蒸发光散射检测原理与操作要点

合集下载

蒸发光散射检测器使用注意事项

蒸发光散射检测器使用注意事项

蒸发光散射检测器使用注意事项蒸发光散射检测器是一种常用的实验室仪器,用于表征材料的表面形貌和薄膜的质量。

在使用蒸发光散射检测器时,需要注意以下几点。

一、仪器安装和校准1. 在使用蒸发光散射检测器前,需要将其正确安装在实验室的光学台上。

确保仪器的稳定性和水平度。

2. 在使用前,需要对仪器进行校准。

校准过程包括零点校准和灵敏度校准,确保仪器的准确性和可靠性。

二、样品制备1. 样品制备是蒸发光散射检测的关键步骤。

在制备样品时,应注意样品表面的光洁度和平整度。

避免表面存在杂质、颗粒或划痕。

2. 样品的尺寸和形状也需要符合仪器的要求。

通常情况下,样品的尺寸应小于仪器的探测范围。

三、实验操作1. 在进行蒸发光散射检测时,应保持实验环境的稳定。

避免有风、震动或其他干扰因素影响实验结果。

2. 在进行实验前,需要将仪器预热至稳定的工作温度。

同时,还需根据实验需求选择合适的检测波长。

3. 在实验过程中,需注意控制蒸发速率和压力。

过高的蒸发速率或压力会导致样品表面出现不均匀的薄膜。

4. 实验结束后,应及时清洁仪器,避免样品残留对下次实验的影响。

四、数据分析与结果解释1. 在进行数据分析时,需注意对实验数据进行适当的处理和修正。

通常情况下,需要进行背景减除和散射强度的归一化处理。

2. 在结果解释时,应结合样品的特性和实验条件进行综合分析。

避免仅凭散射强度大小得出片面的结论。

总结:在使用蒸发光散射检测器时,需要注意仪器的安装和校准,样品的制备,实验操作的准确性以及数据分析和结果解释的科学性。

只有在严格遵守这些注意事项的情况下,才能获得准确可靠的实验结果。

同时,还应不断学习和探索新的技术和方法,提高实验技能和数据分析能力,为科研工作提供有力支持。

蒸发光 散射检测法

蒸发光 散射检测法

蒸发光散射检测法
蒸发光散射检测法(evaporative(light(scattering(detection,简称蒸发光散射检测法( evaporative(light(scattering(detection,简称ELSD)是一种常用的液相色谱检测器。

它基于溶质在热气流中挥发,产生气溶胶,进而被激光源照射后产生散射光的原理进行检测。

ELSD的工作原理是:当流动相通过检测器时,部分溶剂会在高温下挥发,形成气溶胶。

这些气溶胶颗粒在激光束的照射下会产生散射光,其强度与气溶胶颗粒的数量成正比。

因此,通过测量散射光的强度,就可以得到样品中溶质的含量。

ELSD具有灵敏度高、响应速度快、线性范围宽、重复性好等优点。

它可以用于没有紫外吸收或紫外吸收较弱的物质的检测,如糖类、氨基酸、生物碱等。

此外,由于ELSD不依赖于样品的光学性质,因此对样品的前处理要求较低,适用于复杂的样品基质。

然而,ELSD也有一些局限性。

例如,它不能用于检测挥发性物质,因为这些物质在热气流中会完全挥发掉。

此外,ELSD的灵敏度受到温度和流速的影响,需要严格控制实验条件。

蒸发光散射检测器原理

蒸发光散射检测器原理

1. 简介蒸发光散射检测器(Evaporative Light Scattering Detector)设计用于高效液相色谱系统,分析任何挥发性低于流动相的化合物。

ELSD ELSD的应用范围包括:碳水化合物,药物,脂类,甘油三脂,未衍生的脂肪酸和氨基酸,聚合物,表面活化剂,营养滋补品,及组合分子库等。

蒸发光散射检测器消除了常见于其他HPLC检测器的问题。

示差检测受溶剂前沿峰的干扰使得分析复杂化,并且由于对温度极其敏感使得基线很不稳定,与梯度洗脱不相容。

另外,示差检测器的响应不如ELSD灵敏。

而低波长紫外检测器在急变梯度条件下受基线漂移的困扰,并要求被分析化合物带有发色团。

ELSD则不受这些限制。

不同于这些检测器,ELSD能在多溶剂梯度的情况下获得稳定的基线,使得分辨率更好、分离速度更快。

另外,因为ELSD 的响应不依赖于样品的光学特性,所以ELSD检测时样品不要求带有发色团或荧光基团。

1.3 操作原理蒸发光散射检测器的独特检测原理为,首先将柱洗脱液雾化形成气溶胶,然后在加热的漂移管中将溶剂蒸发,最后余下的不挥发性溶质颗粒在光散射检测池中得到检测。

