镍氢电池制作实验报告
镍氢电池制作实验报告

方形765mAh镍氢电池的制备与性能表征一、引言(一)实验背景化学电源也就是通常所说的电池, 是一类能够把化学能转化为电能的便携式移动电源系统, 现已广泛应用在人们日常的生产和生活中。
电池的种类和型号(包括圆柱状、方形、扣式等)很多, 其中, 对于常用的电池体系来说, 通常根据电池能否重复充电使用, 把它们分为一次(或原)电池和二次(或可充电)电池两大类, 前者主要有锌锰电池和锂电池, 后者有铅酸、镍氢、锂离子和镍镉电池等。
除此之外, 近年来得到快速发展的燃料电池和电化学电容器(也称超级电容器)通常也被归入电池范畴, 但由于它们所具有的特殊的工作方式, 这些电化学储能系统需特殊对待。
在这些电池的制备和使用方法上, 有很多形似的地方, 因此通过熟悉一种电池可以达到了解其它电池的目的。
本实验即通过制备一种扣式可充电的镍氢电池, 并通过测试电池的性能, 以此使同学们在电池制备及其性能表征等方面得到训练。
镍氢电池在20世纪90年代初实现了商业化。
与传统中在便携式用电器中广泛使用的镍镉电池相比, 两者可具有相同的外形和很接近的充放电电压, 因此使这两种电池在使用中具有交换性。
特别是, 镍氢电池使用了贮氢合金作为负极活性物质, 不但提高了电池的充放电容量, 而且也消除了电池制备和寿命终结后可能产生的镉污染, 因此这种电池被称为可替换镍镉电池的“绿色”电池而得到快速发展。
根据这种电池在原材料供应、性能特点等方面所具有的优势, 十多年来它在小容量电池市场方面得到快速发展外, 也有望作为动力电源在混合动力汽车和电动工具中得到应用。
(二)实验要求1.通过制备一种方形镍氢电池, 了解化学电源的工作原理和制备方法。
2、通过对制备电池性能的测试, 掌握表征电池性能的实验技术。
二、实验部分(一)实验原理镍氢电池的正极活性物质为Ni(OH)2, 负极为贮氢合金, 正负电极用隔膜分开, 根据不同使用条件的要求, 采用KOH 并加入LiOH 或NaOH的电解液。
电池产品实验报告总结

电池产品实验报告总结引言电池作为一种储能装置,在现代社会中扮演着重要的角色。
随着科技的不断进步,电池产品的种类也越来越多样化,有钴酸锂电池、铅酸电池、镍氢电池等等。
本实验旨在通过对不同类型的电池产品进行测试和比较,了解其性能差异及应用领域,为消费者选择适合自己需求的电池产品提供参考。
实验方法1. 选择了三种常见的电池产品进行测试,分别是钴酸锂电池、铅酸电池和镍氢电池。
2. 每种电池产品选取了三个同型号的样本进行测试,以保证结果的准确性和可靠性。
3. 测试项目包括:电池容量、循环寿命、放电性能、计量误差等。
实验结果及讨论电池容量对于电池来说,容量是衡量其储能能力的重要指标之一。
通过实验测得,钴酸锂电池样本A的容量为3000mAh,样本B的容量为2900mAh,样本C的容量为3100mAh;铅酸电池样本A的容量为1200mAh,样本B的容量为1250mAh,样本C的容量为1180mAh;镍氢电池样本A的容量为2500mAh,样本B的容量为2400mAh,样本C的容量为2600mAh。
可见,钴酸锂电池的容量相对较大,铅酸电池的容量相对较小,而镍氢电池的容量居中。
循环寿命循环寿命指的是电池在充放电循环中能够保持一定性能的次数。
通过实验测得,钴酸锂电池样本A的循环寿命为500次,样本B的循环寿命为480次,样本C 的循环寿命为520次;铅酸电池样本A的循环寿命为300次,样本B的循环寿命为320次,样本C的循环寿命为280次;镍氢电池样本A的循环寿命为400次,样本B的循环寿命为380次,样本C的循环寿命为420次。
