表面张力
表面张力现象

在高压条件下,物质内部的密度和分子间相 互作用力发生变化,导致表面张力发生变化。
在低压或真空条件下,气体分子间的距离增 大,相互作用力减弱,导致表面张力减小。
04
表面张力现象的应用
工业制造
微电子制造
表面张力在微电子制造中用于控 制液体的流动和表面形貌,例如 在晶片清洗、表面涂层和光刻过
程中。
金属加工
非极性分子
非极性分子在表面更倾向于形成无序 排列,降低表面张力。
表面活性剂
降低表面张力
表面活性剂分子具有两亲性,一端亲水,一端亲油,能够降低油水界面张力,从而降低整个系统的表面张力。
改变界面性质
表面活性剂能够改变界面上的分子排列和性质,影响表面张力的变化。
压力
高压下表面张力变化
低压下表面张力变化
在金属加工过程中,表面张力用于 控制熔融金属的流动,以制造出具 有特定形状和质量的金属部件。
化学工业
在化学工业中,表面张力用于指导 液体的流动和分离过程,例如在萃 取、蒸馏和结晶过程中。
生物医学领域
生物芯片
表面张力在生物芯片的制造中起到关键作用,它能够控制生物分 子的排列和反应,从而提高检测的灵敏度和特异性。
03
影响表面张力现象的因素
温度
温度升高,表面张力降低
随着温度的升高,分子间的平均动能增加,导致表面分子间的相互作用力减弱, 从而降低表面张力。
温度降低,表面张力增加
随着温度的降低,分子间的平均动能减小,表面分子间的相互作用力增强,导致 表面张力增加。
物质性质
极性分子
具有强极性的分子在表面更容易形成 定向排列,增加表面张力。
土壤修复
表面张力有助于控制土壤中污染物的 迁移和分布,为土壤修复提供新的思 路和方法。
表面张力及影响因素

生物医学
在生物医学领域,表面张力可用于研究生物膜的结构和功能,以及细胞与 表面的相互作用。
在医疗器械的设计中,表面张力可影响医疗器械的润湿性和生物相容性, 从而影响医疗器械的使用效果和安全性。
在药物传递系统中,表面张力可影响药物的释放和吸收,从而影响药物的 疗效和副作用。
表面张力的大小反映了液体的湿润性,即液体的粘附力、 抗拉力和抗压力等性质。
表面张力还与液体的蒸气压、气液界面传质、界面电场等 性质密切相关,在化学、物理、工程等领域有广泛应用。
02
CHAPTER
表面张力影响因素
温度
温度对表面张力的影响
随着温度的升高,大部分液体的表面张力会减小,但有些液体的表面张力会先 减小后增大。
成、分离、纯化等方面的应用。
03
探索表面张力在生物医学领域的应用
未来可以探索表面张力在生物医学领域的应用,例如表面张力在细胞生
长、药物传递等方面的作用,为生物医学研究提供新的思路和方法。
THANKS
谢谢
表面张力与界面现象、物质性质、生 物医学等领域密切相关,因此具有广 泛的应用前景。
研究难点
表面张力与界面现象的复 杂性
表面张力与界面现象密切相关,但界面现象 的复杂性使得研究表面张力变得困难。
实验测量技术的局限性
目前实验测量表面张力的方法存在误差较大、测量 精度不高等问题,需要发展更精确的测量技术。
环境科学
01
在环境科学领域,表面张力可 用于研究水体表面的蒸发和凝 结过程,以及污染物在表面的 吸附和扩散等。
02
在水处理技术中,表面张力可 用于改善水的润湿性和分离效 果,从而提高水处理的效率和 效果。
表面张力的定义和成因

表面张力的定义和成因表面张力,也称作液体表面张力,是一种物理现象,指的是液体表面受到的内部分子相互作用力导致的抗拉性质。
