高二数学必修5等比数列前n项求和法:等比数列求和公式
人教新课标版数学高二A必修5学案 等比数列的前n项和(一)

明目标、知重点 1.掌握等比数列的前n 项和公式及公式推导思路.2.会用等比数列的前n 项和公式解决有关等比数列的一些简单问题.1.等比数列前n 项和公式:(1)公式:S n =⎩⎪⎨⎪⎧a 1(1-q n)1-q =a 1-a n q 1-q (q ≠1)na 1(q =1). (2)注意:应用该公式时,一定不要忽略q =1的情况. 2.等比数列前n 项和公式的变式若{a n }是等比数列,且公比q ≠1,则前n 项和S n =a 11-q (1-q n )=A (q n -1).其中A =a 1q -1.3.错位相减法推导等比数列前n 项和的方法叫错位相减法.一般适用于求一个等差数列与一个等比数列对应项积的前n 项和.[情境导学]国际象棋起源于古代印度.相传国王要奖赏象棋的发明者,问他想要什么.发明者说:“请在象棋的第一个格子里放1颗麦粒,第二个格子放2颗麦粒,第三个格子放4颗麦粒,以此类推,每个格子放的麦粒数都是前一个格子的两倍,直到第64个格子.请给我足够的麦粒以实现上述要求”.国王觉得这个要求不高,就欣然同意了.假定千粒麦子的质量为40 g ,据查目前世界年度小麦产量约6亿吨,根据以上数据,判断国王是否能实现他的诺言. 探究点一 等比数列前n 项和公式的推导思考1 在情境导学中,如果把各格所放的麦粒数看成是一个数列,那么这个数列是怎样的一个数列?通项公式是什么?答 所得数列为1,2,4,8,…,263.它首项为1,公比为2的等比数列,通项公式为a n =2n -1. 思考2 在情境导学中,国王能否满足发明者要求的问题,可转化为一个怎样的数列问题? 答 转化为求通项为a n =2n-1的等比数列前64项的和.思考3 类比求等差数列前n 项和的方法,能否用倒序相加法求数列1,2,4,8,…,263的和?为什么?答 不能用倒序相加法,因为对应各项相加后的和不相等. 思考4 如何求等比数列{a n }的前n 项和S n?答 设等比数列{a n }的首项是a 1,公比是q ,前n 项和为S n . S n 写成:S n =a 1+a 1q +a 1q 2+…+a 1q n -1.① 则qS n =a 1q +a 1q 2+…+a 1q n -1+a 1q n .② 由①-②得:(1-q )S n =a 1-a 1q n . 当q ≠1时,S n =a 1(1-q n )1-q;当q =1时,由于a 1=a 2=…=a n ,所以S n =na 1.小结 (1)千粒麦子的质量约为40 g,1.84×1019粒麦子相当于7 000多亿吨,而目前世界年度小麦产量约6亿吨,所以国王是无法满足发明者要求的. 0(2)等比数列{a n }的前n 项和S n 可以用a 1,q ,a n 表示为 S n=⎩⎪⎨⎪⎧na 1,q =1,a 1-a nq1-q ,q ≠1.例1 求下列等比数列前8项的和: (1)12,14,18,…; (2)a 1=27,a 9=1243,q <0.解 (1)因为a 1=12,q =12,所以S 8=12[1-(12)8]1-12=255256.(2)由a 1=27,a 9=1243,可得1243=27·q 8.又由q <0,可得q =-13.所以S 8=27[1-(-13)8]1-(-13)=1 64081.反思与感悟 涉及等比数列前n 项和时,要先判断q =1是否成立,防止因漏掉q =1而出错. 跟踪训练1 若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________. 答案 2 2n +1-2解析 设等比数列的公比为q ,由a 2+a 4=20,a 3+a 5=40.∴20q =40,且a 1q +a 1q 3=20,解之得q =2,且a 1=2. 因此S n =a 1(1-q n )1-q=2n +1-2.探究点二 等比数列前n 项和的实际应用例2 某商场今年销售计算机5 000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今起,大约几年可使总销售量达到30 000台(结果保留到个位)?