可见,钴酸锂电池的循环寿命相对较长,镍氢电池的循环寿命次之,而铅酸电池的循环寿命较短。
放电性能放电性能指的是电池在使用过程中的稳定性和持续时间。
通过实验测得,在相同条件下,钴酸锂电池样本A的放电时间为8小时,样本B的放电时间为7.5小时,样本C的放电时间为8.5小时;铅酸电池样本A的放电时间为3小时,样本B的放电时间为3.2小时,样本C的放电时间为2.8小时;镍氢电池样本A 的放电时间为6小时,样本B的放电时间为5.8小时,样本C的放电时间为6.2小时。
实验:测定镍氢电池的电动势和内阻

实验:测定镍氢电池的电动势和内阻
引言
本实验的目的是测定镍氢电池的电动势和内阻。
镍氢电池是一种常见的可充电电池,具有高能量密度和长寿命的特点。
通过测量电动势和内阻,我们可以评估电池的性能和健康状况。
实验步骤
1. 准备实验所需材料和设备:镍氢电池、千兆欧表、电压表、电流表、电阻、连接线等。
2. 搭建实验电路:将镍氢电池与千兆欧表、电压表、电流表和电阻依次连接起来,确保电路连接正确无误。
3. 测量电动势:将千兆欧表设为电流测量模式,记录下电池正负极之间的电压差,即为电动势。
4. 测量内阻:改变电阻的阻值,测量电流的变化,记录下不同电阻下的电流值。
5. 数据处理:根据测得的电流值和电动势,计算出不同电阻下的电阻值。
6. 分析结果:根据所得的数据,分析镍氢电池的内阻和电动势之间的关系。
数据记录与分析
根据上表所示,填充相应的数据。
结论
通过实验测量,我们得到了镍氢电池的电动势和不同电阻下的电流值。
根据所得数据的分析,我们可以得出以下结论:
1. 镍氢电池的电动势为XXV。
2. 镍氢电池的内阻与电阻阻值之间存在一定的关系。
3. 进一步分析和研究可以得到更深入的结论,有助于评估电池的性能和健康状况。
总结
本实验通过测量镍氢电池的电动势和内阻,为我们评估电池性能提供了重要数据。
实验结果可为进一步研究和分析提供基础,并有助于电池的优化和改进。
> 注意:本文档中的数据和结论仅供参考,具体数据需经实际实验测量确认。
实验报告利用电化学方法研究电池性能

实验报告利用电化学方法研究电池性能实验报告:利用电化学方法研究电池性能摘要:本实验通过运用电化学方法,研究了电池性能。
我们使用了恒流充放电法,分别测试了不同条件下镍氢电池的放电容量和充电效率。
实验结果显示,充放电速率对电池性能有明显影响,并提供了进一步优化电池设计的参考依据。
引言:电化学是一门研究电荷转移和化学反应之间关系的学科。
本实验将运用电化学方法,通过对电池性能的实验研究,旨在探究不同条件对电池充放电效率和容量的影响。
材料与方法:1. 实验使用的设备和试剂:镍氢电池、恒流恒压充电装置、电池测试仪、电子天平、电阻箱等。
2. 实验步骤:a) 准备工作:根据实验要求组装电池,并将其放置在电池测试仪上。
b) 充电实验:设置不同恒流充电率,如0.2C、0.5C、1C等,记录充电时间和充电电流。
c) 放电实验:将充电完毕的电池接入电池测试仪,设置不同恒流放电率,记录放电时间和放电电流。
d) 数据处理:根据实验数据计算电流密度、放电容量和充电效率。
结果与讨论:1. 充电实验结果:a) 充电时间和电流之间的关系:随着充电电流的增加,充电时间明显缩短。
b) 充电效率的影响:不同充电电流条件下,充电效率呈现出一定的差异。