步骤1:雾化步骤2:蒸发步骤3:检测雾化经HPLC分离的柱洗脱液进入雾化器,在此与稳定的雾化气体(一般为氮气)混合形成气溶胶。

气溶胶由均匀分布的液滴组成,液滴大小取决于分析中采用的气体流量。

气体流量越低形成的液滴越大,液滴越大则散射的光越多,从而提高了分析灵敏度,但是越大的液滴在漂移管中越难蒸发。

每种方法均存在产生最佳信号噪音比率的最优化气体流量。

流动相流速越低要求适当雾化的气体流量也越低。

用内径为2.1mm的微径柱代替内径为4.6mm标准型分析柱,能大大降低流动相流速,因而提高分析的灵敏度。

蒸发气溶胶中挥发性成分在加热的不锈钢漂移管中蒸发。

为特定应用设置适当的漂移管温度,取决于流动相组成和流速,以及样品的挥发性。

高有机含量流动相比高含水量流动相要求蒸发的漂移管温度低。

蒸发光散射检测原理与操作要点

蒸发光散射检测原理与操作要点

蒸发光散射检测器(ELSD)3300 原理与操作一.操作原理蒸发光散射检测器的独特检测原理包括以下三个步骤:首先将柱洗脱液雾化形成气溶胶,然后在加热的漂移管中将溶剂蒸发,最后余下的不挥发性溶质颗粒在光散射检测池中得到检测。

雾化(Nebulization):雾化(Nebulization) 经HPLC 分离的柱洗脱液进入雾化器, 在此与稳定的雾化气体(一般为氮气)混合形成气溶胶。

气溶胶由均匀分布的液滴组成,液滴大小取决于分析中采用的气体流量.气体流量越低形成的液滴越大,液滴越大则散射的光越多,从而提高了分析灵敏度,但是越大的液滴在漂移管中越难蒸发。

每种方法均存在产生最佳信号噪音比率的最优化气体流量。

流动相流速越低要求适当雾化的气体流量也越低。

用内径为2.1mm 的微径柱代替内径为4.6mm 标准型分析柱,能大大降低流动相流速,因而提高分析的灵敏度。

蒸发(Evaporation):蒸发(Evaporation) 气溶胶中挥发性成分在加热的不锈钢漂移管中蒸发.为特定应用设置适当的漂移管温度,取决于流动相组成和流速,以及样品的挥发性.高有机含量流动相比高含水量流动相要求蒸发的漂移管温度低。

