矩阵与它伴随矩阵的关系1
伴随矩阵运算法则

伴随矩阵运算法则
(最新版)
目录
1.伴随矩阵的定义与性质
2.伴随矩阵的运算法则
3.伴随矩阵的应用
4.总结
正文
一、伴随矩阵的定义与性质
伴随矩阵是线性代数中一个重要的概念,它与逆矩阵有着密切的关系。
伴随矩阵的定义是:一个方形矩阵 A 的伴随矩阵,是由矩阵 A 的代数余子式构成的一个矩阵。
伴随矩阵的性质包括:
1.伴随矩阵是一个方阵,其行数和列数与原矩阵相同。
2.伴随矩阵的元素是原矩阵的代数余子式,即伴随矩阵第 i 行第 j 列的元素是原矩阵的第 j 行第 i 列的代数余子式。
3.伴随矩阵的转置等于原矩阵的代数余子式的转置。
二、伴随矩阵的运算法则
伴随矩阵的运算法则主要包括以下几点:
1.伴随矩阵的加法:两个矩阵的伴随矩阵相加,对应位置的元素是两个矩阵对应位置的代数余子式之和。
2.伴随矩阵的数乘:一个矩阵的伴随矩阵与一个标量的乘积,对应位置的元素是原矩阵对应位置的代数余子式乘以该标量。
3.伴随矩阵的乘法:两个矩阵的伴随矩阵相乘,对应位置的元素是原矩阵对应位置的代数余子式的乘积。
三、伴随矩阵的应用
伴随矩阵在线性代数中有广泛的应用,主要包括:
1.求解线性方程组:当矩阵 A 可逆时,可以用伴随矩阵表示矩阵 A 的逆矩阵,从而求解线性方程组。
2.矩阵的行列式:矩阵的行列式等于其伴随矩阵的行列式,可以利用伴随矩阵求矩阵的行列式。
3.矩阵的秩:伴随矩阵的秩等于原矩阵的秩,可以利用伴随矩阵求矩阵的秩。
四、总结
伴随矩阵是线性代数中的一个基本概念,它与逆矩阵、行列式等有着密切的关系。
伴随矩阵的性质

伴随矩阵的性质1. 什么是伴随矩阵在线性代数中, 对于一个n阶方阵A, 定义其伴随矩阵(adjugate matrix)为矩阵A的伴随矩阵是一个与A的行列式相差一个符号的转置矩阵, 记作adj(A)。
伴随矩阵在求解矩阵方程, 计算逆矩阵, 求解线性方程组等问题中具有重要的应用。
2. 伴随矩阵的性质伴随矩阵具有以下性质:2.1 行列式的关系伴随矩阵和原始矩阵的行列式之间有以下关系:det(adj(A)) = det(A)^(n-1)其中A是一个n阶方阵。
2.2 逆矩阵的关系如果A是一个可逆矩阵, 则其伴随矩阵与其逆矩阵满足以下关系:adj(A) = (1 / det(A)) * A^(-1)其中A是一个可逆矩阵。
2.3 转置矩阵的关系两个方阵的伴随矩阵的转置矩阵之间存在以下关系:(adj(A))^T = adj(A^T)其中A是一个方阵。
2.4 伴随矩阵的乘积对于任意两个方阵A和B, 它们的伴随矩阵的乘积满足以下关系:adj(AB) = adj(B) adj(A)2.5 伴随矩阵和幂对于一个方阵A和正整数k, 其伴随矩阵的k次幂满足以下关系:(adj(A))^k = adj(A^k)3. 伴随矩阵的应用伴随矩阵在求解矩阵方程, 计算逆矩阵, 求解线性方程组等问题中具有重要的应用。
3.1 矩阵方程的求解对于一个给定的矩阵方程Ax = b, 其中A是一个可逆矩阵, b 是一个列向量, 则可以通过伴随矩阵来求解方程的解x。
具体的求解方法为:x = A^(-1) * b = (1/det(A)) * adj(A) * b3.2 逆矩阵的计算对于一个可逆矩阵A, 可以利用伴随矩阵来计算其逆矩阵。
具体的计算方法为:A^(-1) = (1/det(A)) * adj(A)3.3 线性方程组的求解对于一个线性方程组Ax = b, 其中A是一个系数矩阵, x和b 都是列向量, 可以利用伴随矩阵来求解方程组的解。
具体的求解方法为:x = A^(-1) * b = (1/det(A)) * adj(A) * b4. 总结伴随矩阵是一个与原始矩阵相关的重要概念, 具有许多重要的性质和应用。
最新矩阵与伴随矩阵的关系

方阵A 与其伴随矩阵*A 的关系摘 要 本文给出了n 阶方阵A 的伴随矩阵*A 的定义,讨论了n 阶方阵A 与其伴随矩阵*A 之间的关系,例如A 与*A 之间的关系,并且给出了相应的证明过程. 关键词 矩阵、伴随矩阵、关系、证明在高等代数课程中我们学习了矩阵,伴随矩阵。
它们之间有很好的联系,对我们以后的学习中有很大的用处。