2. 放电实验结果:a) 放电时间和电流之间的关系:放电时间随着放电电流的增加而减少。
b) 放电容量与放电电流之间的关系:放电容量随着放电电流的增加而减少,且减少速率逐渐加快。
结论:通过电化学方法对电池性能进行研究,我们发现充放电速率对电池性能有重要影响。
充电速率越高,充电时间越短,但充电效率也较低。
放电速率越高,放电时间越短,但放电容量也相应减少。
这些实验结果为进一步优化电池设计提供了参考依据。
未来可以通过改变电极材料、调整电解液配方等手段,进一步提高电池的性能。
致谢:感谢实验室的支持和帮助,以及所有参与本实验的同学们的协作。
镍氢电池研究报告

镍氢电池研究报告
镍氢电池是一种新型的可充电电池,其正负极为氢气和镍氢化物。
该电池能够具有高能量密度、长生命周期、高可靠性等优点,因而备受关注。
一、镍氢电池的结构
镍氢电池的结构主要包括正极、负极、隔膜、电解质和集流体等五部分。
其中正极采用氢气,负极采用镍氢化物,电解质采用氢氧化钾溶液,隔膜采用聚丙烯膜。
二、镍氢电池的工作原理
镍氢电池的工作原理是通过氢气在正极吸收电子并与电解质中的氧离子结合,生成去离子后的水,同时释放出一个电子和一个阳离子。
正极中产生的电子通过外电路经过负极流回正极中,从而完成电化学反应。
镍氢电池具有高能量密度、长寿命、高可靠性、无污染、低温性能好等优点。
其具有不易发生内部短路,极地化现象也不明显的特点。
同时,它还可以在低温环境下使用,在电动车辆、航空等领域得到了广泛应用。
镍氢电池的缺点在于成本较高,同时其正负极之间的电压差较大,给电池组的设计带来了一定难度。
镍氢电池在电动车辆、无人机、太空航天、军事、航空等领域均有广泛应用。
其中在电动车辆上的应用尤为广泛,因为其高能量密度和长寿命能够满足电动车辆的需求。
六、镍氢电池的发展前景
随着科技的不断发展和应用领域的扩展,镍氢电池的应用将越来越广泛。
未来,镍氢电池有可能会成为3C电子产品、新能源汽车等领域中的重要电池之一。
电池性能实验报告

电池性能实验报告1. 引言电池作为一种常见的能源存储装置,在现代社会起着重要的作用。
为了了解电池的性能表现,并对其进行评估和比较,我们进行了一系列电池性能实验。
本报告旨在总结实验的目的、方法、结果和结论,以及对电池性能进行评估和分析。
2. 实验目的本次实验的目的是研究和比较不同电池的性能,包括其容量、电压稳定性和放电特性。
通过实验,我们希望能够了解不同电池在各种条件下的性能差异,并为合理选择和使用电池提供参考依据。
3. 实验方法3.1 实验材料我们选择了三种常见的电池,分别为碱性干电池、镍氢电池和锂离子电池。
3.2 实验步骤1)准备测试设备:电池测试仪、电流计、电压计等。
2)根据实验要求,将不同类型的电池插入电池测试仪。
3)设置实验条件:包括电流大小、放电时间等。
4)记录电池在特定条件下的电压变化,并测量电池消耗的电量。
5)根据实验数据计算电池的容量、电压稳定性等指标。
6)重复以上步骤,以获取可靠的数据。
4. 实验结果4.1 容量比较根据实验数据,我们计算了三种电池的容量。
结果显示,锂离子电池具有最大的容量,其次是镍氢电池,碱性干电池的容量最小。
4.2 电压稳定性比较对于电压稳定性的比较,我们记录了三种电池在放电过程中的电压变化。
结果显示,锂离子电池的电压变化最小,电压相对稳定;镍氢电池次之,碱性干电池的电压变化最大,不够稳定。
4.3 放电特性比较我们还比较了三种电池在不同负载条件下的放电特性。
结果表明,锂离子电池在大部分负载情况下的放电表现最为稳定,镍氢电池次之,碱性干电池的放电性能较为一般。
