表⽰第j个进程对第i种资源的最多还需要多少资源,也就是系统最多还可以分给这个进程多少个资源i。
资源分配矩阵allocation j i,i=1,2,3,...,N.j=1,2,3,...,K,表⽰第j个进程⽬前所占有的第i种资源的数量。
最⼤需求矩阵max j i,i=1,2,3,...,N.j=1,2,3,...,K,表⽰第j个进程对第i种资源的最多的需要资源总量。
上⾯的矩阵有下⾯的关系allocation+need=max所以在下⾯的算法当中实际上并没有⽤到max矩阵假设现在有个进程发出了资源请求request i,i表⽰第i个进程step 1、判断request i是否⼩于need i,如果是转⼊step 2,否则,exit,因为进程在说谎step 2、判断request i是否⼩于available,如果是则进⼊step 3,否则将进程挂起,因为没有⾜够资源step 3、⾸先假设满⾜进程i的资源请求available=available−requestneed=need−requestallocation=allocation+requeststep 4、进⾏安全性监测找到⼀个进程它的need⼩于available,则表明可以⾸先运⾏这个进程,这个进程运⾏完之后,会释放资源,所以增加available。
银行家算法参考书目

银行家算法参考书目
(原创版)
目录
1.银行家算法的背景和基本概念
2.银行家算法的应用场景
3.银行家算法的优点和缺点
4.银行家算法的参考书目
正文
1.银行家算法的背景和基本概念
银行家算法(Banker"s Algorithm)是一种避免死锁(Deadlock)的资源分配策略。
在计算机科学中,死锁是指多个进程在运行过程中因争夺资源而造成的一种僵局(即进程无法向前推进),当发生死锁时,参与死锁的各个进程都在等待对方释放资源。
银行家算法通过设置资源分配的界限,以确保进程在申请资源时,不会导致系统处于不安全状态,从而避免死锁的发生。
2.银行家算法的应用场景
银行家算法主要应用于实时系统、嵌入式系统以及对资源使用有严格要求的场景。
在这些场景下,系统资源通常较为有限,因此需要对资源的分配和使用进行严格管理,以确保系统的稳定运行。
3.银行家算法的优点和缺点
银行家算法的优点在于能有效避免死锁的发生,提高系统的稳定性。
通过限制资源的过度分配,它能确保系统在面临资源请求时,不会陷入僵局。
然而,银行家算法也存在一定的缺点,如算法的实现较为复杂,需要考虑较多的边界条件,同时它可能导致资源利用率降低,因为在某些情况下,系统中的资源并未被充分使用。
银行家算法

银行家算法一、基本思想:银行家算法是最具有代表性的避免死锁的算法,在本实验中是用C语言实现的。
具体做法是:银行家算法中的数据结构:1、定义一个含有m 个元素的Available数组,每一个元素表示一类可利用的资源数,其值随该类资源的分配和回收而动态的改变。
2、定义一个最大需求矩阵Max,它是一个二维数组,表示每个进程对某类资源的最大需求。
3、定义一个分配矩阵Allocation,它也是一个二维数组,表示系统中每一个进程已经得到的每一类资源的数目。
4、定义一个需求矩阵Need,它也是一个二维数组,表示每个进程尚需的各类资源数。
当某个进程发出资源请求,系统按下述步骤进行检查:1、如果请求向量小于需求矩阵,便执行下一步;否则认为出错,因为它所需要的资源已超过它所宣布的最大值。
2、如果请求向量小于可利用的资源数,便执行下一步;否则,资源不足,该进程需要等待。
3、系统试探着把资源分配给该进程,并修改下列数据结构中的数值:剩余资源数等于可用资源数减去需求向量;已分配的资源数等于为请求资源前分配给该进程的资源加上需求向量;需求矩阵等于未分配资源前的需求矩阵减去请求向量;4、系统执行安全性算法,检查此次分配后系统是否处于安全状态。
若安全,才将资源分配给该进程;否则,本次试探分配作废。
安全性算法:(1)设置两个工作向量Work=Available;Finish[M]=FALSE(2)从进程集合中找到一个满足下述条件的进程,Finish[i]=FALSENeed<=Work如找到,执行(3);否则,执行(4)(3)设进程获得资源,可顺利执行,直至完成,从而释放资源。
Work= Work + AllocationFinish =True; 转向执行步骤(@)(4)如所有的进程Finish[M]=true,则表示安全;否则系统不安全。
二、源程序代码:#define M 10#include<stdio.h>int resource[M];max[M][M],allocation[M][M],need[M][M],available[M];int i,j,n,m,r;void testout() //算法安全性的检测{ int k,flag,v=0;int work[M],a[M];char finish[M];r=1;for(i=0;i<n; i++)finish[i]='F'; //初始化各进程均没得到足够资源for(j=0;j<m; j++)work[j]=available[j]; //用work[j]表示可提供进程继续运行的各类资源数k=n;while(k>0){for (i=0;i<n; i++){if (finish[i]=='F'){ flag=1;for (j=0;j<m; j++)if (need[i][j]>work[j])flag=0;if (flag==1) //找到还没完成的且需求数小于可提供进程继续运行的{ finish[i]='T'; //资源数的进程a[v++]=i; //记录安全序列for (j=0;j<m; j++)work[j]=work[j]+allocation[i][j]; //释放该进程已分配的资源}}}k--;}flag=1;for (i=0;i<n; i++) //判断是否所有的进程都完成if (finish[i]=='F')flag=0;if (flag==0) //若有进程没完成,则为不安全状态{printf("系统不安全. \n");r=0;}else //否则为安全状态{printf("系统是安全的.