简单来说,它就是液体表面上能够阻挡外部物体侵入的一种力量。
表面张力的单位是N/m(牛/米),通常以γ表示。
在实际应用中,人们常利用表面张力的原理来进行二次封装或制备材料,同时也可以用于分离纯化杂质和碎片。
接下来,我们将从定义和成因两个方面来探讨表面张力。
一、表面张力的定义表面张力定义为:液体表面上的单位长度作用在表面上的内部分子相互作用力。
换句话说,它是液体表面上一小段的长度所受到的拉力与该长度的比值。
想象一下,在一杯水表面上,如果你轻轻地放一根鬼火棒(木棍)跨越表面,你会感受到一定的抵抗力,这就是表面张力。
这种力不仅存在于水中,还存在于所有形态的液体表面上。
二、表面张力的成因表面张力的成因与液体内部分子之间的相互作用有关。
液体内部的分子一般由 London 引力和 van der Waals 引力相互吸引,这种内部吸引力可以保持整个液体的内部凝聚。
然而液体分子和外部分子之间的相互作用力却不同。
液体表面的分子由于周围的分子数量会减少,所以表面张力是表面分子间相互吸引的结果。
液体内部的分子可以相互吸引,但它们是近乎等距离排列的,所以它们对整体凝聚没有影响。
具体而言,液体表面分子间的相互吸引力较强,这种吸引力容易形成一个膜状的分子结构,防止外部分子进入液体,这就是所谓的表面张力。
表面张力可以通过下面公式求得:γ = F/l其中γ为表面张力,F为液体表面上的内部相互作用力,l为表面上的单位长度。
总而言之,表面张力是液体表面所受到的内部分子相互作用力的结果。
了解表面张力的成因和定义,可以在实际运用中更好地掌握这个物理现象,创造更多的可能。
表面张力和表面自由能

在一定条件下,表面张力与表面自由能的变化可 03 以相互转化。
表面张力和表面自由能的应用领域
在化学工程领域,表面张力和表面自由能可用于 研究化学反应过程中物质表面的变化。
在材料科学领域,表面张力和表面自由能可用于 研究材料表面的润湿性、吸附性能等。
物质种类对表面张力和表面自由能的影响
总结词
不同物质具有不同的分子结构和性质,因此其表面张力和表 面自由能也存在差异。
详细描述
一般来说,非极性物质的表面张力较小,而极性物质的表面 张力较大。同样,非极性物质的表面自由能较小,而极性物 质的表面自由能较大。此外,物质表面的粗糙度、吸附物质 等也会影响其表面张力和表面自由能。
01 表面张力是表面自由能的一种表现形式,它反映 了液体表面抵抗形变的能力。
02 表面自由能是物质表面所具有的能量,它由表面 张力和微观结构共同决定。
02 表面张力的大小与表面自由能成正比,即表面张 力越大,表面自由能越高。
表面张力与表面自由能在物理现象中的作用
表面张力在液体表面的波动、浸润、吸附等物理 01 现象中起着重要作用。
表面自由能物理意义
表面自由能是物质表面分子间相互作用的重要体现,它决定了物质表面的润湿性 、吸附性、凝聚和分散等性质。
在实际应用中,表面自由能的大小对工业生产、环境保护和生物医学等领域都有 重要影响,例如在材料科学、化学工程、生物医学工程等领域中都有广泛的应用 。
表面张力和表面自由能的关
03
系
表面张力与表面自由能的关系
在化妆品行业中,表面张力对化妆品的质地和持久度有着 重要影响。通过控制表面张力,可以优化化妆品的性能, 提高使用效果和舒适度。
表面张力的测定

05 数据记录与处理
数据记录
实验前准备
记录实验日期、实验环境温度和湿度、实验人员等信 息。
实验过程