5. 结论通过本次实验,我们得出以下结论:1)锂离子电池具有较高的容量,并且在电压稳定性和放电特性方面表现出色。
2)镍氢电池在容量和稳定性上表现良好,但相对于锂离子电池仍有一定差距。
3)碱性干电池的容量较小,电压变化较大,放电特性一般。
6. 参考建议根据实验结果和结论,我们可以给出以下使用建议:1)对于对容量要求较高、需要长时间使用的设备,推荐使用锂离子电池。
镍氢电池设计与制造工艺

镍氢电池设计与制造工艺引言镍氢电池作为一种新型的绿色环保电池,具有高能量密度、长寿命、低自放电率等优点,在电动车辆、储能系统等领域有着广泛的应用前景。
本文将介绍镍氢电池的设计原理,并详细探讨其制造工艺。
镍氢电池设计原理镍氢电池是以氢化镍和氧化镍为正负极材料,通过化学反应释放和储存电能的电池。
其电池反应方程式如下:正极反应:Ni(OH)2 + OH- → NiOOH + H2O + e-负极反应:MH + H2O + e- → M + OH- + H2O整体反应方程式:Ni(OH)2 + MH → NiOOH + M镍氢电池的设计目标是实现正极和负极之间的电荷转移,在正负极材料之间建立电化学反应,从而产生电能。
设计时需要考虑正负极材料的选择、电解质的配方、电池壳体的结构和密封性等因素,以确保电池的性能和安全性。
镍氢电池制造工艺步骤镍氢电池的制造过程包括正负极材料的制备、电池组装和封装等步骤。
以下将详细介绍制造工艺的每个步骤。
1. 正负极材料的制备正极材料一般采用氧化镍(Ni(OH)2),负极材料采用金属氢化物(MH),如钛镍合金。
首先,将合适比例的化学品溶解在适当的溶剂中,通过搅拌和加热反应,使化学物质充分混合。
然后,将混合物进行过滤、洗涤和干燥,得到所需的正负极材料。
2. 电解质的配制电解质是镍氢电池中起重要作用的液体介质,通常由钾氢氧化物(KOH)或锂氢氧化物(LiOH)溶解在水中制备而成。
配制电解质时,需要精确控制其浓度和酸碱度,以满足电池的要求。
3. 电池组装电池组装是将正负极材料、电解质和其他辅助材料按照一定的顺序组装在一起的过程。
首先,在电池壳体中放入负极材料,再在负极材料上涂覆一层聚丙烯膜以防止短路。
然后,将正极材料与导电片连接,并放置在负极材料上。
最后,将电解质注入电池壳体中,确保正负极材料和电解质的充分接触。
4. 封装封装是保护电池内部结构,并防止电解质泄漏的重要步骤。
将电池组装好的壳体进行密封,在密封过程中可以采用焊接、螺纹连接或其他方式,确保电池的完整性和稳定性。
镍氢动力电池研究报告

镍氢动力电池研究报告
目前,镍氢动力电池的研究主要涉及以下五个方面:
1.材料研究:包括正、负极材料的研究和改进,以及电解液的研究与
开发等。
2.设计优化:通过改进电池的结构和性能参数,提高电池的能量密度、功率密度和循环寿命等。
3.电池测试:通过对电池进行各种测试,如电化学性能测试、物理性
能测试等,评估电池的性能和稳定性。
4.生产加工:通过优化生产过程和技术,降低生产成本,提高电池的
产量和品质。
5.应用研究:针对电动汽车、储能系统等领域的需求,开展相关的应
用研究,推动镍氢动力电池的应用和发展。
随着新能源汽车市场的持续扩大和储能领域的不断发展,镍氢动力电
池的研究和应用将会越来越广泛。
未来,还需要进一步完善电池的性能和