\n");printf(" 输出安全序列:\n");for (i=0;i<n;i++)printf ("%d ",a[i]); //输出安全序列printf("\n");printf("为各进程分配分配各类资源的方法:\n");for (i=0;i<n; i++){printf("%2d",i);printf(" ");for(j=0;j<m; j++)printf("%2d",allocation[i][j]);printf(" ");for(j=0;j<m; j++)printf("%2d",need[i][j]);printf("\n");}}}void print() //输出可用资源数目{printf("可用资源是: \n");for(j=0;j<m; j++)printf("%2d ",available[j]);printf("\n");}void main(){int p,q;int resource[M],request[M],allocation1[M][M],need1[M][M],available1[M];printf("输入进程总数:\n");scanf("%d", &n);printf("输入资源种类总数:\n");scanf("%d", &m);printf("输入各类资源总数:\n");for(j=0;j<m;j++)scanf("%2d",&resource[j]);printf("各类资源的总数:\n");for(j=0;j<m;j++)printf("资源%d: %d\n",j,resource[j]);printf("输入最大矩阵:\n");for(i=0;i<n; i++)for(j=0;j<m; j++)scanf("%2d",&max[i][j]);printf("输入已分配资源数:\n");for(i=0;i<n; i++)for(j=0;j<m; j++)scanf("%d", &allocation[i][j]);printf("输出还需要的资源数:\n");for (i=0;i<n; i++){for(j=0;j<m; j++){need[i][j]=max[i][j]-allocation[i][j];printf("%2d",need[i][j]);}printf("\n");}printf("\n输入可用资源数:\n");for (i=0;i<m; i++)scanf("%d", &available[i]);testout(); //检测已知的状态是否安全if (r==1) //如果状态安全则执行以下代码{while (1){ p=0;q=0;printf("\n输入请求资源的进程号: \n");scanf("%d", &i);printf("输入该进程所需的资源数:\n");for(j=0;j<m; j++)scanf("%d",&request[j]);for(j=0;j<m; j++)if(request[j]>need[i][j])p=1; //判断是否超过最大资源数if(p)printf("请求超过最大资源数!\n");else{for(j=0;j<m; j++)if(request[j]>available[j])q=1; //判断是否超过可用资源数if(q)printf("没有足够的可用资源!\n");else{for(j=0;j<m; j++){ available1[j]=available[j]; //保存原已分配的资源数,需要的资源数,和可用的资源数allocation1[i][j]=allocation[i][j];need1[i][j]=need[i][j];available[j]=available[j]-request[j]; //系统尝试把资源分配给请求的进程allocation[i][j]=allocation[i][j]+request[j];need[i][j]=need[i][j]-request[j];}print(); //输出可用资源数testout(); //进行安全检测if(r==0) //分配后状态不安全{for (j=0;j<m; j++){ available[j]=available1[j]; //还原分配前的已分配的资源数,仍需要的资源数和可用的资源数allocation[i][j]=allocation1[i][j];need[i][j]=need1[i][j];}printf(" 不安全,请返回!\n");print();}}}}}}三、实验结果截图:。
sql round 银行家算法

sql round 银行家算法银行家算法,又称为舍入法或者趋近法,是一种在计算机中进行浮点数运算时的舍入方式。
它与一般的四舍五入(round half up)不同,银行家算法是一种比较复杂的舍入规则,旨在使舍入后的结果尽可能接近原始数值。
在银行家算法中,舍入的决策基于舍入位的值以及舍入位后面的数值。
如果舍入位后面的数值小于5,则舍入位被舍弃;如果舍入位后面的数值大于5,则进位;如果舍入位后面的数值等于5,则根据舍入位上一位的奇偶性来判断是否进位。