流动相流速越低比流动相流速越高要求蒸发的漂移管温度越低。

半挥发性样品要求采用较低的漂移管温度,以获得最佳灵敏度.最佳温度需要通过观察各温度时的信号噪音比率来确定。

在ELSD 3300 漂移管中,距离雾化器3 英寸处有一个PTFE 涂层的不锈钢撞击器.气溶胶与撞击器相遇,大的液滴从废液管排出。

余下的液滴从撞击器周围通过并经过漂移管进入到光散射检测池被检测。

除去大的液滴就允许在低温模式下操作ELSD3300,适用于分析半挥发性样品。

流动相和雾化气体中的非挥发性杂质会导致噪音。

采用高品质的气体,溶剂和挥发性缓冲液(经过过滤的) ,会很大程度上降低基线噪音.若流动相没有完全挥发会导致基线噪音上升。

仔细选择设置检测器的参数保证流动相完全挥发。

高效液相色谱蒸发光散射检测器

高效液相色谱蒸发光散射检测器

01
02
03
色谱柱选择
根据目标化合物的性质选 择合适的色谱柱,如C18、 C8、氨基柱等。
流动相选择
根据目标化合物的极性和 溶解度选择合适的流动相, 如水、甲醇、乙腈等。
洗脱程序优化
通过调整洗脱程序中的梯 度、流速等参数,实现目 标化合物的有效分离和检 测。
数据采集、处理及分析方法
01
02
03
04
研究生物大分子、细胞和组织的相互作用, 揭示生命活动的奥秘。
政策法规影响及市场机遇挑战
1 2 3
政策法规推动
各国政府加强对食品药品安全和环境保护的监管, 推动高效液相色谱蒸发光散射检测器的需求增长。
市场机遇
随着全球经济的复苏和科技创新的加速,高效液 相色谱蒸发光散射检测器市场将迎来新的发展机 遇。
高效液相色谱蒸发光散射检测器
目录
• 引言 • 蒸发光散射检测器结构与工作原理 • 高效液相色谱蒸发光散射检测器实验方法 • 结果讨论与实际应用案例 • 仪器维护与故障排除指南 • 发展趋势与未来展望
01 引言
高效液相色谱技术概述
高效液相色谱(HPLC)是一种广泛应用于化学、生物、医药等领域的分离分析技术。 HPLC基于样品中各组分在固定相和流动相之间的分配系数不同,实现组分的分离。
常见故障类型及诊断方法
压力异常
可能原因包括堵塞、泄漏、气泡等,应检查 相应部件并采取相应措施。
灵敏度下降
可能原因包括检测器污染、光源衰减等,应 清洗检测器或更换光源。
基线不稳
可能原因包括光源老化、流动相污染等,应 更换相应部件或清洗流路。
色谱峰异常
可能原因包括色谱柱老化、样品污染等,应 更换色谱柱或重新处理样品。

《蒸发光散射检测器》课件

《蒸发光散射检测器》课件
生物工程
用于蛋白质、核酸、细胞等生物样品的分离 和检测。
02
蒸发光散射检测器的技术 原理
光散射原理
光散射原理是指当光通过不均匀介质时,光会朝各个方向散 射。在蒸发光散射检测器中,激光光束通过流动的样品,由 于样品的颗粒或分子对光的作用,使得光束发生散射。
散射光的强度与样品颗粒或分子的性质、大小、浓度等因素 有关,因此可以通过测量散射光的强度来推算样品中颗粒或 分子的浓度。
工作原理
当流动相携带组分经过检测器时,组分会以蒸发的形式从流动相中释放出来,并 在流动相的出口处形成小液滴。这些液滴在激光束的照射下会产生散射光,散射 光的强度与组分的粒径和浓度成正比,从而可以实现对组分的定量分析。
种类与特点
种类
根据工作原理和结构的不同,蒸发光散射检测器可以分为热 喷雾型(TSP)、常温喷雾型(RSP)和超声喷雾型(USP) 等。
根据需要定期进行仪器校准, 确保检测准确度。
04
蒸发光散射检测器的优势 与局限性
优势分析
通用性强
蒸发光散射检测器适用于大多数有机和无机样品,尤其适 合于高分子聚合物、大分子物质和颗粒状样品的检测。
稳定性高
蒸发光散射检测器的光源和光电倍增管等关键部件经过特 殊设计,具有较高的稳定性和可靠性,能够保证长期稳定 运行。
未来发展展望
提高灵敏度和稳定性
通过改进仪器设计和优化实验条件, 进一步提高蒸发光散射检测器的灵敏 度和稳定性,降低检测下限,提高测 量准确性。
拓展应用领域
发展微型化仪器
开发微型化的蒸发光散射检测器,降 低仪器成本和体积,便于携带和移动 ,为现场快速检测提供更多便利。
进一步拓展蒸发光散射检测器的应用 领域,特别是在环境监测、生物医学 、食品安全等领域的应用。