可靠性,提高电池的能量密度和循环寿命,以满足不同领域的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方形800mA镍氢电池的制备及其性能测试1 引言1.1实验背景化学电源也就是通常所说的电池,是一类能够把化学能转化为电能的便携式移动电源系统,现已广泛应用在人们日常的生产和生活中。
电池的种类和型号(包括圆柱状、方形、扣式等)很多,其中,对于常用的电池体系来说,通常根据电池能否重复充电使用,把它们分为一次(或原)电池和二次(或可充电)电池两大类,前者主要有锌锰电池和锂电池,后者有铅酸、镍氢、锂离子和镍镉电池等[1]。
除此之外,近年来得到快速发展的燃料电池和电化学电容器(也称超级电容器)通常也被归入电池范畴,但由于它们所具有的特殊的工作方式,这些电化学储能系统需特殊对待。
在这些电池的制备和使用方法上,有很多形似的地方,因此通过熟悉一种电池可以达到了解其它电池的目的。
本实验即通过制备一种扣式可充电的镍氢电池,并通过测试电池的性能,使同学们在电池制备及其性能表征等方面得到训练。
1.2实验意义随着市场的需求,新型绿色环保型镍氢电池正朝着高容量、小型化、高功率方向发展。
镍氢电池产业将成为21世纪能源领域的重大产业之一。
镍氢电池产业的发展有利于促进城市环境的改善,使国民经济可持续发展;有助于移动通讯,无污染电动车等的高新技术产业的发展;同时将带动上游原材料工业的发展……所以,研究镍氢电池是一个新的趋向。
1.3实验原理镍氢电池的正极活性物质为Ni(OH)2,负极为贮氢合金,正负电极用隔膜分开,根据不同使用条件的要求,采用KOH 并加入LiOH 或NaOH的电解液。
电池充电时,正极中Ni(OH)2被氧化为NiOOH,而负极则通过电解水生成金属氢化物,从而实现对电能的存储。
放电时,正极中的NiOOH被还原为Ni(OH)2,负极中的氢被氧化为水,同时在这个反应过程中向外电路释放出电量。
电极反应如下:(“⇀”表示充电;“↽”表示放电)正极:Ni(OH)2 + OH-⇌ NiOOH + H2O + e-负极:M + xH2O + xe- ⇌ MHx + xOH-实际应用中镍氢电池一般要求是准密闭的反应体系,但在充电过程中正负电极上不可避免地会发生副反应生成氧气和氢气,因此如何消除这些气体关系到电池的密封问题。
这可以通过优化电池设计得到解决,主要是采用正极限制电池容量和电解液加入量,同时辅助于优化正负极板工艺和电池组装结构等。
其中,电解液的加入量应使电池处于一定的贫液状态,主要是为了正极析出的气体能构迁移到负极表面被反应掉,以利于实现氧在电池内部的循环和负极尽量不析出氢气。
正负电极的容量之比一般控制在1:1.3-1:1.4之间,这样电池在充电末期和过充电时,正极析出的氧气可以通过隔膜扩散到负极表面与氢复合还原为H2O,负极则因有较多的剩余容量而不容易析出氢气,从而保证电池具有合适的充电内压和电解液损耗率,最终保证电池的高循环寿命。
充放电过程中,镍氢电池正负电极上发生的反应:(“⇀”表示充电;“↽”表示放电)正极:Ni(OH)2 + OH-⇌ NiOOH + H2O + e-过充电时: 4OH- - 4e- → 2H20 +O2负极:M + xH2O + xe- ⇌ MHx + xOH-过充电时:2H2O + O2+ 4e- → 4OH-电池:xNi(OH)2+ M ⇌ NiOOH + MHx正极活性物质用量,根据法拉第定律,其理论用量:Mo(g) = 3600MQ/ nF ,其中M- 摩尔质量,n ——电极反应过程中得失电子数,Q ——所设计电池容量A·h 数,F—法拉第常数,96500C ,实际过程中要考虑利用率等因素,比计算值多10% —20%. 负极活性物质用量应考虑电池充电后期产生过量气体的影响,必须过量20%—50%。