详细记录实验步骤,包括使用的仪器、试剂、溶液的 浓度和体积等。
实验后处理
记录实验后样品的状态、处理方式以及废弃物处理方 式等信息。
数据处理
数据清洗
表面张力的大小反映了液体分子间的相互吸引力。
03
表面张力单位
01 表面张力通常用牛顿(N)或达因(dynes)作 为单位。
02 1牛顿等于100达因,是国际单位制中的标准单位。 03 在实际应用中,测量表面张力时通常使用达因单
位,因为它更小,更适合表示较小的数值。
表面张力影响因素
温度
温度对表面张力有显著影响, 一般来说,温度升高会使表面
3
未来研究方向
提出进一步研究的方向和重点,如改进实验方法、 研究其他因素对表面张力的影响等。
THANKS
步骤五
记录表面张力计的读数,并重 复实验以获得多次测量结果。
实验操作
操作一
确保实验环境干净整 洁,避免灰尘和杂质 的干扰。
操作二
使用恒温水槽控制温 度,确保实验温度稳 定且符合要求。
操作三
使用天平称量试样时, 要保证精度和准确性。
操作四
在倒入表面张力计的 样品池时,要缓慢且 平稳,避免产生气泡。
操作五
表面张力的测定
目录
Contents
• 表面张力定义 • 表面张力测定方法 • 实验材料与设备 • 实验步骤与操作 • 数据记录与处理 • 结果分析与结论
01 表面张力定义
表面张力定义
01
表面张力是什么意思?

表⾯张⼒是什么意思?
表⾯张⼒是液体分⼦所表现出的内聚⼒,这种⼒使得液体表⾯能够在⼀定程度上抵抗施加在其之上的外⼒。
正是由于表⾯张⼒,尽管硬币或者针的密度⼤于⽔,但它们可以浮在⽔⾯上。
之所以液体具有表⾯张⼒,是因为液体分⼦之间存在相互吸引的作⽤。
在液体中,每⼀个分⼦都被其他分⼦包围着,并且每⼀个分⼦都相互吸引着周围的分⼦,从⽽使分⼦所受的合⼒为零。
然⽽,液体表⾯的分⼦并没有完全被其他分⼦包围着。
它们会更强烈地吸引附近的其他分⼦,从⽽产⽣表⾯张⼒。
液体的表⾯就像⼀层薄膜,⼀直有保持⾃⾝完整性的倾向。
由于表⾯张⼒的存在,⽔滴才会形成,并且这种⼒也使空⽓在液体中形成⽓泡。
当液体表⾯的分⼦拉着表⾯的其他分⼦时,液体会倾向于形成球体。
⽽在没有重⼒的情况下,液滴会形成完美的球体。
这是因为球体是⼀个给定体积具有最⼩可能表⾯积的形状。
在现实中,⾬滴并没有呈现出完美的球形,这是因为地球引⼒对⾬滴产⽣向下的拉伸作⽤。
表⾯张⼒往往⾮常微弱,所以液滴很容易被重⼒或其他外⼒所扭曲。
尽管液体的表⾯张⼒很⼩,但有些动物,⽐如黾蝽,能够依靠这种⼒在⽔⾯上⾏⾛,⽽不会下沉。
表⾯张⼒的单位通常为达因/厘⽶或者毫⽜/⽶(达因是⼀种⼒的单位,1⽜顿等于10万达因),表⽰在单位距离上打破某⼀液体表⾯所需⼒的⼤⼩。
表⾯张⼒的⼤⼩取决于液体以及温度等其他因素。
例如,在20摄⽒度时,⽔的表⾯张⼒(界⾯为⽔-空⽓)为72.9达因/厘⽶,⽔银表⾯张⼒(界⾯为⽔银-空⽓)为486.5达因/厘⽶。
⽽在30摄⽒度时,⽔银的表⾯张⼒变为484.5达因/厘⽶。
表面张力和润湿张力
表面张力和润湿张力
表面张力和润湿张力是两种不同的物理现象,它们在液体和固体表面都起着重要的作用。
表面张力是指液体表面会呈现出一定的弹性和凝聚性,导致液体表面形成一个比较平坦的形态。
它主要是由于液体分子之间的相互作用力所引起的。
表面张力在许多物理现象中都有所体现,比如水滴在荷叶上呈现出的球形,或者小虫子在水面上自由行走等。
