二次函数在闭区间上的最值(可用)

合集下载

函数专题:二次函数在闭区间上的最值问题-【题型分类归纳】

函数专题:二次函数在闭区间上的最值问题-【题型分类归纳】

函数专题:二次函数在闭区间上的最值问题一、二次函数的三种形式1、一般式:()()20=++≠f x ax bx c a2、顶点式:若二次函数的顶点为(),h k ,则其解析式为()()()20=-+≠f x a x h k a 3、两根式:若相应一元二次方程20++=ax bx c 的两个根为1x ,2x ,则其解析式为()()()()120=--≠f x a x x x x a二、二次函数在闭区间上的最值二次函数在区间上的最值,核心是函数对称轴与给定区间的相对位置讨论, 一般为:对称轴在区间的左边、中间、右边三种情况.设()()20=++≠f x ax bx c a ,求()f x 在[],∈x m n 上的最大值与最小值。

将()f x 配方,得顶点为24,24⎛⎫-- ⎪⎝⎭b ac b a a ,对称轴为2=-b x a (1)当[],2-∈bm n a时, ()f x 的最小值为2424-⎛⎫-=⎪⎝⎭b ac bf a a , ()f x 的最大值为()f m 与()f n 中的较大值; (2)[],2-∉bm n a时, 若2-<bm a,由()f x 在[],m n 上是增函数,则()f x 的最小值为()f m ,最大值为()f n ;若2->bn a,由()f x 在[],m n 上是减函数,则()f x 的最小值为()f n ,最大值为()f m ;三、二次函数在闭区间上的最值类型1、定轴定区间型:即定二次函数在定区间上的最值,其区间和对称轴都是确定的,要将函数配方,再根据对称轴和区间的关系,结合函数在区间上的单调性,求其最值(可结合图象);2、动轴定区间型:即动二次函数在定区间上的最值,其区间是确定的,而对称轴是变化的,应根据对称轴在区间的左、右两侧和穿过区间这三种情况分类讨论,再利用二次函数的示意图,结合其单调性求解;3、定轴动区间型:即定二次函数在动区间上的最值,其对称轴确定而区间在变化,只需对动区间能否包含抛物线的定点横坐标进行分类讨论;4、动轴动区间型:即动二次函数在动区间上的最值,其区间和对称轴均在变化,根据对称轴在区间的左、右两侧和穿过区间这三种情况讨论,并结合图形和单调性处理。

二次函数在各种区间上的最值

二次函数在各种区间上的最值

二次函数在各区间上的最值一、知识要点:一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。

一般分为:对称轴在区间的左边,中间,右边三种情况.设,求在上的最大值与最小值。

分析:将配方,得顶点为、对称轴为当时,它的图象是开口向上的抛物线,数形结合可得在[m,n]上的最值:(1)当时,的最小值是的最大值是中的较大者。

(2)当时若,由在上是增函数则的最小值是,最大值是若,由在上是减函数则的最大值是,最小值是当时,可类比得结论。

二、例题分析归类:(一)、正向型是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1. 轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。

例1.函数在区间[0,3]上的最大值是_________,最小值是_______。

解:函数是定义在区间[0,3]上的二次函数,其对称轴方程是,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上,如图1所示。