解 根据题意,每年销售量比上一年增加的百分率相同.所以,从今年起,每年的销售量组成一个等比数列{a n },其中a 1=5 000,q =1+10%=1.1,S n =30 000. 于是得到5 000(1-1.1n )1-1.1=30 000.整理,得1.1n =1.6.两边取对数,得n lg 1.1=lg 1.6. 用计算器算得n =lg 1.6lg 1.1≈0.200.041≈5(年).答 大约5年可以使总销量达到30 000台.反思与感悟 解应用题先要认真阅读题目,尤其是一些关键词:“平均每年的销售量比上一年的销售量增加10%”.理解题意后,将文字语言向数字语言转化,建立数学模型,再用数学知识解决问题.跟踪训练2 一个热气球在第一分钟上升了25 m 的高度,在以后的每一分钟里,它上升的高度都是它在前一分钟里上升高度的80%.这个热气球上升的高度能超过125 m 吗? 解 用a n 表示热气球在第n 分钟上升的高度, 由题意,得a n +1=45a n ,因此,数列{a n }是首项a 1=25,公比q =45的等比数列.热气球在前n 分钟内上升的总高度为 S n =a 1+a 2+…+a n =a 1(1-q n )1-q=25×⎣⎡⎦⎤1-⎝⎛⎭⎫45n 1-45=125×⎣⎡⎦⎤1-⎝⎛⎭⎫45n <125. 故这个热气球上升的高度不可能超过125 m. 探究点三 错位相减法求和思考 教材中推导等比数列前n 项和的方法叫错位相减法.这种方法也适用于一个等差数列{a n }与一个等比数列{b n }对应项之积构成的新数列求和.如何用错位相减法求数列{n2n }前n项和?答 设S n =12+222+323+…+n2n ,则有12S n =122+223+…+n -12n +n2n +1,两式相减,得S n -12S n =12+122+123+…+12n -n 2n +1,即12S n =12(1-12n )1-12-n 2n +1=1-12n -n2n +1. ∴S n =2-12n -1-n2n =2-n +22n .例3 求和:S n =x +2x 2+3x 3+…+nx n (x ≠0). 解 分x =1和x ≠1两种情况.当x =1时,S n =1+2+3+…+n =n (n +1)2.当x ≠1时,S n =x +2x 2+3x 3+…+nx n , xS n =x 2+2x 3+3x 4+…+(n -1)x n +nx n +1, ∴(1-x )S n =x +x 2+x 3+…+x n -nx n +1 =x (1-x n )1-x -nx n +1.∴S n =x (1-x n )(1-x )2-nx n +11-x.综上可得S n=⎩⎪⎨⎪⎧n (n +1)2 (x =1),x (1-x n)(1-x )2-nxn +11-x (x ≠1且x ≠0).反思与感悟 一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n b n }的前n 项和时,可采用错位相减法.跟踪训练3 求数列1,3a,5a 2,7a 3,…,(2n -1)·a n -1的前n 项和.解 (1)当a =0时,S n =1.(2)当a =1时,数列变为1,3,5,7,…,(2n -1), 则S n =n [1+(2n -1)]2=n 2.(3)当a ≠1且a ≠0时,有S n =1+3a +5a 2+7a 3+…+(2n -1)a n -1① aS n =a +3a 2+5a 3+7a 4+…+(2n -1)·a n ② ①-②得S n -aS n =1+2a +2a 2+2a 3+…+2a n -1-(2n -1)·a n , (1-a )S n =1-(2n -1)a n +2(a +a 2+a 3+a 4+…+a n -1) =1-(2n -1)a n +2·a (1-a n -1)1-a=1-(2n -1)a n+2(a -a n )1-a,又1-a ≠0,∴S n =1-(2n -1)a n 1-a +2(a -a n )(1-a )2.