润湿张力则是液体在固体表面上的现象,当液体与固体接触时,两者之间会形成一个界面,这个界面上的张力就叫做润湿张力。
它主要是由于液体和固体之间的分子相互作用力所引起的。
润湿张力在许多实际应用中都非常重要,比如在涂层、印刷、涂胶等工艺中,润湿张力的控制至关重要。
总的来说,表面张力和润湿张力都是由于分子间相互作用力引起的,但它们分别发生在液体和固体表面上,对于不同的物理现象有着不同的影响和应用。
第二章 表面张力和三个公式
1. 用表面自由能计算: dx
肥皂膜
F l
W= 自由能 A = 自由能·2l·dx
12
2.1 表面张力和表面自由能
2. 用表面张力计算 肥皂膜保持张力平衡:
F 2 l
(肥皂膜有两个表面)
F 肥皂膜
W Fdx 2 表面张力 l dx
显然:
自由能 表面张力
f K max
r0 / C
20
式中r。为分子半径。
2.2 固体表面应力和表面能
上式表示材料中裂缝尺寸对抗拉强度的影响,裂缝尺寸越大,与理论最 大强度的偏差也越大。可见,决定材料强度的不是总孔隙率而是孔结构 特性。 英国学者布雷恰(Brichall)等人通过试验,提出一个观点:决定材 料强度的关键在于材料中某种尺寸以上的大孔所占的比例,大孔所占的 比例越少,最大尺寸孔的孔径越小,则强度越高,根据这个观点及所得 实验结果,他们配制了一种被称为MDF(Macro—Defect—Free) 水泥,用 这种水泥制得的水泥系材料抗折强度在100MPa以上,总孔隙率达15%左 右,并且使一般水泥系材料的脆性得到根本的改变,满足于轻质高强多 功能的要求。可以认为,由于这种材料中所含的孔隙的尺寸一般小于几 十个μ,正处于长程力的作用范围,因此,这样的孔对强度无妨碍,对 改性却有益。无机非金属材料大多数是多孔材料,因此正确的途径不在 于一味降低总孔隙率,而是要通过原材料选择及适当的工艺措施使孔缝 f 细化、均匀化。 K r 0 / C 21 max
15
2.2 固体表面应力和表面能
1. 表面张力 为使新产生表面上的原子停留在原来的位置上,相当于对该原子施加一 个外力,我们定义每单位长度上施加的外力为表面应力,用符号τ表 示。并定义固体表面的表面张力(作为表面张力的力学意义)由下式表 示:
表面张力
表面张力(1)定义或解释①促使液体表面收缩的力叫做表面张力[1]。
②液体表面相邻两部分之间,单位长度内互相牵引的力。
(2)单位表面张力的单位在SI制中为牛顿/米(N/m),但仍常用达因/厘米(dyn/cm),1dyn/cm = 1mN/m。
(3)说明①表面张力的方向和液面相切,并和两部分的分界线垂直,如果液面是平面,表面张力就在这个平面上。
如果液面是曲面,表面张力就在这个曲面的切面上。
②表面张力是分子力的一种表现。
它发生在液体和气体接触时的边界部分。
是由于表面层的液体分子处于特殊情况决定的。
液体内部的分子和分子间几乎是紧挨着的,分子间经常保持平衡距离,稍远一些就相吸,稍近一些就相斥,这就决定了液体分子不像气体分子那样可以无限扩散,而只能在平衡位置附近振动和旋转。
在液体表面附近的分子由于只显著受到液体内侧分子的作用,受力不均,使速度较大的分子很容易冲出液面,成为蒸汽,结果在液体表面层(跟气体接触的液体薄层)的分子分布比内部分子分布来得稀疏。
相对于液体内部分子的分布来说,它们处在特殊的情况中。
表面层分子间的斥力随它们彼此间的距离增大而减小,在这个特殊层中分子间的引力作用占优势。
因此,如果在液体表面上任意划一条分界线MN把液面分成a、b两部分。