1.伴随矩阵的定义. 设n 阶方阵()⎪⎪⎪⎪⎪⎭⎫⎝⎛==⨯nn n n n n nn ij a a a a a a a a a a A 212221212111.令()⎪⎪⎪⎪⎪⎭⎫⎝⎛==⨯nn nnn n nn ij A A A A A A A A A A A 212221212111*,其中ij A 是ij a 的代数余子式.则称*A 为A 的伴随矩阵.2.矩阵A 与其伴随矩阵*A 的关系及其证明.2.1*AA =A A *=AI det .当A 可逆时,有*1det 1A AA =-,即1*det -=AA A [1].证明:因为⎩⎨⎧≠==+++;,0,,det 2211j i j i A A a A a A a jnin j i j i 若若 ⎩⎨⎧≠==+++;,0,,det 2211j i j i A A a A a A a nj ni ji j i 若若所以*AA =A A *=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛A A Adet 000det 000det =AI det .当A 是可逆矩阵时, 0det ≠A ,所以由上式得⎪⎭⎫ ⎝⎛*det 1A A A =A A A ⎪⎭⎫⎝⎛*det 1=I 即*1det 1A AA =-.证毕. 2.2()*T A =()TA *.(显然)2.3 若A 可逆,则()*1-A=()1*-A .(显然)2.4 设A 为n 阶方阵()2≥n ,则()()()()⎪⎩⎪⎨⎧=-=-<=n A r n n A r n A r A r 1110*[2]. 引理1.若()2≥⨯n nn 矩阵A ,B 满足0=AB ,则()()n B r A r ≤+.证明 因为0=AB ,所以B 的列向量是以A 为系数矩阵的齐次线性方程的解向量.若()n A r=,则0det ≠A .由克拉默法则知,方程只有零解,从而0=B ,进而()0=B r ;若()n r A r <=,则方程组的基础解系中含rn -个向量,于是()rn B r -≤,因此有()()n B r A r ≤+.证毕. 下面证明2.4. ⑴当()1-<n A r时, A 的每一个1-n 阶代数余子式都为零.所以*A 为零阵,所以()0*=A r .⑵当()1-=n A r时,0det =A ,*AA =AI det =0.由引理1知,()A r+()n A r ≤*.因为()1-=n A r 则()()11*=--≤n n A r ,知A 至少有一个1-n 阶子式不为零.即 *A 至少有一行不全为零. 所以()1*≥A r .因为()1*≤A r ,从而()1*=A r .⑶ 当()n A r =时,A 可逆,由1知,*A 也可逆.所以()n A r =*.证毕.2.5 ()1*det det -=n A A .① 当A 可逆时,1*det -=AA A .所以()1*det det det -=A A A n ()1det -=n A .② 当A 不可逆时,()1-≤n A r ,0det =A .1) 当2≥n时()1-<n A r ,由2.4知()0*=A r .所以0det *=A .()1-=n A r ,()n A r <=1*,0det *=A .则()0det det 1*==-n A A2) 当1=n 时,0det =A ,即0=A ,0det *=A ,则()0det det 1*==-n A A .证毕. 2.6 当A 可逆时,若0λ为A 的特征值,则det λA是*A 的特征值.当()1-<n A r 时,*A 的特征值为零,并是n 重的. 引理2. 设A 可逆,若0λ为A 的特征值,则1λ是1-A 的特征值.证明: 若00=λ,则由00=-A E λ得到()01=-=-A A n ,于是0=A ,这与A 可逆矛盾,所以00≠λ.同时由00=-A E λ还有()()11010011110------=--=-=-=A E A E E A A E A nnnλλλλλ.因此0110=--A E λ,即 01λ是1-A 的特征值.引理证毕. 下面证明2.6.不妨设*A 的特征值为*λ.则由AE AA det *=有1*1***0---=-=-=AE AAAA E A E nλλλ.0≠A ,这说明A*λ是1-A 的特征值.由引理2知,*1λλ=A,所以0*λλA=,即λA是*A 的特征值.若()0*=A r ,(即()1-<n A r)时,0*=A,所以*A 的特征值0*=λ且是n 重的.2.7 若A 为可逆矩阵,则*A 也是可逆矩阵.证明:由2.1即可得到此结论.2.8 若A 为对称矩阵,则*A 也是对称矩阵. 2.9 ()***A B AB =.证明:当A ,B 均可逆时, 1*det -=AA A ,1*det -=BB B ,所以()*111**))(det()det(AB AB AB A B AB A B ===---.