具体规则如下:1. 如果舍入位后面的数值小于5,则舍入位被舍弃;2. 如果舍入位后面的数值大于5,则进位;3. 如果舍入位后面的数值等于5,则根据舍入位上一位的奇偶性来判断是否进位。
如果舍入位上一位是偶数,则舍入位被舍弃;如果舍入位上一位是奇数,则进位。
例如:- 2.35 舍入到小数点后一位:2.4- 2.45 舍入到小数点后一位:2.4- 2.55 舍入到小数点后一位:2.6- 2.50 舍入到小数点后一位:2.6在SQL中,可以使用ROUND函数进行舍入操作。
使用ROUND函数时可以指定保留的小数位数以及舍入方式。
在使用ROUND函数时,如果不指定舍入方式,默认使用四舍五入(round half up)。
例如,在SQL中进行四舍五入操作:SELECT ROUND(2.35, 1); -- 结果为2.4SELECT ROUND(2.45, 1); -- 结果为2.5SELECT ROUND(2.55, 1); -- 结果为2.6SELECT ROUND(2.50, 1); -- 结果为2.5需要注意的是,SQL中的ROUND函数默认使用的是四舍五入,而非银行家舍入算法。
如果需要使用银行家舍入算法,可以根据具体的SQL数据库的支持,使用其他的舍入函数或者自定义函数来实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编程序模拟银行家算法1. 引言为了提高资源利用率,应采用动态分配资源的方法。
但是,为了避免可能产生的死锁,在进行资源分配时,应采用某种算法来预测是否有可能发生死锁,若存在可能性,就拒绝企图获得资源的请求。
预防死锁和避免死锁的不同在于,前者所采用的分配策略本身就否定了必要条件之一,这样就保证死锁不可能发生;而后者是在动态分配资源的策略下采用某种算法来预防可能发生的死锁,从而拒绝可能引起死锁的其个资源请求,银行家算法是避免死锁的一种重要方法。
银行家算法的基本思想是分配资源之前,判断系统是否是安全的;若是,才分配。
它是最具有代表性的避免死锁的算法。
2. 算法的原理银行家算法是一种最有代表性的避免死锁的算法。
要解释银行家算法,必须先解释操作系统安全状态和不安全状态。
安全状态:如果存在一个由系统中所有进程构成的安全序列P1,…,Pn,则系统处于安全状态。
安全状态一定是没有死锁发生。
不安全状态:不存在一个安全序列。
不安全状态不一定导致死锁。
那么什么是安全序列呢?安全序列:一个进程序列{P1,…,Pn}是安全的,如果对于每一个进程Pi(1≤i ≤n),它以后尚需要的资源量不超过系统当前剩余资源量与所有进程Pj (j < i ) 我们可以把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。
操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。
当进程在执行中继续申请资源时,先测试该进程已占用的资源数与本次申请的资源数之和是否超过了该进程对资源的最大需求量。
若超过则拒绝分配资源,若没有超过则再测试系统现存的资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配。
3.算法的实现3.1 初始化由用户输入数据,分别对可利用资源向量矩阵AVAILABLE、最大需求矩阵M AX、分配矩阵ALLOCATION、需求矩阵NEED赋值。
3.2 算法思想在避免死锁的方法中,所施加的限制条件较弱,有可能获得令人满意的系统性能。
在该方法中把系统的状态分为安全状态和不安全状态,只要能使系统始终都处于安全状态,便可以避免发生死锁。
银行家算法的基本思想是分配资源之前,判断系统是否是安全的;若是,才分配。
它是最具有代表性的避免死锁的算法。
设进程cusneed提出请求REQUEST [i],则银行家算法按如下规则进行判断。
(1)如果REQUEST [cusneed] [i]<= NEED[cusneed][i],则转(2);否则出错。
(2)如果REQUEST [cusneed] [i]<= AVAILABLE[cusneed][i],则转(3);否则出错。
(3)系统试探分配资源,修改相关数据:AVAILABLE[i]-=REQUEST[cusneed][i];ALLOCATION[cusneed][i]+=REQUEST[cusneed][i];NEED[cusneed][i]-=REQUEST[cusneed][i];(4)系统执行安全性检查,如安全,则分配成立;否则试探险性分配作废,系统恢复原状,进程等待。
(1)设置两个工作向量Work=AVAILABLE;FINISH(2)从进程集合中找到一个满足下述条件的进程,FINISH==false;NEED<=Work;如找到,执行(3);否则,执行(4)(3)设进程获得资源,可顺利执行,直至完成,从而释放资源。
Work+=ALLOCATION;Finish=true;GOTO 2(4)如所有的进程Finish= true,则表示安全;否则系统不安全。