函数的最大值为,最小值为。

图1练习. 已知,求函数的最值。

解:由已知,可得,即函数是定义在区间上的二次函数。

将二次函数配方得,其对称轴方程,顶点坐标,且图象开口向上。

显然其顶点横坐标不在区间内,如图2所示。

函数的最小值为,最大值为。

图22、轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。

例2. 如果函数定义在区间上,求的最小值。

解:函数,其对称轴方程为,顶点坐标为(1,1),图象开口向上。

如图1所示,若顶点横坐标在区间左侧时,有,此时,当时,函数取得最小值。

图1如图2所示,若顶点横坐标在区间上时,有,即。

当时,函数取得最小值。

图2如图3所示,若顶点横坐标在区间右侧时,有,即。

二次函数在指定区间上的最值

二次函数在指定区间上的最值
1. 如果函数开口向上(a>0),函数在 闭区间上的最小值为顶点处取值,最大 值为区间端点Βιβλιοθήκη 值。实例二详细描述
2. 如果函数开口向下(a<0), 且对称轴在区间的左侧,函数在 区间的最大值为顶点处取值,最 小值为右侧端点取值。
总结词:对于二次函数在半开半 闭区间上的最值求解,需要考虑 函数的开口方向、对称轴以及区 间端点位置。
次数
二次函数为二次函数,是 一元函数的重要代表
二次函数的图形表示
开口方向
根据a的正负性,开口向上或 向下
顶点
二次函数的极值点,也是函数图 像的对称轴
区间
根据a、b、c的数值确定函数的单 调性,从而确定在某个区间的最值
二次函数的对称轴和顶点
对称轴
$x = -\frac{b}{2a}$,这是二次函数图像的对称轴
1. 如果函数开口向上(a>0), 且对称轴在区间的左侧,函数在 区间的最小值为顶点处取值,最 大值为右侧端点取值。
3. 对于对称轴不在区间内的函数 ,其最值情况与上述情况类似, 只需将对称轴与区间的关系代入 求解即可。
实例三:二次函数在多个区间上的最值求解
总结词:对于二次函 数在多个区间上的最 值求解,需要分别考 虑每个区间的开口方 向、对称轴以及区间 端点位置。
详细描述
1. 对于每个区间,需 要分别判断函数的开 口方向和对称轴位置 ,确定最值点。
2. 对于多个区间的情 况,需要分别求解每 个区间的最值,并考 虑区间的端点位置进 行取舍。
3. 在求解多个区间最 值时,需要注意每个 区间之间的端点取舍 情况,确保得到正确 的最值。
05
结论与展望
二次函数在指定区间上最值的求解方法总结

二次函数在闭区间上的最值估计

二次函数在闭区间上的最值估计

( —1 , [ , f )+ ∈ 一l
( )当 一 >1 即 m <一2时 ( 在 [ , 4 , ) 一1
( 1 e ed- + + ) ) 一( 1 e - + ~ - ) 『
6 ( ) e+c = [ +1
H +
{:1:: ::或 二1 : { : ≥

r lm < ≥<— ≥

, 1



l 。

1 。
l m < 一 ++ ≥ <

J 一+—<: < < l <1,n 2 . 一 — n 一 m

证 明 因为 ( )的对称 轴 为 :一 ,
+ // T


÷
( )当 一 <一1 且 >2时 ( 在 [ , 1 , , ) 一1


/ /
,芝 / 7
中学数学 杂志
20 0 8年第 1 期 1
二次 函数 在 闭 区间上 的 最 值估 计
甘肃成县陇南师范高等专科 学校数学系 720 450 段克峰
f < <号 一 n一 吾

卜 I 1
m 1 <_ 一 < _
< 0 m < 0 j


此 与 m >2无 公共 元素 , 以无 解. 所

一 m
+ n <
( )当 一1≤ 一 <0 即 0<, 1 2 , n≤ 时 ( )

吉<+ +< mn
1 H I
< 一 + <
在 闭 区问 [ , ] 为单调 递减 函数 , 一1 一 上 在闭 区 间 [ ,] 为单调 递增 函数 ( 图 2 , 一 1上 如 ) 则有

最全二次函数区间的最值问题(中考数学必考题型)

最全二次函数区间的最值问题(中考数学必考题型)

二次函数的最值问题二次函数的最值问题,是每年中考的必考题,也是考试难点,经常出现在压轴题的位置,解决二次函数的最值问题,特别是含参数的二次函数,一定要考虑二次函数的三个要素:开口方向,对称轴,自变量的取值范围,对于二次函数能够分析出三要素,二次函数的问题就迎刃而解了。