蒸发光散射检测器(ELSD)的原理及特点

蒸发光散射检测器(ELSD)的原理及特点

1.2 ELSD 2000 随机附件
Alltech 2000型 ELSD必须包括以下部件 • ELSD 2000检测器主机 • ELSD 2000操作手册 • 电源线 • 信号线 • 工具
开口扳手 3/8 "×7 / 1 6 " 开口扳手 1/4 "×5 / 1 6 " 六角球型螺丝刀 3 / 3 2 " 长柄 六角球型螺丝刀 3 / 3 2 " 短柄 • 备用保险丝 3A & 6A 各一个 • 伸缩 PEEK管 6"×0.005" ID • 雾化气体连接线 Teflon 管 5 0'× 1/8 " 1/8 "铜螺帽和卡套 • 废液收集装置 T y g o n 排水管 4 '×3/8 " O D 5 0 0 m L 废液收集瓶 3/8 "铜螺帽 3/8 " Teflon 卡套 • 排气冷阱 排气管 5 0 0 m L 收集瓶 排气弯管接头
E L S D 2 0 0 0 有几种仪器控制方式可供选择 仪器参数直接显示在前面板上 并可通过前面板 上的触摸键和数字键盘直接控制 内置的软件可 提供一系列直观的屏幕用于存储和编辑最多十种 方法 设置声音报警 故障继电器 和满量程电 压设置 及诊断测试和排障功能 E L S D 2 0 0 0 亦 能用仪器附带的控制软件或 AllChrom Plus 软件 通过计算机来操作
ELSD 2000 提供当今最先进的蒸发光散射检 测技术 雾化器经重新设计进一步提高耐用性 数字气体流量计令用户可直接从面板上或者通过 PC 机调节气体流量 现在有两种操作模式供用 户选择 撞击器开 Impactor On 和撞击器关
I m p a c t o r Off 撞击器关模式最适用于在高有 机含量的流动相或者高含水量/低流量的流动相

高效液相色谱蒸发光散射法

高效液相色谱蒸发光散射法

高效液相色谱蒸发光散射法是一种常用的检测方法,主要用于检测样品中的挥发性组分。

其原理是利用高效液相色谱的分离能力,将样品中的组分分离,然后通过蒸发光散射检测器进行检测。

蒸发光散射检测器的工作原理是当样品通过蒸发器时,其中的挥发性组分会蒸发为气体,然后通过喷嘴散射成小液滴。

这些小液滴会散射光线,产生光散射现象。

通过测量光散射的强度,可以确定样品中挥发性组分的浓度。

相比其他检测方法,高效液相色谱蒸发光散射法的优点包括对样品无破坏、灵敏度高、适用范围广等。

该方法可以用于检测各种样品中的挥发性组分,如食品、药品、环境等。

需要注意的是,在使用高效液相色谱蒸发光散射法时,需要注意样品的处理和分离条件的优化,以保证检测结果的准确性和可靠性。

同时,该方法也需要定期进行校准和清洁维护,以确保其性能的正常和稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蒸发光散射检测器(ELSD)3300 原理与操作一.操作原理蒸发光散射检测器的独特检测原理包括以下三个步骤:首先将柱洗脱液雾化形成气溶胶,然后在加热的漂移管中将溶剂蒸发,最后余下的不挥发性溶质颗粒在光散射检测池中得到检测。

雾化(Nebulization):雾化(Nebulization) 经HPLC 分离的柱洗脱液进入雾化器, 在此与稳定的雾化气体(一般为氮气)混合形成气溶胶。

气溶胶由均匀分布的液滴组成,液滴大小取决于分析中采用的气体流量.气体流量越低形成的液滴越大,液滴越大则散射的光越多,从而提高了分析灵敏度,但是越大的液滴在漂移管中越难蒸发。

每种方法均存在产生最佳信号噪音比率的最优化气体流量。

流动相流速越低要求适当雾化的气体流量也越低。

用内径为2.1mm 的微径柱代替内径为4.6mm 标准型分析柱,能大大降低流动相流速,因而提高分析的灵敏度。

蒸发(Evaporation):蒸发(Evaporation) 气溶胶中挥发性成分在加热的不锈钢漂移管中蒸发.为特定应用设置适当的漂移管温度,取决于流动相组成和流速,以及样品的挥发性.高有机含量流动相比高含水量流动相要求蒸发的漂移管温度低。