当A ,B不都可逆时,则当x 足够大时,存在x 使得n xI A +, nxI B +均可逆,此时有()***)()())((n n n n xI A xI B xI B xI A ++=++,这是关于x 的恒等式,即x 取零时,该等式也成立,即()***A B AB =.证毕.2.10 若A 为正交矩阵,则*A 也是正交矩阵. 证明:若A 为正交矩阵,则I A A AA TT==且1det ±=A ,由2.2知()()****T TAA A A=.再由2.9知()()()I I A A A A A ATTT====******,所以*A也是正交矩阵.证毕. 2.11 ()A AAn 2**-=,其中A 是n 阶方阵()2>n .证明:因为E A A A AA ==**,所以 1) 当0≠A 时,1*-=A A A .则 ()()()111*1**----⋅==A A A A A A A()A A A AA A A AA A n nn21111111------===2) 当0=A 时,由2.4知()1≤A r . 当2>n 时,)()0**=A r ,故()A AA n 2**-=.当2=n 时,令⎪⎪⎭⎫⎝⎛=d c b a A ,则⎪⎪⎭⎫ ⎝⎛--=a c b d A *, ()A A A d c b a A n 2**-==⎪⎪⎭⎫ ⎝⎛=. 证毕.通过以上的证明,说明了n 阶矩阵A 与其伴随矩阵*A 有很多联系和继承性,理解和掌握这些联系和继承性对我们以后高等代数课程的学习有着重要的意义.全等三角形提高练习1. 如图所示,△AB C ≌△ADE ,BC 的延长线过点E ,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF 的度数。
矩阵与伴随矩阵的关系

方阵A 与其伴随矩阵*A 的关系摘 要 本文给出了n 阶方阵A 的伴随矩阵*A 的定义,讨论了n 阶方阵A 与其伴随矩阵*A 之间的关系,例如A 与*A 之间的关系,并且给出了相应的证明过程. 关键词 矩阵、伴随矩阵、关系、证明在高等代数课程中我们学习了矩阵,伴随矩阵。
它们之间有很好的联系,对我们以后的学习中有很大的用处。
1.伴随矩阵的定义. 设n 阶方阵()⎪⎪⎪⎪⎪⎭⎫⎝⎛==⨯nn n n n n nn ij a a a a a a a a a a A 212221212111.令()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==⨯nn nnn n nn ij A A A A A A A A A A A 212221212111*,其中ij A 是ija 的代数余子式.则称*A 为A 的伴随矩阵.2.矩阵A 与其伴随矩阵*A 的关系及其证明.2.1*AA =A A *=AI det .当A 可逆时,有*1det 1A AA =-,即1*det -=AA A [1].证明:因为⎩⎨⎧≠==+++;,0,,det 2211j i j i A A a A a A a jnin j i j i 若若 ⎩⎨⎧≠==+++;,0,,det 2211j i j i A A a A a A a nj ni ji j i 若若所以*AA =A A *=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛A A Adet 000det 000det =AI det .当A 是可逆矩阵时, 0det ≠A ,所以由上式得⎪⎭⎫ ⎝⎛*det 1A A A =A A A ⎪⎭⎫⎝⎛*det 1=I 即*1det 1A AA =-.证毕.2.2 ()*T A =()TA *.(显然) 2.3 若A 可逆,则()*1-A =()1*-A .(显然)2.4 设A 为n 阶方阵()2≥n ,则()()()()⎪⎩⎪⎨⎧=-=-<=n A r n n A r n A r A r 1110*[2]. 引理1.若()2≥⨯n n n 矩阵A ,B 满足0=AB ,则()()n B r A r ≤+.证明 因为0=AB ,所以B 的列向量是以A 为系数矩阵的齐次线性方程的解向量.若()n A r =,则0det ≠A .由克拉默法则知,方程只有零解,从而0=B ,进而()0=B r ;若()n r A r <=,则方程组的基础解系中含rn -个向量,于是()rn B r -≤,因此有()()n B r A r ≤+.证毕.下面证明2.4. ⑴当()1-<n A r时, A 的每一个1-n 阶代数余子式都为零.