综上,S n=⎩⎪⎨⎪⎧1 (a =0),n 2(a =1),1-(2n -1)a n1-a +2(a -a n )(1-a )2(a ≠0且a ≠1).1.等比数列1,x ,x 2,x 3,…的前n 项和S n 为( ) A.1-x n 1-xB.1-x n -11-xC.⎩⎪⎨⎪⎧1-x n1-x ,x ≠1,n , x =1 D.⎩⎪⎨⎪⎧1-x n -11-x ,x ≠1,n , x =1答案 C解析 当x =1时,S n =n ; 当x ≠1时,S n =1-x n 1-x.2.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2等于( )A .2B .4 C.152 D.172答案 C解析 方法一 由等比数列的定义,S 4=a 1+a 2+a 3+a 4=a 2q +a 2+a 2q +a 2q 2,得S 4a 2=1q +1+q +q 2=152. 方法二 S 4=a 1(1-q 4)1-q,a 2=a 1q ,∴S 4a 2=1-q 4(1-q )q =152. 3.等比数列{a n }的各项都是正数,若a 1=81,a 5=16,则它的前5项的和是( ) A .179 B .211 C .243 D .275 答案 B解析 ∵q 4=a 5a 1=1681=(23)4,且q >0,∴q =23,∴S 5=a 1-a 5q 1-q =81-16×231-23=211.4.某厂去年产值为a ,计划在5年内每年比上一年产值增长10%,从今年起5年内,该厂的总产值为________. 答案 11a (1.15-1)解析 注意去年产值为a ,今年起5年内各年的产值分别为1.1a,1.12a,1.13a,1.14a,1.15a . ∴1.1a +1.12a +1.13a +1.14a +1.15a =11a (1.15-1). [呈重点、现规律]1.在等比数列的通项公式和前n 项和公式中,共涉及五个量:a 1,a n ,n ,q ,S n ,其中首项a 1和公比q 为基本量,且“知三求二”.2.前n 项和公式的应用中,注意前n 项和公式要分类讨论,即q ≠1和q =1时是不同的公式形式,不可忽略q =1的情况.3.一般地,如果数列{a n }是等差数列,{b n }是等比数列且公比为q ,求数列{a n ·b n }的前n 项和时,可采用错位相减的方法求和.一、基础过关1.设数列{(-1)n }的前n 项和为S n ,则S n 等于( ) A.n [(-1)n -1]2B.(-1)n +1+12C.(-1)n +12D.(-1)n -12答案 D解析 S n =(-1)[1-(-1)n ]1-(-1)=(-1)n -12.2.在各项都为正数的等比数列{a n }中,首项a 1=3,前3项和为21,则a 3+a 4+a 5等于( ) A .33 B .72 C .84 D .189 答案 C解析 由S 3=a 1(1+q +q 2)=21且a 1=3,得q 2+q -6=0. ∵q >0,∴q =2.∴a 3+a 4+a 5=q 2(a 1+a 2+a 3)=22·S 3=84.3.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2等于( )A .11B .5C .-8D .-11答案 D解析 由8a 2+a 5=0得8a 1q +a 1q 4=0,∴q =-2,则S 5S 2=a 1(1+25)a 1(1-22)=-11.4.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1等于( ) A.13 B .-13C.19 D .-19答案 C解析 设等比数列{a n }的公比为q ,由S 3=a 2+10a 1得a 1+a 2+a 3=a 2+10a 1,即a 3=9a 1,q 2=9,又a 5=a 1q 4=9,所以a 1=19.5.设等比数列{a n }的前n 项和为S n ,若a 1=1,S 6=4S 3,则a 4=________. 答案 3解析 S 6=4S 3⇒a 1(1-q 6)1-q =4·a 1(1-q 3)1-q ⇒q 3=3.