流动相流速越低比流动相流速越高要求蒸发的漂移管温度越低。

半挥发性样品要求采用较低的漂移管温度,以获得最佳灵敏度.最佳温度需要通过观察各温度时的信号噪音比率来确定。

在ELSD 3300 漂移管中,距离雾化器3 英寸处有一个PTFE 涂层的不锈钢撞击器.气溶胶与撞击器相遇,大的液滴从废液管排出。

余下的液滴从撞击器周围通过并经过漂移管进入到光散射检测池被检测。

除去大的液滴就允许在低温模式下操作ELSD3300,适用于分析半挥发性样品。

流动相和雾化气体中的非挥发性杂质会导致噪音。

采用高品质的气体,溶剂和挥发性缓冲液(经过过滤的) ,会很大程度上降低基线噪音.若流动相没有完全挥发会导致基线噪音上升。

仔细选择设置检测器的参数保证流动相完全挥发。

检测(Detection):检测(Detection) 悬浮于流动相蒸汽中的样品颗粒从漂移管进入到光散射检测池。

在检测池中,样品颗粒散射激光光源发出的光而蒸发的流动相不散射。

散射光被硅光电二极管检测,产生电信号输送模拟信号输出端口, 被用于模拟输出的数据采集.。

ELSD 3300 光路元件的先进设计为您的HPLC 分析提供了优异的灵敏度。

二.软件界面指导 (Navigating the Software Interface)3300 软件界面的特点是位于液晶显示屏左上角有一个可展开的菜单。

下面的部分将详细描述这个软件菜单.2.1 主菜单(Main Screen)操作界面是在仪器使用期间显示的主界面。

主界面为当前载入方法提供如下信息: 1. 谱图(Chart):当处于"运行"和"清洁"模式时,谱图显示被激活,界面显示谱图长度可达60min.2.方法名称(Method Name) :当前载入方法的名称.3.温度(Temperature):漂移管温度的设定值和实际读数,用"℃"表示。

温度范围是从25 至120℃.。

注: 漂移管共有两个加热区, 分别位于漂移管前端和后端。

主界面显示的是这两个区的平均值。

4.模式(Mode):检测器的当前模式( "待机" "运行""加热"或"清洗" , )5.平衡指示(Equilibrating Indicator): 如果检测器是"运行" 模式而温度和气体流速没有达到它们的设定值,主界面将在"模式"状态旁显示"平衡中" , 直到达到了平衡的设定值. 达到平衡的条件是: 漂移管前端和后端以及光学模块的温度值必须在设定值的 1.5℃偏差范围之内;气体流速必须在设定值的0.3 L/min 偏差范围内;温度和气体流速必须达到设定值要求至少60 秒后, "平衡中"的提示信息才会消失.6.时间模式改变提醒: (TimedMode Change Reminder ) (not shown) 如果设定了一个定时模式的改变, 在模式状态的旁边将显示对此事件的提醒. 在仪器上发生的任何错误将显示在屏幕的右下角.7.气体流速(Gas Flow):气体流速的设定值和实际读数,用L/min 表示。

气体流速范围是从0.0 至4.0L/min.8.增益(Gain):当前增益的设定.可选择的增益值是1,2,4,8 和16.增益设在1 时信号不放大,在增益里, 每增加一倍增益, 就在原来设置上信号放大两倍。

9.信号输出(Signal Output):当仪器处在"运行" 或"清洁"模式时,才显示用"mV"表示的信号. 当仪器处于"待机"或"加热"模式时,不显示输出信号.如果输出值超过 2.5 伏,信号输出将读为"高" ,如果信号输出降到-500 毫伏以下,将读为"低" Run Time): 如果一个方法已经开始运行, 其运行时间显示在右上角. 时间值一直保持直到停止方法运行.三。