所以*A 为零阵,所以()0*=A r .⑵当()1-=n A r时,0det =A ,*AA =AI det =0.由引理1知,()A r +()n A r ≤*.因为()1-=n A r则()()11*=--≤n n A r,知A 至少有一个1-n 阶子式不为零.即 *A 至少有一行不全为零. 所以()1*≥A r .因为()1*≤A r ,从而()1*=A r .⑶ 当()n A r =时,A 可逆,由1知,*A 也可逆.所以()n A r =*.证毕.2.5 ()1*det det -=n A A .① 当A 可逆时,1*det -=AA A .所以()1*det det det -=A A A n()1det -=n A .② 当A 不可逆时,()1-≤n A r ,0det =A .1) 当2≥n时()1-<n A r ,由2.4知()0*=A r .所以0det *=A .()1-=n A r ,()n A r <=1*,0det *=A .则()0det det 1*==-n A A2) 当1=n 时,0det =A ,即0=A ,0det *=A ,则()0det det 1*==-n A A .证毕. 2.6 当A 可逆时,若0λ为A 的特征值,则det λA是*A 的特征值.当()1-<n A r 时,*A 的特征值为零,并是n 重的.引理2. 设A 可逆,若0λ为A 的特征值,则1λ是1-A 的特征值.证明: 若00=λ,则由00=-A E λ得到()01=-=-A A n ,于是0=A ,这与A 可逆矛盾,所以00≠λ.同时由00=-A E λ还有()()11010011110------=--=-=-=A E A E E A A E A nnnλλλλλ.因此0110=--A E λ,即 01λ是1-A 的特征值.引理证毕. 下面证明2.6.不妨设*A 的特征值为*λ.则由AE AA det *=有1*1***0---=-=-=AE AAAA E A E nλλλ.0≠A ,这说明A*λ是1-A 的特征值.由引理2知,*1λλ=A,所以0*λλA=,即λA是*A 的特征值.若()0*=A r ,(即()1-<n A r)时,0*=A,所以*A 的特征值0*=λ且是n 重的.2.7 若A 为可逆矩阵,则*A 也是可逆矩阵.证明:由2.1即可得到此结论. 2.8 若A 为对称矩阵,则*A 也是对称矩阵.2.9 ()***A B AB =.证明: 当A ,B 均可逆时, 1*det -=AA A ,1*det -=BB B ,所以()*111**))(det()det(AB AB AB A B AB A B ===---.当A ,B不都可逆时,则当x 足够大时,存在x 使得n xI A +, n xI B +均可逆,此时有()***)()())((n n n n xI A xI B xI B xI A ++=++,这是关于x 的恒等式,即x 取零时,该等式也成立,即()***A B AB =.证毕.2.10 若A 为正交矩阵,则*A 也是正交矩阵. 证明: 若A 为正交矩阵,则I A A AA T T ==且1det ±=A ,由2.2知()()****T TA A A A =.再由2.9知()()()I I A A A A A ATTT====******,所以*A也是正交矩阵.证毕. 2.11 ()A AAn 2**-=,其中A 是n 阶方阵()2>n .证明:因为E A A A AA ==**,所以 1) 当0≠A 时,1*-=A A A .则 ()()()111*1**----⋅==A A A A A A Aﻩ()A A A AA A A AA A n nn21111111------===2) 当0=A 时,由2.4知()1≤A r . 当2>n 时,)()0**=A r ,故()A AA n 2**-=.当2=n 时,令⎪⎪⎭⎫⎝⎛=d c b a A ,则⎪⎪⎭⎫ ⎝⎛--=a c b d A *, ()A A A d c b a A n 2**-==⎪⎪⎭⎫ ⎝⎛=. 证毕.通过以上的证明,说明了n阶矩阵A与其伴随矩阵*A有很多联系和继承性,理解和掌握这些联系和继承性对我们以后高等代数课程的学习有着重要的意义.。
矩阵与它伴随矩阵的关系1