例1.对于二次函数342+-=x x y(1)求它的最小值和最大值.(2)当1≤x ≤4时,求它的最小值和最大值.(3)当-2≤x ≤1时,求它的最小值和最大值.(4)二次函数的最值与哪些因素有关?对于给定的范围,最值可能出现在哪些位置?练习1.二次函数y =x 2+2x ﹣5有( )A .最大值﹣5B .最小值﹣5C .最大值﹣6D .最小值﹣6练习2.在二次函数y =x 2﹣2x ﹣3中,当0≤x ≤3时,y 的最大值和最小值分别是( )A .0,﹣4B .0,﹣3C .﹣3,﹣4D .0,0练习3若抛物线y =﹣x 2+4x +k 的最大值为3,则k = .练习4(多元消参,利用平方的性质确定自变量的取值范围)若实数a 、b 满足a +b 2=2,则a 2+5b 2的最小值为 .练习5如图,P 是抛物线y =x 2﹣2x ﹣3在第四象限的一点,过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,求四边形OAPB 周长的最大值及点P 的横坐标练习6.(回归教材)如图,一张正方形纸板的边长为8cm ,将它割去一个正方形,留下四个全等的直角三角形(图中阴影部分).设AE =BF =CG =DH =x (cm ),阴影部分的面积为y (cm 2).(1)求y 关于x 的函数解析式并写出x 的取值范围;(2)当x 取何值时,阴影部分的面积最大,最大面积是多少.一、对开口方向(二次项前面系数)进行讨论例2.当 41≤≤x 时,二次函数a ax ax y 342+-= 的最大值等于6.求二次项系数a 的值练习1已知二次函数y =mx 2+2mx ﹣1(m >0)的最小值为﹣5,则m 的值为( )A .﹣4B .﹣2C .2D .4练习2已知二次函数y =mx 2+(m 2﹣3)x +1,当x =﹣1时,y 取得最大值,则m = . 练习3已知二次函数y =mx 2+2mx +1(m ≠0)在﹣2≤x ≤2时有最小值﹣2,求m 的值二、对二次函数的对称轴的位置进行讨论例3.当 12≤≤x -时,二次函数a ax x y 342+-= 的最小值等于-1.求a 的值.变式1当﹣2≤x ≤1时,二次函数y =﹣(x ﹣m )2+m 2+1有最大值4,求实数m 的值.变式2当﹣1≤x ≤1时,函数y =﹣x 2﹣2mx +2n +1的最小值是﹣4,最大值是0,求m 、n 的值.三、对二次函数的x 取值范围进行讨论例4.当 2+≤≤a x a 时,二次函数a x x y 342+-= 的最大值等于-6.求a 的值.练习1.当a ﹣1≤x ≤a 时,函数y =x 2﹣2x +1的最小值为1,求a 的值.练习2.若t ≤x ≤t +2时,二次函数y =2x 2+4x +1的最大值为31,求t 的值练习3.已知二次函数y =﹣x 2+6x ﹣5.当t ≤x ≤t +3时,函数的最大值为m ,最小值为n ,若m ﹣n =3,求t 的值.练习4.设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于任何一个二次函数,它在给定的闭区间上都有最小值.求函数y =x 2﹣4x ﹣4在区间[t ﹣2,t ﹣1](t 为任意实数)上的最小值y min 的解析式.练习5.若关于x 的函数y ,当t ﹣≤x ≤t +时,函数y 的最大值为M ,最小值为N ,令函数h =,我们不妨把函数h 称之为函数y 的“共同体函数”.若函数y =﹣x 2+4x +k ,是否存在实数k ,使得函数y 的最大值等于函数y 的“共同体函数“h 的最小值.若存在,求出k 的值;若不存在,请说明理由.拓展:C 2的解析式为:y =a (x +2)2﹣3(a >0),当a ﹣4≤x ≤a ﹣2时,C 2的最大值与最小值的差为2a ,求a 的值.作业:1.矩形的周长等于40,则此矩形面积的最大值是2.若实数x ,y 满足x +y 2=3,设s =x 2+8y 2,则s 的取值范围是 .3.已知二次函数y =ax 2+4x +a ﹣1的最小值为2,则a 的值为 .4.已知实数满足x 2+3x ﹣y ﹣3=0,则x +y 的最小值是 .5.若二次函数y =﹣x 2+mx 在﹣2≤x ≤1时的最大值为5,则m 的值为6.当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为1,则a 的值为7.已知二次函数y =122+-ax ax ,当30≤≤x 时,y 的最大值为2,则a 的值为8.如图,在Rt △ABC 中,∠B =90°,AB =6cm ,BC =8cm ,点P 从A 点开始沿AB 边向点B 以1cm /s 的速度移动,点Q 从B 点开始沿BC 边向点C 以2cm /s 的速度移动,则P 、Q 分别从A 、B 同时出发,经过多少秒钟,使△PBQ 的面积最大.9.设a、b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.若二次函数y=x2﹣x﹣是闭区间[a,b]上的“闭函数”,求实数a,b的值.10.抛物线y=x2+bx+3的对称轴为直线x=1.(1)b=;(2)若关于x的一元二次方程x2+bx+3﹣t=0(t为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是.11.已知关于x的二次函数y1=x2+bx+c(实数b,c为常数).(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的表达式;(2)若b2﹣c=0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值;(3)记关于x的二次函数y2=2x2+x+m,若在(1)的条件下,当0≤x≤1时,总有y2≥y1,求实数m的最小值.12.已知抛物线y=﹣2x2+(b﹣2)x+(c﹣2020)(b,c为常数).(1)若抛物线的顶点坐标为(1,1),求b,c的值;(2)若抛物线上始终存在不重合的两点关于原点对称,求c的取值范围.(3)在(1)的条件下,存在正实数m,n(m<n),当m≤x≤n时,恰好,求m,n的值.。