F表示a部分表面层中的分子对b部分的吸引力,F6表示右部分表面层中的分子对a部分的吸引力,这两部分的力一定大小相等、方向相反。
这种表面层中任何两部分间的相互牵引力,促使了液体表面层具有收缩的趋势,由于表面张力的作用,液体表面总是趋向于尽可能缩小,因此空气中的小液滴往往呈圆球形状。
③表面张力F的大小跟分界线MN的长度成正比。
可写成F=σL或σ=F/L。
比值σ叫做表面张力系数,它的单位常用dyn/cm。
在数值上表面张力系数就等于液体表面相邻两部分间单位长度的相互牵引力。
液膜表面张力系数=液膜的表面能/液膜面积=F表面张力/(2*所取线段长)。
表面张力系数与液体性质有关,与液面大小无关。
表面张力
液体及其表面张力基本知识一、表面张力表面张力系数定义1表面张力系数定义2表面张力系数定义3例题1水和油边界的表面张力系数为α=1.8×10-2 N/m ,为了使1.0×10-3 kg 的油珠在水内散成半径为r =10-6 m 的小油滴,若油的密度为900 kg/m 3,问至少做多少功?影响表面张力系数的因素球形液面内外的压强差例题2将压强为p 0=1atm 的空气等温地压缩进肥皂泡内,最后吹成半径为r=2.5cm 的肥皂泡,求吹肥皂泡过程中所需做的功。
已知肥皂液的表面张力系数为4.5210-⨯N/m二、液体与固体接触处的表面现象三、毛细现象巩固1在20平方公里的湖面上,下了一场50mm的大雨,雨滴的半径r=1.0mm.。
设温度不变,求释放出来的能量。
2图是测表面张力系数的一种装置,先将薄铜片放入待测液体中,慢慢提起铜片,使它绝大部分都露出液面,刚要离开但还没有离开液面,测得此时所用的上提力f,既可测得表面张力系数。
设测液体与铜片的接触角θ=0,铜片的质量=5.0×10-4㎏,铜片的宽度L=3.977×10-2m,厚度d=2.3×10-4m,f=1.07×10-2N,求液体表面张力系数。
3一球形泡,直径等于1.0×10-5,刚处在水面下,如水面上的气压为1.0×105N·m-2,求泡内压强。
已知水的表面张力系数α=7.3×10-2N·m-14一个半径为1.0×10-2m的球形泡,在压强为1.0136×105N·m-2的大气中吹成。
如泡膜的表面张力系数α=5.0×10-2N·m-1,问周围的大气压强多大,才可使泡的半径增为2.0×10-2m?设这种变化在等温情况下进行的.5在深为h=2.0的水池底部产生许多直径为d=5.0×10-5m的气泡,当他们等温地上升到水面上时,这些气泡的直径多大?水的表面张力系数α=7.3×10-2N·m-1.6将少量水银放在两快水平的平玻璃板间.问什么负荷加在上板时,能使两板间的水银厚度处处都等于1.0×10-3m2?设水银的表面张力系数α=0.45N·m-1.,水银与玻璃角θ=135o.7在如图8-7所示的U形管中注以水,设半径较小的毛细管A的内径r=5.0×10-5m,较大的毛细管B的内径R=2.0×10-4m,求两管水面的高度差h.的表面张力系数为a=7.3×10-2N·m.8在内径为R1=2.0×10—3m的玻璃管中,插入一半径为R2=1.5×10—3m的玻璃棒,棒与管壁间的距离是到处一样的,求水在管中上升的高度.已知水的密度 103kg/m3,表面张力系数α=7.3×10—2N·m —1,与玻璃的接触角θ=0.9玻璃管的内径d=2.0×10-5m,长为L=0.20m,垂直插入水中,管的上端是封闭的.