矩阵与它伴随矩阵的关系摘 要 通过对矩阵和伴随矩阵的学习,本文主要给出了伴随矩阵的定义和总结了它的一些性质,如伴随矩阵的逆,行列式,转置,秩,矩阵的伴随矩阵的伴随矩阵与矩阵本身的关系等.以及矩阵与它的伴随矩阵的关系,如两矩阵相似,则它们的伴随矩阵也相似等.关键词 矩阵;伴随矩阵;转置;可逆;行列式;秩;相似矩阵;正定矩阵1伴随矩阵的定义设,则它的伴随矩阵,其中 ()n n ij a A ⨯=()nn ij b A ⨯=*ji ij A b =为中的代数余子式.(),,,3,2,1,n j i =ij A A ij a 2伴随矩阵的性质以及矩阵与它伴随矩阵的关系2.1 .I A A A AA ==**2.2 若A 非奇异,则.*11A AA =-2.3 .()()TTA A **=证 当可逆时,,且也可逆.A 1*-=A A A T A 故 =()()1*-=TT T A A A ()TA A 1-另一方面, =()()TTA A A 1*-=()T A A 1-由上两式推出 .()()TTA A **=2.4 .()()1**1--=A A 证 当可逆时,,且也可逆.A 1*-=A A A 1-A 故 ()()A AA A A 1111*1==----又由 E A A A A A A =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛**11故 也可逆,且*A ()A AA 11*=-从而 .()()1**1--=A A 2.5 (为实数).()*1*A a aA n -=a 证 设,再设 ,()nn ij a A ⨯=()()n n ij b aA ⨯=*那么为行列式中划去第行和第列的代数余子式阶行列式,ij b aA j i 1-n 其中每行提出公因子后,可得a ji n ij A ab 1-=()n j i ,2,1,=由此即证.()*1*A a aA n -= 2.6 .1*-=n AA ()2≥n 证当可逆时,由于 两边取行列式A ,1*-=A A A 得 11*--==n nAA A A 当不可逆时,这时秩A ,0=A 1*≤A 所以从而也有 .0*=A 1*-=n AA 所以对任意阶方阵都有n ,A .1*-=n AA 2.7 当秩时,则秩.当秩时则秩.,当秩n A =n A =*1-=n A 1*=A 2-≤n A 则秩.0*=A 证 当秩那么由上面的(1)式有,0≠⇒=A n A 0*≠==nA I A AA 所以 即秩,0*≠A nA =* 当秩 ,01=⇒-=A n A 0*==I A AA 从而秩 又因秩所以至少有一个代数余子式,1*≤A ,1-=n A ,0≠ij A 从而秩于是秩,1*≥A ,1*=A 当秩所以秩2-=n A ⇒0*=A 0*=A 同理秩时,秩.2-<n A 0*=A 2.8 .()A AA n 2**-=证 当秩时,可逆,用左乘(1)式两边可得n A =A A ,0≠1-A (1)1*-=A A A 在(1)式中用换得A *A(2)()()A A A A AA A A n n 211****1---=⎪⎪⎭⎫⎝⎛==当秩时,则秩1-≤n A 0,1*=≤A A 从而秩 (3)()A AA n 2**0-== 综合(2)(3)两式,即证.()A AA n 2**-=2.9 若为阶可逆矩阵,则.B A ,n ()***A B AB = 证 当时,由()()n B r A r == ()()**111*A B A A B B AB AB AB ===--- 当时,显然有()1-<n A r ()***0A B AB == 即 ()***A B AB = 当则存在初等矩阵使得(),1-=n A r ,,,,11t s Q Q P P ts Q Q A P P A 111= 这里直接验算可知,若是任意初等矩阵,C 是任意方().0,11-=n E diag A P 阵,则()()*1*1***,CA C A P C PC == 于是()()[]*1121*B Q Q A P P P AB t s = ()*1*112P B Q Q A P P t s == ()*1**11P P B Q Q A s t = ()*1**1*1P P A B Q Q s t ==*1**1*1**P P A Q Q B s t = 但是 *1**1*1*P P A Q Q s t()*1**1*1P P A Q Q s t = ()*1*1*11P P Q Q A P s t s -== ()*111t s Q Q A P P = *A = 于是()***A B AB =2.10 设是阶正定矩阵,则是正定矩阵.A *A 证 因为是阶正定矩阵,则,A n A A T =且的特征值又=,A ()n i i 2,1,0=>λ()()**T TA A =*A故为对称矩阵,且的特征值为*A *A ()n i Ai,,2,1,0 =>λ故为正定矩阵.2.11 若是正交矩阵,则是正交矩阵.A *A 证 因为是正交矩阵,则,12=A IA A T =于是()()()()()II AA AA A A A A A A A TTTT=====------1111211**故也是正交矩阵.