二次函数在闭区间上的最值问题

二次函数在闭区间上的最值问题

第三讲 二次函数在闭区间上的最值问题 一.知识点介绍1.区间的概念设a 、b 是两个实数,且a<b ,规定:说明:① 对于[a,b],(a,b),[a,b),(a,b]都称数a 和数b 为区间的端点,其中a 为左端点,b 为右端点,称b-a 为区间长度;②在数轴上,这些区间都可以用一条以a 和b 为端点的线段来表示,在图中,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点;③实数集R 也可以用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”,还可以把满足x ≥a, x>a, x ≤b, x<b 的实数x 的全体分别表示为[a,+∞)、(a,+∞)、(-∞,b]、(-∞,b)。

我们把以上区间记为A ,若x 是A 中的一个数,就说x 属于A ,记作x ∈A 。

否则就说x 不属于A ,记作x ∉A 。

2. 二次函数f(x)=ax 2+bx+c(a≠0)在x ∈[α,β]上的最值: 当a>0时,有三种情况:从上述a>0的三种情况可得结论:(1)若[,]2baαβ-∈,则当2b x a =-时,2min4()24b ac b y f a a-=-=,它的最大值为()f α与()f β中较大的一个。

(2) 若[,]2baαβ-∉,则最大值为()f α与()f β中较大的一个,另一个即为最小值。

当a<0可作同样处理。

二.例题讲解:类型一“轴定区间定”例1:已知f(x)=x 2-x+2,当x 在以下区间内取值时,求f(x)的最大值与最小值。

(1) x ∈[-1,0] (2) x ∈[0,1] (3) x ∈[1,2]变式1:求y =的最值。

变式2:已知0≤x≤1,求y =的最值。

变式3:求函数y x =+的最小值。

类型二“轴变区间定”例2:求函数f(x)=2x 2-2ax+3在区间[-1,1]上的最小值。

二次函数在闭区间上的最值(详解)

二次函数在闭区间上的最值(详解)

二次函数在闭区间上的最值(详解)二次函数在闭区间上的最值一、知识要点:一元二次函数在闭区间上的最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。

一般分为对称轴在区间的左边,中间,右边三种情况。

设函数f(x)=ax^2+bx+c(a≠0),求f(x)在x∈[m,n]上的最大值与最小值。

分析:将f(x)配方,得顶点为(-b/2a,f(-b/2a)),对称轴为x=-b/2a。

当a>0时,它的图像是开口向上的抛物线,数形结合可得在[m,n]上f(x)的最值:1)当-b/2a∈[m,n]时,f(x)的最小值是f(-b/2a),f(x)的最大值是max{f(m),f(n)}。