启动程序1. 按2.4 部分所述安装检测器,接通电源和流路连接.2. 打开 ELSD 3300 电源开关.3. 打开雾化气体气源开关.小心调节压力.设定气体压力在 65 到 80psig 之间.4. 当操作屏幕出现时,按二部分所述建立方法和设置.5. 将检测器设为"运行"模式( "操作"/"模式" /"运行". )6. 等待检测器平衡. "平衡中(Equlibrating)"的指示将显示在 "模式" 旁边屏幕的左下角, "直到漂移管上部""漂移管下部""光池"和"气体流量"达到其设定值.7.一旦检测器平衡,记录只有气体打开时的基线 10-15 分钟,观察前面板上显示的以及色谱图上的信号输出.基线必须是稳定,低噪音.噪声应在 2mV 之内.8. 如果基线不稳定和/或漂移,检测器可能需要更长的平衡时间.9.如果噪音比预期的大, 您可能需要做光源测试来确定激光或者电路是否有问题. 关于光池自检详情请参见光池测试部分.四.光池测试光池测试(Optics Test)1. 在测试开始前,确认输入气体压力设置于65-80psig之间.确保气源和ELSD3300 的进气口连接.2. 关闭流动相.等待几分钟使仪器稳定.3. 在软件界面中,选择"维护"/"测试"/"光池测试"并按"输入"键.将会显示"光池测试" 界面: 结果失败:激光关时噪音过大失败:激光开和关时差值太大光池测试结果原因电路故障光池需要清洗电路故障失败:激光开和激光或其它电关时差值太小路故障失败:激光开时噪音太大光池需要清洗电路故障4.测试需要 60 秒.将出现计时条指示测试所需剩余时间.5.在测试期间会进行下列步骤: .激光关闭,让检测器在增益值为 1 下稳定. .激光关闭时,收集最小信号,最大信号,和信号平均值. .打开激光,让检测器稳定. .激光打开时,记录最小信号,最大信号,和信号平均值. .测量激光开和关之间的差值及激光信号的偏离值 .显示测试结果.6.要通过"光池测试"要求: .激光"开"/"关"的差值必须在 0.5-80mV 范围内 .激光"关"的稳定性必须在 1.5mV 之内 .激光"开"的稳定性必须在 1.5mV 之内7.测试完成,按"完成"返回到主界面, 或按"测试" 重复测试.8.如果测试失败, 参考下面的表格, 光源测试结果" " , 提供可能的失败信息和解决办法.五.光池加热测试(Optics Heating Test)1. 在运行 "光池加热测试" 检测器必须处于前, "运行"模式并且加热器已平衡好.2.在软件中,进入"维护"/"测试"/"光池加热测试"并按"输入"键.将出现测试界面:3. 按"测试"运行"光池加热测试" .测试需要 1 秒钟完成.显示结果界面.4. 通过测试要求: ."光池模块"的温度必须是漂移管设定温度的 90% (+/-2%)5.如果测试失败,参考下面的表格, "光池加热测试结果" ,可能的原因和解决办法. 光池加热测试结果结果失败原因解决办法检测器处于"待机" 使检测器进入 "运行" 模式模式,经过平衡后再重复测试检测器仍在平衡中等检测器平衡之后再重复测试热阻丝烧断. 与格雷斯技术支持联系光池模块加热器, 与格雷斯技术支持联传感器或其它电路系故障六.诊断基线噪音(Diagnosing Baseline Noise)导致基线噪音的原因很多.利用下面的表格, "诊断基线噪音" ,有助于判断噪音的来源. 从表格中"A"开始诊断噪音,按表格向下排查,直到断定基线噪音的来源. 诊断基线噪音症状A 噪音来自于色谱柱: .色谱柱连接着 .流动相开着 .雾化器气体开着 .激光开着结果: 与色谱柱断开后噪音消失B 噪音来自流动相: .色谱柱连接着 .流动相开着 .雾化器气体开着 .激光开着结果:泵停止后噪音消失 1 当前设定的漂移管温度和气体流速不能使流动相完全蒸发.按照 4.6 部分所述的优化程序重新优化漂移管温度和气体流速 2 或雾化器,漂移管和/或光池可能污染了.清洗程序参考 5.1-5.4 部分 3 流动相或许有颗粒污染.过滤当前使用的流动相或更换新配制且过滤过的流动相. 4 流动相存在过量气泡.对流动相脱气. 5 泵也可能是噪音来源.检查泵是否有脉冲.确保泵已经完全清除气泡. 如需要时在加入脉冲阻尼器.检查泵的阀和垫圈,必要时更换. 1 气源可能被微粒污染.更换质量更好,纯度更高的气体. 2 雾化器,漂移管和/或光池可能需要清洗.详情参考 5.1-5.4 部分. 解决步骤中有硅胶颗粒或其他填料流出.更换此污染的色谱柱C 噪音来自气体: .色谱柱断开 .流动相关闭 .雾化气开着 .激光开着结果:雾化气体关闭噪音消失D 噪音来自光池: .色谱柱断开 .流动相关闭 .雾化气开着 .激光开着结果:激光关闭后噪音消失E 噪音来自电路 .色谱柱断开 .流动相关闭 .雾化气关闭 .激光关闭结果: 在上述条件下基线噪音仍然存在1 光池可能需要清洗.清洗程序参考 5.4 部分.2 检查数据通讯电缆是否造成噪音.3 检查光阱是否有冷凝物.移开光阱的详情参考 5.4 部分电路故障.与格雷斯技术支持联系.。

相关文档
最新文档