*A 2.12 若矩阵与B 合同,且都可逆,则与合同.A B A ,*A *B 证 设存在可逆矩阵 (4),P B AP P T = 又都可逆,对(4)取逆,则有B A ,()1111----=B P A P T即 (5)11--=B C A C T 其中()TP C 1-= 再对(4)取行列式有 (6)B A P =2则由(1)(5)(6)知 ()()11--=⋅⋅B B C P A A C P T即 **B Q A Q T =其中是可逆矩阵C P Q = 故 与合同*A *B 2.13 若矩阵与B 相似,且都可逆,则与相似.A B A ,*A *B 证 设存在可逆矩阵 ,P BAP P =-1 由 ,I B BB =* 有 1*-=B B B ()111---=APP AP P P A P A 11--=P A A P 11--=PA P *1-= 所以与相似.*A *B 2.14 若与相似,则与有相同的特征多项式,特征根,行列式,迹,*A *B *A *B 秩.2.15若与相似,且,都可逆,则与B 不一定相似. (与B 分*A *B *A *B A A 别为与的原矩阵)*A *B 证 因为与的秩都是,所以与都有个原矩阵(*A *B n *A *B 1-n ,,其中分别是,(),1*-=A A i α()1*-=B B iβ1,2,1-=n i i i βα,*A 的所有次方根.)*B 1-n 设秩且有原矩阵,由2.2知n A =*A ()1*-=A A A 由2.6知 即 .1*-=n AA 1*-=n A A 设的所有次方根,则有*A 1-n 121,,-n ααα (),1*-=A A i α1,2,1-=n i 同理B 也得证.所以与B 不一定相似.A 参考文献:[1]张禾瑞,郝鈵新.高等代数(第五版)[M].北京:高等教育出版社,2007,6.[2]李志慧,李永明.高等代数中的典型问题与方法[M].北京:科学出版社,2001,6(7).[3]刘学生.线性代数分析[M].北京:高等教育出版社,2005,1(10).[4]卢刚.线性代数(第二版)[M].北京:高等教育出版社,2003,7(1).The Relationship of Matrix and Adjoint MatrixZhang Ri lian 20091103344College of Mathematics Science, Mathematics and Applied Mathematics ,Class 2009Advisor Xiang HuaAbstract :This article gives a definition of adjoint matrix and summarizes some of its properties, adjoint matrix inverse, determinant, transpose, rank. And the relationship of matrix and the adjoint matrix, Two sufficient conditions for the adjoint matrix of similar.Key words : adjoint matrix, determinant, transpose, rank, similar matrix, positivelydefinite matrix。
关于伴随矩阵性质的探讨

关于伴随矩阵性质的探讨伴随矩阵,也称作伴随矩阵、伴随阵或伴随矩阵,是在线性代数中一个重要的概念。
在矩阵理论和线性代数中,对于任意一个n阶矩阵A,我们可以定义它的伴随矩阵Adj(A),也表示为A*。
伴随矩阵的定义是:对于一个n阶矩阵A,它的伴随矩阵Adj(A)是一个n阶矩阵,它的每一个元素都等于A的代数余子式的代数余子式时,这个元素的行号与列号之和为偶数次时,其代数余子式乘以(-1)。
如果行号与列号之和为奇数次时,元素值不变。
伴随矩阵在许多应用中起着重要的作用,它有许多重要性质值得探讨。
1. 伴随矩阵的行列式等于原矩阵的行列式的n-1次方乘以n-1的阶乘。