2)当-b/2a∉[m,n]时,若-b/2a<m,由f(x)在[m,n]上是增函数则f(x)的最小值是f(m),最大值是max{f(-b/2a),f(n)};若n<-b/2a,由f(x)在[m,n]上是减函数则f(x)的最大值是f(m),最小值是min{f(-b/2a),f(n)}。

当a<0时,可类比得结论。

二、例题分析归类:一)、正向型是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1.轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。

例1.函数y=-x^2+4x-2在区间[0,3]上的最大值是6,最小值是-2.练.已知函数f(x)=x^2+x+1(x≤3),求函数f(x)的最值。

2、轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。

例2.如果函数f(x)=-x^2+2x+t在区间[t+1,t+2]上,求f(x)的最值。

例3.已知f(x)=-x^2-4x+3,当x∈[t,t+1](t∈R)时,求f(x)的最值。

含参数的二次函数在闭区间上的最值问题

含参数的二次函数在闭区间上的最值问题

含参数的二次函数在闭区间上的最值问题含参数的二次函数在闭区间上的最值问题导语:含参数的二次函数在闭区间上的最值问题是数学中常见的优化问题之一。

通过分析函数的性质和求导,我们可以找到函数在给定闭区间上的最大值或最小值。

本文将从简单到复杂的方式,深入探讨这个主题,并提供一些实际例子来帮助读者更好地理解。

引言: 含参数的二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为实数且a≠0。

在闭区间[a, b]上求函数的最值,可以通过以下步骤进行。

一、函数的性质分析1. 我们可以观察函数的开口方向。

如果a>0,函数开口向上,最值为最小值;如果a<0,函数开口向下,最值为最大值。

这个性质对于我们确定最值的区间非常重要。

2. 我们可以通过求导来确定函数的驻点。

驻点是指函数斜率为零的点,可能是最值点的候选。

对于f(x) = ax^2 + bx + c,求导得到f'(x) =2ax + b。

令f'(x) = 0,解得x = -b/2a。

这个x值就是函数的驻点,我们需要判断它是否在闭区间[a, b]上。

3. 我们可以通过比较函数在闭区间的端点值和驻点值来确定最值。

根据前述观察,如果a>0,我们比较f(x)在[a, b]的端点值和驻点值,取较小的值作为最小值;如果a<0,我们比较f(x)在[a, b]的端点值和驻点值,取较大的值作为最大值。

二、实际例子假设我们要找到函数f(x) = x^2 + bx + c在闭区间[1, 3]上的最小值。

1. 观察函数的开口方向。

由于a=1>0,说明函数开口向上,最值为最小值。

2. 求导。

对函数f(x)求导得f'(x) = 2x + b。

令f'(x) = 0,解得x = -b/2。

这个x值就是函数的驻点。

3. 比较端点值和驻点值。

在闭区间[1, 3]中,我们计算f(1),f(3)和f(-b/2)的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数在闭区间上的最值一、 知识要点:一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。

一般分为:对称轴在区间的左边,中间,右边三种情况.设f x ax bx c a ()()=++≠20,求f x ()在x m n ∈[],上的最大值与最小值。

分析:将f x ()配方,得顶点为--⎛⎝ ⎫⎭⎪b a ac b a 2442,、对称轴为x ba =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值:(1)当[]-∈b am n 2,时,f x ()的最小值是f b a ac ba f x -⎛⎝ ⎫⎭⎪=-2442,()的最大值是f m f n ()()、中的较大者。

(2)当[]-∉ba m n 2,时 若-<b am 2,由f x ()在[]m n ,上是增函数则f x ()的最小值是f m (),最大值是f n ()若n ba<-2,由f x ()在[]m n ,上是减函数则f x ()的最大值是f m (),最小值是f n ()当a <0时,可类比得结论。

二、例题分析归类: (一)、正向型是指已知二次函数和定义域区间,求其最值。

对称轴与定义域区间的相互位置关系的讨论往往成为解决这类问题的关键。

此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变。

1. 轴定区间定二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。

例1. 函数y x x =-+-242在区间[0,3]上的最大值是_________,最小值是_______。

解:函数y x x x =-+-=--+224222()是定义在区间[0,3]上的二次函数,其对称轴方程是x =2,顶点坐标为(2,2),且其图象开口向下,显然其顶点横坐标在[0,3]上,如图1所示。