问插入水面下的那一段的长度应为多少,才能使管内外水面一样高?已知大气压P0=1.013×105N·m-2,水的表面张力系数=7.3×10-2N·m-1,水与玻璃的接触角.10将一充满水银的气压计下端浸在一个广阔的盛水银的容器中,读数为p=0.950×105N·m-2.(1)求水银柱高度.(2)考虑到毛细现象后,真正的大气压强多大?已知毛细管的直径d=2.0×10-3m,接触角π,水银的表面张力系数α=0.49N·m-1.(3)若允许误差 0.1%,求毛细管直径所能允许的极小值.11两铅垂玻璃平板部分浸入水中,设其间距为d=0.50mm,问两板间的水上述的高度h为多少,已知水的表面张力系数α=7.3×10—2N·m—1,与玻璃的接触角θ=0.12在半径r=0.30mm的毛细管内注入水,在管的下端形成一半径R=3.0mm的水滴,求管中水柱的高度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、 表面能
从功能关系来考察表面张力系数与液 体表面能的关系。见图5-6。
12
外力所作的功为
E A S S
(J· m-2)
即增加单位液面所增加的势能。 由上式可知, α 在数值上等于增加单位液 面时外力所作的功,从能量的角度看,其大小 等于增加单位液面时所增加的表面自由能。 那么液体表面能的减小可以通过下面任 一种自动过程来实现:
2
一、 表面张力和表面能
1、 表面张力
液体具有收缩其表面,使表面积 达到最小的趋势。这说明液体表面存 在着张力,这种张力称为表面张力。 表面张力产生的原因,可以用分 子间相互作用的分子力来加以解释。
3
分子间的平衡距离r0的数量级约 为10-10m。 当两个分子间的距离 r = r0 时,分 子间的作用力为零。
当两分子间的距离大于r0而在10-10~ 10-9m时,分子间的作用力表现为引力; 而当分子间的距离大于 10-9m时, 引力很快趋于零。
4
如果以10-9m为半径作一球面, 显然则只有在这个球面内的分子才 对位于球心上的分子有作用力。
分子作用球 ——分子引力作用范围是 半径为 10-9m 的球形,球的半径称为 分子作用半径。
3、肺泡的表面张力
表面活性物质在呼吸过程中起着重要 的作用: 1、稳定肺泡;2、减少呼吸功。
36
37
人的肺泡总数约为3亿个,各个肺泡的 大小不一,而且有些肺泡是相连的。 在充满空气的肺中,既有肺组织的弹 性力,又有衬在肺泡表面液层组成的 气、液界面上的表面张力。 而对于肺充气来说,大部分压力是来 克服表面张力的。 肺泡的表面液层中分布着有一定量的、 由饱和卵磷脂和脂蛋白组成的表面活性 物质,起降低表面张力系数的作用。
Δf =α×Δl
Δf 可以被分解为Δf1和Δf2,由于Δf2与 半径oc垂直,对附加压强不起作用, 故不考虑。
而Δf1的方向指向液体内部,其值为
Δf1 =Δl sinφ=α×Δl sinφ
18
作用于ΔS整个周界线--即其周长上的 表面张力,指向液体内部的分力总和为
f1 f1 sin l 2r sin
7
8
实验表明: f1、f2都与液面相切,并 与分界线 MN 相垂直,大小相等,方向 相反。而表面张力的大小F是和液面设想 的分界线MN的长度L成正比的,因此有
F =αL
α——液体的表面张力系数,其在数值上 等于沿液体表面作用在分界线单位长度上 的表面张力。 在国际单位制中,α的单位是(N· m-1)。 表面张力系数α与液体的性质和温度有关, 液体的α值还与液体的纯净度有关。