3.5 定义全局变量int Available[x]; //各种资源可利用的数量int Allocation[y][y]; //各进程当前已分配的资源数量int Max[y][y]; //各进程对各类资源的最大需求数int Need[y][y]; //还需求矩阵int Request[x]; //申请各类资源的数量int Work[x]; //工作向量,表系统可提供给进程运行所需各类资源数量int Finish[y]; //表系统是否有足够的资源分配给进程,0为否,1为是4. 程序代码#include <iostream>using namespace std;#define MAXPROCESS 50 / *最大进程数*/#define MAXRESOURCE 100 /*最大资源数*/int AVAILABLE[MAXRESOURCE]; /*可用资源数组*/int MAX[MAXPROCESS][MAXRESOURCE]; /*最大需求矩阵*/int ALLOCATION[MAXPROCESS][MAXRESOURCE]; /*分配矩阵*/int NEED[MAXPROCESS][MAXRESOURCE]; /*需求矩阵*/ int REQUEST[MAXPROCESS][MAXRESOURCE]; /*进程需要资源数* /bool FINISH[MAXPROCESS]; /*系统是否有足够的资源分配*/int p[MAXPROCESS]; /*记录序列*/int m,n;/*m个进程,n个资源*/void Init();bool Safe();void Bank();int main(){ Init();Safe();Bank();}void Init() /*初始化算法*/{ int i,j;cout<<"请输入进程的数目:";cin>>m;cout<<"请输入资源的种类:";cin>>n;cout<<"请输入每个进程最多所需的各资源数,按照"<<m<<"x"<<n<<"矩阵输入"<<endl;for(i=0;i<m;i++)for(j=0;j<n;j++)cin>>MAX[i][j];cout<<"请输入每个进程已分配的各资源数,也按照"<<m<<"x"<<n<<"矩阵输入"<<endl;for(i=0;i<m;i++){ for(j=0;j<n;j++){ cin>>ALLOCATION[i][j];NEED[i][j]=MAX[i][j]-ALLOCATION[i][j];if(NEED[i][j]<0){ cout<<"您输入的第"<<i+1<<"个进程所拥有的第" <<j+1<<"个资源数错误,请重新输入:"<<endl;j--;continue;}}}cout<<"请输入各个资源现有的数目:"<<endl;for(i=0;i<n;i++){ cin>>AVAILABLE[i];}}void Bank() /*银行家算法*/{ int i,cusneed;char again;while(1){ cout<<"请输入要申请资源的进程号(注:第1个进程号为0,依次类推)"<<endl;cin>>cusneed;cout<<"请输入进程所请求的各资源的数量"<<endl;for(i=0;i<n;i++){ cin>>REQUEST[cusneed][i];}for(i=0;i<n;i++){ if(REQUEST[cusneed][i]>NEED[cusneed][i]){ cout<<"您输入的请求数超过进程的需求量!请重新输入!"<<endl;continue;}if(REQUEST[cusneed][i]>AVAILABLE[i]){cout<<"您输入的请求数超过系统有的资源数!请重新输入!"<<endl; continue;}}for(i=0;i<n;i++){ AVAILABLE[i]-=REQUEST[cusneed][i];ALLOCATION[cusneed][i]+=REQUEST[cusneed][i];NEED[cusneed][i]-=REQUEST[cusneed][i];}if(Safe()){ cout<<"同意分配请求!"<<endl;}else{ cout<<"您的请求被拒绝!"<<endl;for(i=0;i<n;i++){ AVAILABLE[i]+=REQUEST[cusneed][i];ALLOCATION[cusneed][i]-=REQUEST[cusnee d][i];NEED[cusneed][i]+=REQUEST[cusneed][i];}}for(i=0;i<m;i++){ FINISH[i]=false;}cout<<"您还想再次请求分配吗?是请按y/Y,否请按其它键"<< endl;cin>>again;if(again=='y'||again=='Y'){ continue;}break;}}bool Safe()/*安全性算法*/{int i,j,k,l=0;int Work[MAXRESOURCE]; / *工作数组*/for(i=0;i<n;i++)Work[i]=AVAILABLE[i];for(i=0;i<m;i++){FINISH[i]=false;}for(i=0;i<m;i++){if(FINISH[i]==true)if(NEED[i][j]>Work[j]){break;}}if(j==n){FINISH[i]=true;for(k=0;k<n;k++){Work[k]+=ALLOCATION[i][k];}p[l++]=i;i=-1;}else{ continue;}}if(l==m){ cout<<"系统是安全的"<<endl;cout<<"安全序列:"<<endl;for(i=0;i<l;i++){cout<<p[i];if(i!=l-1){cout<<"-->";}}cout<<""<<endl;return true;}}cout<<"系统是不安全的"<<endl;return false;}4. 程序测试5. 设计体会经过几天的自己动手练习,对操作系统的掌握又进了一步,收获了很多课堂上和书上未出现过的或老师未讲到的一些知识。