函数的最大值为f ()22=,最小值为f ()02=-。

图1练习. 已知232x x ≤,求函数f x x x ()=++21的最值。

解:由已知232x x ≤,可得032≤≤x ,即函数f x ()是定义在区间032,⎡⎣⎢⎤⎦⎥上的二次函数。

将二次函数配方得f x x ()=+⎛⎝⎫⎭⎪+12342,其对称轴方程x =-12,顶点坐标-⎛⎝ ⎫⎭⎪1234,,且图象开口向上。

显然其顶点横坐标不在区间032,⎡⎣⎢⎤⎦⎥内,如图2所示。

函数f x ()的最小值为f ()01=,最大值为f 32194⎛⎝ ⎫⎭⎪=。

图22、轴定区间变二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。

例2. 如果函数f x x ()()=-+112定义在区间[]t t ,+1上,求f x ()的最小值。

解:函数f x x ()()=-+112,其对称轴方程为x =1,顶点坐标为(1,1),图象开口向上。

如图1所示,若顶点横坐标在区间[]t t ,+1左侧时,有1<t ,此时,当x t =时,函数取得最小值f x f t t ()()()min ==-+112。

图1如图2所示,若顶点横坐标在区间[]t t ,+1上时,有t t ≤≤+11,即01≤≤t 。

当x =1时,函数取得最小值f x f ()()min ==11。

图2如图3所示,若顶点横坐标在区间[]t t ,+1右侧时,有t +<11,即t <0。

当x t =+1时,函数取得最小值f x f t t ()()min =+=+112综上讨论,⎪⎩⎪⎨⎧<+≤≤>+-=0110,11,1)1()(22mint t t t t x f图8例3. 已知2()23f x x x =-+,当[1]()x t t t ∈+∈R ,时,求()f x 的最大值. 解:由已知可求对称轴为1x =.(1)当1t >时,2min max ()()23()(1)2f x f t t t f x f t t ∴==-+=+=+,.(2)当11t t +≤≤,即01t ≤≤时,.根据对称性,若2121≤++t t 即102t ≤≤时,2max ()()23f x f t t t ==-+.若2121>++t t 即112t <≤时,2max ()(1)2f x f t t =+=+.(3)当11t +<即0t <时,2max ()()23f x f t t t ==-+.综上,⎪⎪⎩⎪⎪⎨⎧≤+->+=21,3221,2)(22maxt t t t t x f 观察前两题的解法,为什么最值有时候分两种情况讨论,而有时候又分三种情况讨论呢?这些问题其实仔细思考就很容易解决。

不难观察:二次函数在闭区间上的的最值总是在闭区间的端点或二次函数的顶点取到。

第一个例题中,这个二次函数是开口向上的,在闭区间上,它的最小值在区间的两个端点或二次函数的顶点都有可能取到,有三种可能,所以分三种情况讨论;而它的最大值不可能是二次函数的顶点,只可能是闭区间的两个端点,哪个端点距离对称轴远就在哪个端点取到,当然也就根据区间中点与左右端点的远近分两种情况讨论。

根据这个理解,不难解释第二个例题为什么这样讨论。

对二次函数的区间最值结合函数图象总结如下:当a >0时⎪⎪⎩⎪⎪⎨⎧+<-+≥-=))((212)())((212)()(21max 如图如图,,n m a b n f n m a b m f x f ⎪⎪⎪⎩⎪⎪⎪⎨⎧<-≤-≤->-=)(2)()(2)2()(2)()(543m i n 如图如图如图,,,m a b m f n a b m a b f n a b n f x f当a <0时⎪⎪⎪⎩⎪⎪⎪⎨⎧<-≤-≤->-=)(2)()(2)2()(2)()(876max 如图如图如图,,,m a b m f n a b m a b f n a b n f x f f x f m b a m n f n b a m n ()()()()()()()min =-≥+-<+⎧⎨⎪⎪⎩⎪⎪,,如图如图2122129103、轴变区间定二次函数随着参数的变化而变化,即其图象是运动的,但定义域区间是固定的,我们称这种情况是“动二次函数在定区间上的最值”。