即det(A*) = det(A)^(n-1) * (n-1)!2. 如果一个矩阵A可逆,那么它的伴随矩阵也是可逆的,且(Adj(A))^-1 = (A^-1)*,其中A^-1表示A的逆矩阵。
3.如果一个矩阵A的伴随矩阵是可逆的,那么A也是可逆的。
这可以通过用伴随矩阵左乘A的逆矩阵来证明。
4.如果一个矩阵A是一个方阵,且它的伴随矩阵与A可交换(即A*·A=A·A*),那么A是一个可逆矩阵。
5.如果两个矩阵A和B的乘积等于一个单位矩阵I,那么它们的伴随矩阵也满足(A·B)*=B*·A*。
这个性质对于求解线性方程组等问题非常有用。
6.伴随矩阵的积与转置的关系:(A·B)*=B*·A*。
这个性质说明了两个矩阵相乘后的伴随矩阵等于倒序相乘后的伴随矩阵,即A和B的伴随矩阵相乘的结果等于B的伴随矩阵和A的伴随矩阵相乘的结果。
7. 伴随矩阵的伴随矩阵等于原矩阵的(n-2)次方乘以(n-2)的阶乘。
即(Adj(A)) = (Adj(Adj(A))) = A^(n-2) * (n-2)!通过以上性质的探讨,我们可以看到伴随矩阵在矩阵的求逆、线性方程组的求解等问题中起着重要的作用。
它可以帮助我们简化计算过程,快速得到结果。
伴随矩阵与伴随变换的定义与性质

伴随矩阵与伴随变换的定义与性质伴随矩阵是线性代数中一个重要的概念,它与伴随变换有着密切的关系。
本文将介绍伴随矩阵和伴随变换的定义与性质,并探讨它们在矩阵理论与线性变换中的应用。
一、伴随矩阵的定义给定一个n阶矩阵A=(a_ij)。
我们定义A的伴随矩阵Adj(A)为A的代数余子式矩阵的转置矩阵,即Adj(A) = (C_ij)T,其中C_ij是A的代数余子式。
二、伴随变换的定义根据伴随矩阵的定义,我们可以引入伴随变换的概念。
给定一个n 维向量空间V上的线性变换T,我们定义其伴随变换为V上的另一个线性变换T*,其中对于任意向量v∈V,有(T*v, u) = (v, T*u),这里(u, v)表示内积。
三、伴随矩阵的性质1. 伴随矩阵的秩与原矩阵的秩相等。
证明:设A为一个n阶矩阵,rank(A)=r。
对于任意的n阶矩阵B,有rank(B)≥ rank(A)。
因此,我们只需证明rank(Adj(A)) ≤ rank(A)。
首先,矩阵A的伴随矩阵的任意一列都可以由A的列向量线性表示,因此rank(Adj(A)) ≤ rank(A)。
其次,由于A的伴随矩阵的每一行都由A的行向量线性表示,因此rank(Adj(A)) ≤ rank(A)。
综上所述,rank(Adj(A)) ≤ rank(A),即rank(Adj(A)) = rank(A)。
2. 伴随矩阵的秩与伴随变换的秩相等。
证明:对于伴随矩阵Adj(A),我们可以定义一个新的线性变换T_1,其矩阵表示为Adj(A)。
根据伴随矩阵的定义,我们可以得到T_1为T的伴随变换。
根据伴随变换的定义,我们知道rank(T_1) = rank(T)。
同时,根据伴随矩阵的性质1,我们知道rank(Adj(A)) = rank(A)。
因此,我们有rank(T_1) = rank(Adj(A)) = rank(A)。
3. 伴随变换的伴随变换是原变换自身。
证明:设T为V上的一个线性变换,其伴随变换为T*。
伴随矩阵运算法则

伴随矩阵运算法则摘要:一、伴随矩阵的定义二、伴随矩阵的性质三、伴随矩阵的运算法则四、伴随矩阵的应用正文:伴随矩阵是线性代数中的一个重要概念,它与矩阵的秩、行列式、逆矩阵等密切相关。
伴随矩阵的运算法则可以帮助我们更好地理解这些概念,并在解决实际问题时发挥重要作用。
首先,我们需要了解伴随矩阵的定义。
伴随矩阵是一个与原矩阵相似的矩阵,它的元素是原矩阵的代数余子式。
具体来说,设A 是一个n 阶方阵,P 是A 的一个n 阶子矩阵,那么A 的伴随矩阵|A|P 是一个n 阶方阵,它的元素是P 的代数余子式。
伴随矩阵有许多重要的性质,这些性质可以帮助我们更好地理解矩阵的性质。
例如,伴随矩阵的行列式等于原矩阵的行列式,这意味着伴随矩阵的秩等于原矩阵的秩。
另外,伴随矩阵的迹等于原矩阵的迹,这意味着伴随矩阵的主对角线元素之和等于原矩阵的主对角线元素之和。
伴随矩阵的运算法则包括矩阵乘法、矩阵加法、数乘等。
这些运算法则可以帮助我们在解决实际问题时更方便地使用伴随矩阵。
例如,如果我们想要计算一个矩阵的行列式,我们可以使用伴随矩阵的行列式公式来计算。
另外,如果我们想要计算一个矩阵的逆矩阵,我们可以使用伴随矩阵的逆矩阵公式来计算。
伴随矩阵在许多领域都有广泛的应用,例如线性方程组、二次型、特征值、特征向量等。