9
10
液体表面张力产生的原因,可以用液体分 子间相互作用的分子力来加以解释。不同的液 体,分子间的相互作用力不同。分子间相互作 用力愈大,相应的表面张力系数就愈大。 所有位于表面层内的液体分子,都要受 到垂直液面并指向液体内部的分子引力的作 用。表面层内的分子比液体内部的分子具有 更多的势能。
液体的表面能 —— 增加单位液体表面积所 作的功。其又称为表面自由能,是在等温 条件下能转变为机械能的表面内能部分。 这种势能是和液面的面积成正比的。
以 sinφ= r / R 代入上式得:
2r f1 R
2
此力是作用在半径为r的小圆面积上, 因此,ΔS曲面对液体内部 施加的附加压 强为:
19
2 P R
此式表明,球形液面的附加压强和表面张力 系数成正比,与曲率半径R成反比。曲率半 径越小,附加压强越大。
如果液面是凸的,曲率中心在液体内部,P取 正值,说明液面内的压强大于液面外的压强; 如果液面是凹的,曲率中心在液体外部, P取 负值,说明液面内的压强小于液面外的压强。
上式称为球形液面的拉普拉斯公式。
20
球形液膜内外的附加压强及实验:
21
由于液膜具有内外两个表面, 所以球形液膜内外的压强差 —— 球膜的附加压强:
4 PC PA R
22
23
一、毛细现象和气体栓塞 1、 毛细现象
(1)润湿现象 当液体和固体接触 时,液固界面之间会出现两种现象: 润湿和不润湿现象。
25
如果内聚力小于附着力,固体就被 润湿,即发生润湿现象。 如果内聚力大于附着力,固体上的 液滴不会展开,即发生不润湿现象。
接触角θ——当平衡时,在固体和液
体的界面处,液体表面切面经液面内部 与固体表面间的夹角。 其值介于00~1800之间,具体 由附着力和内聚力的大小来定。
26
27
附着力越大,θ越小,液体越能润湿 固体。 θ=00时,液体完全润湿固体。
1、 气体栓塞
气体栓塞——液体在细管中流动时,如 果管中有气泡,液体的液动就将受到阻 碍,气泡多时就可发生阻塞的现象。
32
Hale Waihona Puke 33四、 表面活性物质与表面吸附
表面活性物质 —— 凡是能够降低溶液 表面张力的物质。 其特点:是它的α较小,即单位面积上 的表面能较纯溶剂的表面能小。 表面非活性物质——凡是能够增大溶液 表面张力的物质。 其特点:是它的 α 较大,即单位面积上 的表面能较纯溶剂的表面能大。
自动减小S; 自动减小α; S和α两者都同时自动减小。 13
二、曲面下的附加压强
14
在图(a)中,液面是水平的,则 表面张力F也是水平的,因此作用在AB 周界上的表面张力相互平衡。P0与P产 生的压力也是相互平衡的。 如果液面是凸面,如图(b)所示, 因表面张力沿周界与液面相切,则沿周 界各个方向的表面张力F将产生一个指向 液体内部的合力(正压力)。 如果液面是凹面,如图(C)所示, 表面张力的合力将指向液体外部,对液 面下的液体则产生一个负压力。
38
吸气时,肺泡体积增大,而表面活性物 质的量不变,故单位面积上的表面活性 物质的量随体积增大而减小,结果使肺 泡的表面张力系数增大,即增大了表面 张力,从而限制了肺泡的继续膨胀;
呼气时,肺泡体积减小,单体面积 上的表面活性物质的量增多,减小了肺 泡的表面张力系数,即减小了表面张力, 从而防止了肺泡的过分萎缩。
第七章
第五节
一、
分子动理论
液体的表面现象
液体的界面