∴a 4=a 1·q 3=1×3=3.6.如果数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…,是首项为1,公比为2的等比数列,那么a n =________. 答案 2n -1解析 a n -a n -1=a 1q n -1=2n -1,即⎩⎪⎨⎪⎧a 2-a 1=2,a 3-a 2=22,…a n-a n -1=2n -1.各式相加得a n -a 1=2+22+…+2n -1=2n -2, 故a n =a 1+2n -2=2n -1.7.设等比数列{a n }的前n 项和为S n ,若S 3+S 6=2S 9,求数列的公比q . 解 当q =1时,S n =na 1,S 3+S 6=3a 1+6a 1=9a 1=S 9≠2S 9; 当q ≠1时,a 1(1-q 3)1-q +a 1(1-q 6)1-q =2×a 1(1-q 9)1-q ,得2-q 3-q 6=2-2q 9, ∴2q 9-q 6-q 3=0,解得q 3=-12或q 3=1(舍去),∴q =-342.8.求和:1×21+2×22+3×23+…+n ×2n . 解 设S n =1×21+2×22+3×23+…+n ×2n 则2S n =1×22+2×23+…+(n -1)×2n +n ×2n +1 ∴-S n =21+22+23+…+2n -n ×2n +1 =2(1-2n )1-2-n ×2n +1=2n +1-2-n ×2n +1=(1-n )×2n +1-2 ∴S n =(n -1)·2n +1+2. 二、能力提升9.一弹性球从100米高处自由落下,每次着地后又跳回到原来高度的一半再落下,则第10次着地时所经过的路程和是(结果保留到个位)( ) A .300米 B .299米 C .199米 D .166米 答案 A解析 小球10次着地共经过的路程为100+100+50+…+100×⎝⎛⎭⎫128=2993964≈300(米). 10.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于 ( )A .-6(1-3-10)B.19(1-3-10) C .3(1-3-10) D .3(1+3-10)答案 C解析 先根据等比数列的定义判断数列{a n }是等比数列,得到首项与公比,再代入等比数列前n 项和公式计算.由3a n +1+a n =0,得a n +1a n =-13,故数列{a n }是公比q =-13的等比数列.又a 2=-43,可得a 1=4.所以S 10=4⎣⎡⎦⎤1-(-13)101-⎝⎛⎭⎫-13=3(1-3-10).11.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为________. 答案 13解析 由已知4S 2=S 1+3S 3,即4(a 1+a 2)=a 1+3(a 1+a 2+a 3).∴a 2=3a 3, ∴{a n }的公比q =a 3a 2=13.12.为保护我国的稀土资源,国家限定某矿区的出口总量不能超过80吨,该矿区计划从2013年开始出口,当年出口a 吨,以后每年出口量均比上一年减少10%. (1)以2013年为第一年,设第n 年出口量为a n 吨,试求a n 的表达式;(2)因稀土资源不能再生,国家计划10年后终止该矿区的出口,问2013年最多出口多少吨?(保留一位小数) 参考数据:0.910≈0.35.解 (1)由题意知每年的出口量构成等比数列,且首项a 1=a ,公比q =1-10%=0.9,∴a n =a ·0.9n -1 (n ≥1).(2)10年的出口总量S 10=a (1-0.910)1-0.9=10a (1-0.910).∵S 10≤80,∴10a (1-0.910)≤80,即a ≤81-0.910,∴a ≤12.3.故2013年最多出口12.3吨. 三、探究与拓展13.已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1.