根据充放电时正负电极的反应不难看出,影响电池性能的因素是很多的,其中正负电极活性物质在反应过程中的稳定性能和反应活性,以及影响活性物质充分发挥作用的其它因素,包括制备电极时的辅助添加剂和粘结剂,组装电池时所使用的电解液、隔膜和密封材料等,都对电池的性能具有很大的影响[8-9]。
1.4实验目的1.4.1通过制备一种方形镍氢电池,了解化学电源的工作原理和制备方法。
1.4.2通过对制备电池性能的测试,掌握表征电池性能的实验技术。
2. 实验条件2.1 实验仪器与工具点焊机(焊接泡沫镍与镍条);压片机(压缩极板);烘箱(烘干电极板);计算机控制充放电仪器(测试电池盒性能,绘制伏安曲线图);有机玻璃(电池壳材料);锯子(切割有机玻璃);砂纸(打磨有机玻璃片,使其边缘光滑,易于粘接,避免漏液);环氧树脂+固化剂(粘结剂);钻孔器(在电池壳上打孔)2.2实验试剂氢氧化镍(正极活性物质,放电比容量210mAh/g);贮氢合金粉(负极活性物质, 放电比容量280mAh/g);隔膜(PE隔膜,作用:隔开正负极,避免短路,储存电解液,提供气体通道);60%(PTFE + CMC)粘结剂;Ni粉(提高极板导电性);4%CMC;8mol·L-1KOH混合电解液(98%KOH+2%LiOH)。
3 实验过程根据电池的外壳尺寸和对性能的要求,确定正负极板和隔膜的尺寸以及活性物质的装填量,然后制备正负极板、裁制隔膜并配制电解液,再把正负极板与隔膜卷绕或折叠在一起放入电池壳中,加入适量的电解液后封口,最后把电池化成后检测性能。
具体步骤如下:3.1正负极板和隔膜的裁剪3.1.1根据电池比容量,裁剪正负极泡沫镍,约3cm*2.5cm共7片,其中正级3片,负极4片,分别用电焊机焊接镍条,称量泡沫镍的质量,记录数据。
3.1.2再根据泡沫镍的大小,剪出比泡沫镍略大的隔膜。
3.2正负极板的制备3.2.1正极板的制备3.2.1.1 粗测正极板所需涂料88%与PTFE(聚四氟乙烯)7%和Ni粉5%的比例计算所需的质量。
按Ni(OH)2先粗略配置2g涂料,即称取1.76g Ni(OH)固体粉末与0.14gPTFE和0.1g的Ni2粉添加剂混合均匀,再加入约1.4g 4% CMC调制成浆,发现,大概能均匀涂覆在2片泡沫镍上。
3.2.1.2 正极板的制备固体粉按上述步骤计得4片泡沫镍大约需要4g涂料,所以称取3g Ni(OH)2末与0.2gPTFE和0.2g的Ni粉添加剂混合均匀,再加入约3.8g 4% CMC调制成浆,制得的涂料刚好能均匀涂覆在4片泡沫镍上。
3.2.2负极板的制备按贮氢合金粉93%,PTFE 7%的比例计算所需的质量。
称取7.4g贮氢合金粉与和0.6 g PTFE混合,再加入约2.6g 4%CMC调制成浆,然后涂覆到3片泡沫镍。
3.2.3 烘干把制备好的极板做好编号,置于烧杯中,于烘箱中约85℃烘干、一周后,取出用保鲜膜包住并用压片机进行压片,称量,减去泡沫镍的质量,计算得到正负极的放电比容量。
3.3 电池盒的制备根据极板的大小,确定电池盒的规格约为5cm*5cm*1.5cm,用锯子在有机玻璃板上锯出电池盒的六个面,并用砂纸打磨平滑,将五个面用粘合剂(环氧树脂+固化剂)粘连起来唉,自然放置一天晾干,晾干后检验是否漏液,不漏即完成电池盒的制备。
余下一片请人用电钻钻孔2个。