例4. 已知x 21≤,且a -≥20,求函数f x x ax ()=++23的最值。

解:由已知有-≤≤≥112x a ,,于是函数f x ()是定义在区间[]-11,上的二次函数,将f x ()配方得:f x x a a ()=+⎛⎝⎫⎭⎪+-23422二次函数f x ()的对称轴方程是x a=-2顶点坐标为--⎛⎝ ⎫⎭⎪a a 2342,,图象开口向上由a ≥2可得x a=-≤-21,显然其顶点横坐标在区间[]-11,的左侧或左端点上。

函数的最小值是f a ()-=-14,最大值是f a ()14=+。

图3例5. (1) 求2f (x )x 2ax 1=++在区间[-1,2]上的最大值。

(2) 求函数)(a x x y --=在]1,1[-∈x 上的最大值。

解:(1)二次函数的对称轴方程为x a =-,当1a 2-<即1a 2>-时,max f (x )f (2)4a 5==+; 当1a 2-≥即1a 2≤-时,max f (x )f (1)2a 2=-=+。

综上所述:max12a 2,a 2f (x )14a 5,a 2⎧-+≤-⎪⎪=⎨⎪+>-⎪⎩。

(2)函数4)2(22a a x y +--=图象的对称轴方程为2a x =,应分121≤≤-a ,12-<a ,12>a即22≤≤-a ,2-<a 和2>a 这三种情形讨论,下列三图分别为(1)2-<a ;由图可知max ()(1)f x f =- (2)a ≤-22≤;由图可知max ()()2a f x f = (3) 2>a 时;由图可知max ()(1)f x f =∴⎪⎪⎩⎪⎪⎨⎧>≤≤--<-=2,)1(22,)2(2,)1(a f a af a f y 最大;即⎪⎪⎩⎪⎪⎨⎧>-≤≤--<+-=2,122,42,)1(2a a a aa a y 最大 4. 轴变区间变二次函数是含参数的函数,而定义域区间也是变化的,我们称这种情况是“动二次函数在动区间上的最值”。

例6. 已知24()(0),y a x a a =->,求22(3)u x y =-+的最小值。

解:将24()y a x a =-代入u 中,得①,即时,②,即时,所以(二)、逆向型是指已知二次函数在某区间上的最值,求函数或区间中参数的取值。

例7. 已知函数2()21f x ax ax =++在区间[3,2]-上的最大值为4,求实数a 的值。

解:2()(1)1,[3,2]f x a x a x =++-∈- (1)若0,()1,a f x ==,不符合题意。

(2)若0,a >则max ()(2)81f x f a ==+由814a +=,得38a =(3)若0a <时,则max ()(1)1f x f a =-=- 由14a -=,得3a =- 综上知38a =或3a =-例8.已知函数2()2x f x x =-+在区间[,]m n 上的最小值是3m 最大值是3n ,求m ,n 的值。

解法1:讨论对称轴中1与,,2m nm n +的位置关系。

①若,则max min()()3()()3f x f n n f x f m m ==⎧⎨==⎩解得②若12m nn +≤<,则max min()(1)3()()3f x f n f x f m m ==⎧⎨==⎩,无解 ③若12m nm +≤<,则max min ()(1)3()()3f x f n f x f n m ==⎧⎨==⎩,无解 ④若,则max min()()3()()3f x f m n f x f n m ==⎧⎨==⎩,无解综上,4,0m n =-= 解析2:由211()(1)22f x x =--+,知113,,26n n ≤≤,则[,](,1]m n ⊆-∞, 又∵在[,]m n 上当x 增大时)(x f 也增大所以max min ()()3()()3f x f n nf x f m m==⎧⎨==⎩解得4,0m n =-=评注:解法2利用闭区间上的最值不超过整个定义域上的最值,缩小了m ,n 的取值范围,避开了繁难的分类讨论,解题过程简洁、明了。

相关文档
最新文档