高中数学-打印版精心校对 故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和为S n , 即S n =a 1+a 22+…+a n2n -1,①S n 2=a 12+a 24+…+a n2n .②所以,当n >1时,①-②得 S n 2=a 1+a 2-a 12+…+a n -a n -12n -1-a n2n=1-(12+14+…+12n -1)-2-n2n=1-(1-12n -1)-2-n 2n =n2n .所以S n =n 2n -1.当n =1时也成立. 综上,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和S n =n2n -1.。
等比数列求和公式有哪些

等比数列求和公式有哪些等比数列是数学中的一种常见数列,其中每个项都与前一项的比值相等。
求等比数列的和是数学中的基础问题,对于等比数列的求和,常用以下两个公式:1. 等比数列前n项和公式:等比数列的前n项和记作Sn,公式为:Sn = a * (1 - r^n) / (1 - r)其中,a为等比数列的首项,r为等比数列的公比,n为等比数列的项数。
2. 等比数列无穷项和公式:等比数列的无穷项和记作S∞,公式为:S∞ = a / (1 - r)其中,a为等比数列的首项,r为等比数列的公比。
当公比r的绝对值小于1时,等比数列的无穷项和存在。
这两个公式是求等比数列和的基本公式,可以用来计算等比数列的和。
下面将通过例子来说明这两个公式的使用。
例1:已知等比数列的首项a为2,公比r为3,求该等比数列的前5项和Sn和无穷项和S∞。
解:根据等比数列前n项和公式,代入已知条件,可得:Sn = 2 * (1 - 3^5) / (1 - 3)= 2 * (1 - 243) / (-2)= 2 * (-242) / (-2)= 242根据等比数列无穷项和公式,代入已知条件,可得:S∞ = 2 / (1 - 3)= 2 / (-2)= -1所以,该等比数列的前5项和Sn为242,无穷项和S∞为-1。
例2:已知等比数列的首项a为5,公比r为0.5,求该等比数列的前10项和Sn和无穷项和S∞。
解:根据等比数列前n项和公式,代入已知条件,可得:Sn = 5 * (1 - 0.5^10) / (1 - 0.5)= 5 * (1 - 0.0009766) / (0.5)= 5 * (0.9990234) / (0.5)= 9.990234根据等比数列无穷项和公式,代入已知条件,可得:S∞ = 5 / (1 - 0.5)= 5 / (0.5)= 10所以,该等比数列的前10项和Sn为9.990234,无穷项和S∞为10。
通过以上例子可以看出,等比数列的求和公式能够方便地计算等比数列的和。
等比数列与等比数列的求和公式总结

等比数列与等比数列的求和公式总结等比数列(Geometric Progression)是指从第二项开始,每一项与它前一项的比都相等的数列。
比如,1,2,4,8,16 就是一个等比数列,公比为 2,即任意一项与它前一项的比都是 2。
等比数列具有以下的特征:1. 每一项乘以公比得到下一项;2. 第一项可以为任意非零实数;3. 公比可以为任意非零实数;4. 等比数列中不能出现零。
等比数列的通项公式为:an = a1 * r^(n-1),其中 an 表示第 n 项,a1 表示第一项,r 表示公比。
等比数列的求和公式为:Sn = a1 * (1 - r^n) / (1 - r),其中 Sn 表示前 n 项的和,a1 表示第一项,r 表示公比。
下面是一个例子,展示了如何应用等比数列的求和公式:例题:求等比数列 2,6,18,54 的和。
解析:首先确定该等比数列的首项 a1 和公比 r。
首项 a1 = 2,公比 r = 6 / 2 = 3。
接下来,我们需要求出该等比数列的项数 n。
根据通项公式 an = a1 * r^(n-1),最后一项 54 = 2 * 3^(n-1),再化简得 3^(n-1) = 27,两边取对数得 n-1 = 3,解得 n = 4。
然后,代入等比数列的求和公式 Sn = a1 * (1 - r^n) / (1 - r),得 S4 = 2 * (1 - 3^4) / (1 - 3),即 S4 = -242。