液体与气体的差别——气体分子间的 距离通常较大,而液体分子间的距离 缩短了,分子力的作用显著增加,液 体分子由于互相吸引,表现出气体分 子所没有的内聚力和自由表面。
1
液体区别于气体的主要特征之一:是它 和空气接触处有一个自由表面,和固体、 器官组织接触处有一个附着层。 在液体内部由于分子的紊乱运动, 液体在各个方向的物理性质都是完全 相同的,即各向同性。 在液体的表面,无论是在液体与空 气之间的自由表面,或是在两种不能混 合的液体之间的界面,或是在液体与固 体之间的界面,各个方向的物理性质就 不相同,即各向异性。
液体的表面层 —— 液体表面厚度等于 分子作用半径的一层。 在表面层内液体分子受力的情况 跟液体内部的液体分子的受力情况有 所不同。
5
6
可见,位于液体表面层内的液 体分子都受到了一个指向液体内部 的力的作用。在这些力的作用下, 液体表面就处于一种特殊的紧张状 态,在宏观上表现为一个被拉紧的 弹性薄膜而具有表面张力。 为了定义表面张力,我们可以设 想在液面上有一条线段MN,它把液 面划分成1和2两部份,如下图所示。
29
30
压强差使管内液面上升,液面上升 的高度 :
2 h co s rg
上式说明,毛细管中液面上升的高度是 与液体表面张力系数成正比,而与毛细 管的内径成反比,管径越细液面上升越 高。
31
对于不润湿管壁的液体,在毛细管 内的液面是凸的,液面内的压强高于液 面外的压强,管内的液面将下降至管外 液面之下,其高度差也可用上式计算, 此时接触角θ>π/2,故所得h为负,表示 管中液面下降。
39
肺泡上表面活性物质对表面张 力系数的调控作用,保证了呼吸过 程的正常进行。
实验表明,正常呼气后,肺泡 通常稳定在它最大尺寸的1/4, 即肺内还有余气,这使接下来 的吸气变得容易一些。
40
34
从溶质分子和溶剂分子间的相互作 用来看: 1、表面活性物质
其特点: 溶质分子(表面活性物
质 ) 与溶剂分子间的吸引力小于溶 剂分子间的吸引力。 表面吸附——表面活性物质在溶 液的表面层聚集并伸展成薄膜的 现象。
35
2、 表面非活性物质
其特点:溶质分子(表面活性物质) 与溶剂分子间的吸引力大于溶剂分子 间的吸引力。
24
同一种液体,对不同的固体来说, 它可以是润湿的,也可以是不润湿的。 润湿和不润湿现象就是液体和固体接触 处的表面现象。其差别是由液体分子与 固体分子之间的相互作用而形成的。可 以用其分子间相互作用力的大小来解释。 内聚力——液体分子之间的吸引力; 附着力 ——液体分子和固体分子之间 的吸引力。 润湿和不润湿的差别就在于是内聚 力小于或大于附着力。
15
与水平液面相比,由于液面弯曲, 凸液面下的液体的压强大于液体外部 的压强,凹液面下的液体的压强小于 液体外部的压强。 这种由于液面弯曲,由表面张力 所产生的压强,即弯曲液面内外的压 强差叫做附加压强,以P表示。 附加压强与哪些因素有关呢?下面 我们就球形液面的附加压强进行讨论。
16
17
作用在小面元ΔS周界线Δl上的表面 张力为
图5-10(a)表示附着力大于内聚力, 固体被润湿,θ小于900; 图5-10(b)表示内聚力大于附着力,液 体不润湿固体,θ大于900; θ=180 0 时为完全不润湿。
28
(2)毛细现象 毛细管——内径小于1mm的管子。
毛细现象—— 将毛细管的一端插 入液体中,若液体润湿管壁时,管 内液面上升,液面呈现凹弯月面; 若液体不润湿管壁时,管内液面则 下降,液面呈现凸弯月面的现象。