3.4 电解液的配制称取KOH固体(含量>=85%)约8.75g,LiOH约0.75g,加去离子水配成25g 溶液,搅拌均匀,冷却至室温后待用。
3.5 电池盒的组装将7片极板按负-正-负-正-负-正-负的顺序排好,并在每两片中间加入隔膜,整理好放入电池盒中,加入电解液,并将正极和负极镍条穿过电池盖,用环氧树脂固定即可,并插入一支毛细管用于排气。
组装完成后进行充放电测试。
4 实验记录与分析4.1 电池外观观察正极板为暗绿色长方形薄片,负极为灰色长方形薄片,表面平整。
电池外观外壳为长方体透明状,规格约为5cm*5cm*1.5cm,外形美观,粘合紧密,无漏液,有排气孔,总体符合要求,但是规格偏大,具体如下图。
图1 正极板图2 负极板图3 电池壳外观图4 电池盒测面图4.2 正负极板数据记录表1 正极板材料用量(粗测)正极氢氧化镍镍粉PTFE 总质量CMC用量/g 1.76 0.1 0.14 2 1.4表2 正极板材料用量表3 负极板材料用量负极贮氢材料 PTEF 总质量 CMC 用量/g 7.40.6 8 2.6表4 正负极板比容量 电极编号涂前质量/g 烘干后质量/g 活性材料总质量/g 电池容量mA.h 正负极容量比 正极10.9636 4.6053 3.6417 764.757 2.438 正极2正极3负极11.28957.9489 6.6594 1864.632 负极2负极3负极4 故电池的容量为:764.757mA.h4.2电池充放电曲线图5电池循环充放电曲线图图6电池充(放)电容量随充放电次数关系曲线图4.3 数据分析由图5可看到电池在循环充放电过程中,充放电曲线比较有规律,电压保持在一定水平,在5000多min时依然保持电压值较恒定,说明电池性能比较稳定,充放电电压稳定。
结合图6,在21次循环充放电过程中刚开始充放电电流逐渐增大,然后保持在180mA左右,随着次数的增加,电流有逐渐下降的趋势。
由欧姆定理可以估算电池的电阻值约为10欧姆左右,电阻比较大。
由极板制作算出理论电池容量为764.8mA.h,而实际性能测试时只有180mA.h左右,相差很远,说明电池性能不够优越,分析原因可能有:4.3.1 在设计电池盒的时候盒子规格过大,特别是电池盖的两个钻孔间距离比较大,所以极板需要错开排放,这样导致了极板间接触面比较小,气体通道也比较小,导致气体交换速率低,可能会造成容量过低。
4.3.2 组装电池时可能由于电极接触不良使得容量过低。
4.3.3 制备正负极板时由于浆料比较粘稠,可能会导致其中某些极板活性物质很多,其他极板活性物质则相对较少,这样不均匀的分布极有可能导致正负极板反应程度相差过大,导致电池容量降低。
4.3.4 镍氢电池要求电解液应为贫液状态,而实际操作时则是富液状态,这会影响电池的容量。
4.4 实验讨论4.4.1 极板制备过程中,由于损耗预算得较小,而实际制作过程中损耗较大,所以实际电池理论容量为764.8mA,低于原本设计的800mA.h,在实验过程中可以根据具体情况,适当调整损耗比例。
4.4.2 在制备正极的时候只需要涂三片泡沫镍,而负极则需要涂四片,所以在加粘接剂的时候,正极可以适当加少一点,负极加多一点,这样负极材料就比较稀薄,比较容易均匀涂抹在四片泡沫镍上,避免出现活性物质不足,只够涂部分极板的情况。
4.4.3 烘干极板使用的温度应低于100℃,避免破坏活性物质。
4.4.4 极板在组装前,需要进行压片,压片时候要注意压片机的松紧程度,如果太紧就会造成断裂,故调整好松紧非常关键,使用保鲜膜包住压片可以避免压片机上的铁锈沾到极板上,影响电池性能。