所以,等比数列 2,6,18,54 的和为 -242。
总结:等比数列是一种重要的数列,应用广泛。
通过等比数列的通项公式和求和公式,我们可以准确地计算等比数列的任意一项和前n 项的和。
掌握了等比数列的求和公式,可以在数学问题中快速求解,提高计算效率。
人教课标版(B版)高中数学必修5《数列求和》复习课件

∴bn=-34·23n-1。 ∴an2-1=-34·23n-1。 ∴an2=1-43·32n-1。 又 a1=12>0,an·an+1<0,
∴an=(-1)n-1
1-34·23n-1。
对应训练 3 已知数列{an}中,a1=1,an+1=52-a1n,bn=an-1 2(n∈ N*),则数列{bn}的通项公式 bn=____-__13_×__4_n-_1_-__32___。
【规律·方法】 利用恒等式 an=a1·aa21·aa32…aan-n1(an≠0)求通项公式的方 法称为累乘法。累乘法是求型如 an+1=g(n)an 的递推数列通项公式的基 本方法,其中 g(n)可求前 n 项积。
对应训练 2 设{an}是首项为 1 的正项数列,且(n+1)an2+1-nan2+ 1
考点二 累乘法求通项公式
【例 2】
若
a1=1,Sn=n+3 2an(n∈N*),则通项
nn+1 an=____2____。
【解析】 由题设知,a1=1。 当 n>1 时,an=Sn-Sn-1=n+3 2an-n+3 1an-1,∴aan-n 1=nn+-11。 ∴aan-n 1=nn+-11,…,aa34=35,aa23=24,aa12=3。 以上 n-1 个式子的等号两端分别相乘, 得到aan1=nn+2 1,又∵a1=1,∴an=nn+2 1。
数列 求和
学习目标
• 1.掌握等差数列、等比数列的前n项和公式. • 2.掌握一般数列求和的几种常见的方法.
知识梳理
• 一、公式法 • 1.直接利用等差数列、等比数列的前n项公式求和
• (1)等差数列的前n项和公式Sn=__n_(__a_12+__a_n_)__ • =__n_a_1+__n_(__n_-2__1)d. (其中a1为首项,d为公差) • (2)等比数列的前n项和公式
等比数列的通项公式与求和公式

等比数列的通项公式与求和公式等比数列是指一个数列中,任意两个相邻的项之比都相等的数列。
在等比数列中,有两个重要的公式,分别是通项公式和求和公式。
一、等比数列的通项公式
设等比数列的首项为a,公比为r,第n项为an,我们需要找到等
比数列中第n项与首项的关系。
根据等比数列的定义,第n项与首项的关系可以表示为以下式子:an = ar^(n-1)
其中,ar^(n-1)表示首项经过n-1次公比的连续乘积得到的第n项。
通过上述公式,我们可以很方便地求得等比数列中任意一项的数值。
二、等比数列的求和公式
设等比数列的首项为a,公比为r,共有n项,我们需要找到等比数列的前n项和的公式。
根据等比数列的定义,前n项和可以表示为以下式子:
Sn = a(1-r^n)/(1-r)
其中,a(1-r^n)表示将首项与公比的连续乘积r^n-1相乘得到的一个
中间结果,然后通过(1-r)进行除法运算来获得前n项和。
通过上述公式,我们可以很方便地求得等比数列前n项的和。
三、等比数列的应用
等比数列在数学中有广泛的应用。
例如在金融领域中,复利计算中的利率比例就是等比数列中的公比。
另外,在自然科学领域,一些指数型增长或衰减的现象也可以通过等比数列来进行建模和分析。
总结:
等比数列是一种常见的数列形式,其中通项公式和求和公式是重要的基础工具。
通项公式用于求解等比数列中特定项的数值,求和公式用于计算等比数列前n项的和。
了解这两个公式的含义和应用,有助于我们更好地理解和运用等比数列。
高二人数学必修五课件时等比数列的性质

以上内容仅供参考,具体教学 内容和顺序请根据实际教学情 况进行调整。
04
等比数列在生活中的应用举例
储蓄存款中的复利计算
复利概念
储蓄存款中的复利是指本金和利 息共同产生的利息,即“利滚利
”现象。
等比数列与复利
在复利计算中,每期产生的利息构 成等比数列,首项为本金与利率的 乘积,公比为1加上利率。
计算方法
02
自然界中的等比现象
自然界中许多现象也呈现出等比关系,如音阶中相邻两个音的频率之比
、斐波那契数列中相邻两项的比值趋近于黄金分割比等。这些现象可以
用等比数列进行描述和分析。
03
计算机科学中的应用
在计算机科学中,等比数列也有广泛应用,如数据压缩算法中的哈夫曼
编码、图像处理中的图像缩放算法等。这些算法利用等比数列的性在概率论中,当事件相互独立时,可以利用等比数列的性 质计算多个事件同时发生的概率。
概率生成函数
概率生成函数是概率论中用于描述离散随机变量分布的一 种函数,它与等比数列密切相关,可以通过等比数列的性 质研究概率生成函数的性质和计算方法。
统计推断中的应用
在统计推断中,有时需要利用等比数列的性质对样本数据 进行处理和分析,如计算样本的几何均值和调和均值等。
现了高效的数据处理和图像变换。
05
等比数列与其他知识点联系
与等差数列对比分析
定义差异
等差数列是相邻两项之差为常数,而等比数列是相邻两项之比为常 数。
性质对比
等差数列具有线性性质,如求和公式和通项公式;等比数列具有指 数性质,如求和公式和通项公式涉及指数运算。
应用场景
等差数列在解决线性增长或减少的问题中常见,如计算平均速度;等 比数列在解决指数增长或减少的问题中常见,如计算复利。
等比数列前n项和的公式

等比数列前n项和的公式等比数列前n项和怎么算呢?公式又有哪些呢?同学们快来和小编一起看看吧。
下面是由小编为大家整理的“等比数列前n项和的公式”,仅供参考,欢迎大家阅读。
等比数列前n项和的公式设数列{a×q^(n-1)}是首项为a,公比为q的等比数列。
即a, aq,aq²,aq³, ^(n-1). (n=1,2,3,4...)其前n项和为Sn,当q=1时,Sn=na. (n=1,2,3,....)当q≠1时,Sn=a[(q^n)-1]/(q-1)(n=1,2,3,...)。
等比数列前n项和公式推导等比数列前n项和公式:Sn=a1(1-q^n)/(1-q)。
推导如下:因为an=a1q^(n-1)所以Sn=a1+a1*q^1+...+a1*q^(n-1)(1)qSn=a1*q^1+a1q^2+...+a1*q^n(2)(1)-(2)注意(1)式的第一项不变。
把(1)式的第二项减去(2)式的第一项。
把(1)式的第三项减去(2)式的第二项。
以此类推,把(1)式的第n项减去(2)式的第n-1项。
(2)式的第n项不变,这叫错位相减,其目的就是消去这此公共项。
于是得到(1-q)Sn=a1(1-q^n)即Sn=a1(1-q^n)/(1-q)。
拓展阅读:等比数列前N项和的性质1、若m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq;2、在等比数列中,依次每k项之和仍成等比数列。
“G是a、b 的等比中项”“G^2=ab(G≠0)”;3、若(an)是等比数列,公比为q1,(bn)也是等比数列,公比是q2,则(a2n),(a3n)…是等比数列,公比为q1^2,q1^3…(can),c是常数,(an*bn),(an/bn)是等比数列,公比为q1,q1q2,q1/q2;4、按原来顺序抽取间隔相等的项,仍然是等比数列;5、等比数列中,连续的,等长的,间隔相等的片段和为等比;6、若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数;7、等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)(8)数列{An}是等比数列,An=pn+q,则An+K=pn+K也是等比数列,在等比数列中,首项A1与公比q都不为零.注意:上述公式中A^n表示A的n次方;8、由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。
高中数学 等比数列的求和(1)课件 苏教必修5

4、在 等 比 数 列 a n 中 , 公 比 q 2 ,
l o g 2 a 1 l o g 2 a 2 l o g 2 a 1 0 2 5 , 求 S 1 0 .
已知数列{
a
n
}为等比数列,且a1
1,an1
1 3Sn
求{ a n } 通项公式;
得 x S x 2 x 2 n 1 x n 1 n x n .② ① - ②得1 x S 1 x x 2 x n 1 n x n . 当x1时,1xS1xn nxn
1x
当 x 1nxnx . n n 1 n .
2
•
三、例题讲解
例 、 在 等 比 数 列 a n 中 , 求 满 足 下 列 条 件 的 量 :
(1)a1a32,求 sn
(2)q2,n5,a11 2.求 an和 sn
2 、 求 等 比 数 列 1 ,x ,x 2 ,x 3 , 前 n 项 和 S n .
3 、 在 等 比 数 列 a n 中 , a 1 a n 6 6 ,a 2 a n 1 1 2 8 ,
① - ②得 Sn qSn a1a1qna1(1qn)
即 (1q)Sna1(1qn)
Sn
a1(1 qn ) 1 q
(q 1)
当 q = 1 时,等比数列的前n 项和s n 等于多少?
当q = 1 时,此等比数列为常数列:
a 1 ,a 1 ,a 1 ,… ,a 1 .(共n个)
此时 S n = a 1 a 1 a 1 a 1 n a 1
1,2,22,23,…,263
即 S 1 2 2 2 2 3 2 6,3 ①
2S 2 2 2 2 3 2 6 3 2 6②4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学必修5等比数列前n项求和法|等比数列
求和公式
抓好基础是关键
数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,
是正确把握解题方法的依据。
只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想
到我们平时做过的习题的方法,达到迅速解答。
弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。
反之,会使解题速度慢,逻辑混乱、叙述不清。
严防题海战术
做习题是为了巩固知识、提高应变能力、思维能力、计算能力。
学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系
的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解
题方法的展移而实现的,但,随着高考的改革,高考已把考查的重
点放在创造型、能力型的考查上。
因此要精做习题,注意知识的理
解和灵活应用,当你做完一道习题后不访自问:本题考查了什么知
识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什
么解题的通性?实现问题的完全解决我应用了怎样的解题策略?只有
这样才会培养自己的悟性与创造性,开发其创造力。
也将在遇到即
将来临的期末考试和未来的高考题目中那些综合性强的题目时可以
有一个科学的方法解决它。
归纳数学大思维
数学学习其主要的目的是为了培养我们的创造性,培养我们处理事情、解决问题的能力,因此,对处理数学问题时的大策略、大思
维的掌握显得特别重要,在平时的学习时应注重归纳它。
在平时听
课时,一个明知的学生,应该听老师对该题目的分析和归纳。
但还有不少学生,不注意教师的分析,往往沉静在老师讲解的每一步计算、每一步推证过程。
听课是认真,但费力,听完后是满脑子的计算过程,支离破碎。
老师的分析是引导学生思考,启发学生自己设计出处理这些问题的大策略、大思维。
当教师解答习题时,学生要用自己的计算和推理已经知道老师要干什么。
另外,当题目的答案给出时,并不代表问题的解答完毕,还要花一定的时间认真总结、归纳理解记忆。
要把这些解题策略全部纳入自己的脑海成为永久地记忆,变为自己解决这一类型问题的经验和技能。
同时也解决了学生中会听课而不会做题目的坏毛病。
积累考试经验
本学期每月初都有大的考试,加之每单元的单元测验和模拟考试有十几次,抓住这些机会,积累一定的考试经验,掌握一定的考试技巧,使自己应有的水平在考试中得到充分的发挥。
其实,考试是单兵作战,它是考验一个人的承受能力、接受能力、解决问题等综合能力的战场。
这些能力的只有在平时的考试中得到培养和训练。
看了“高二数学必修5等比数列前n项求和法”的人还看了:
1.高中数学必修五等比数列及其前n项和知识点总结
2.高中数学必修5等比数列练习
3.高二数学必修5数列公式汇总
4.高中数学必修5等比数列知识点梳理
5.高二数学必修5等差数列知识点
6.等比数列求和公式及练习题
7.高一数学必修5等比数列知识点梳理。