在解决这些问题时,伴随矩阵可以提供一种更简洁、更高效的计算方法。
例如,在解决线性方程组时,我们可以使用伴随矩阵的方法来计算方程组的解。
在解决二次型问题时,我们可以使用伴随矩阵的方法来计算二次型的标准型。
在解决特征值、特征向量问题时,我们可以使用伴随矩阵的方法来计算特征值、特征向量。
总之,伴随矩阵是线性代数中的一个重要概念,它与矩阵的秩、行列式、逆矩阵等密切相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵与它伴随矩阵的关系摘 要 通过对矩阵和伴随矩阵的学习,本文主要给出了伴随矩阵的定义和总结了它的一 些性质,如伴随矩阵的逆,行列式,转置,秩,矩阵的伴随矩阵的伴随矩阵与矩阵本身的 关系等.以及矩阵与它的伴随矩阵的关系,如两矩阵相似,则它们的伴随矩阵也相似等. 关键词 矩阵;伴随矩阵;转置;可逆;行列式;秩;相似矩阵;正定矩阵1伴随矩阵的定义 设()nn ija A ⨯=,则它的伴随矩阵()n n ijb A ⨯=*,其中ji ij A b = (),,,3,2,1,n j i =ij A 为A 中ij a 的代数余子式.2伴随矩阵的性质以及矩阵与它伴随矩阵的关系 2.1 I A A A AA ==**. 2.2 若A 非奇异,则*11A AA =-. 2.3 ()()TTA A **=.证 当A 可逆时,1*-=A A A ,且T A 也可逆. 故 ()()1*-=T T T A A A =()TA A 1-另一方面, ()()TTA A A 1*-==()TA A 1-由上两式推出 ()()TTA A **=.2.4 ()()1**1--=A A .证 当A 可逆时,1*-=A A A ,且1-A 也可逆. 故 ()()A AA A A 1111*1==---- 又由 E A A A A A A =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛**11 故 *A 也可逆,且()A AA 11*=- 从而 ()()1**1--=A A .2.5 ()*1*A a aA n -= (a 为实数).证 设()n n ij a A ⨯=,再设 ()()n n ij b aA ⨯=*,那么ij b 为行列式aA 中划去第j 行和第i 列的代数余子式1-n 阶行列式,其中每行提出公因子a 后,可得 ji n ij A a b 1-= ()n j i ,2,1,= 由此即证()*1*A a aA n -=.2.6 1*-=n AA ()2≥n .证当A 可逆时,由于,1*-=A A A 两边取行列式 得 11*--==n nAA A A当A 不可逆时,,0=A 这时秩1*≤A所以.0*=A 从而也有 1*-=n A A所以对任意n 阶方阵,A 都有.1*-=n AA2.7 当秩n A =时,则秩n A =*.当秩1-=n A 时则秩1*=A .,当秩2-≤n A则秩0*=A .证 当秩,0≠⇒=A n A 那么由上面的(1)式有0*≠==nA I A AA 所以 ,0*≠A 即秩n A =* 当秩,01=⇒-=A n A 0*==I A AA从而秩,1*≤A 又因秩,1-=n A 所以至少有一个代数余子式,0≠ij A从而秩,1*≥A 于是秩,1*=A当秩2-=n A ⇒0*=A 所以秩0*=A同理秩2-<n A 时,秩0*=A . 2.8 ()A AA n 2**-=.证 当秩n A =时,A A ,0≠可逆,用1-A 左乘(1)式两边可得1*-=A A A (1) 在(1)式中用A 换*A 得()()A A A A AA A A n n 211****1---=⎪⎪⎭⎫⎝⎛== (2) 当秩1-≤n A 时,则秩0,1*=≤A A 从而秩()A AA n 2**0-== (3)综合(2)(3)两式,即证()A AA n 2**-=.2.9 若B A ,为n 阶可逆矩阵,则()***A B AB =.证 当()()n B r A r ==时,由()()**111*A B A A B B AB AB AB ===---当()1-<n A r 时,显然有()***0A B AB ==即 ()***A B AB =当(),1-=n A r 则存在初等矩阵,,,,11t s Q Q P P 使得 t s Q Q A P P A 111=这里().0,11-=n E diag A 直接验算可知,若P 是任意初等矩阵,C 是任意方阵,则 ()()*1*1***,CA C A P C PC ==于是()()[]*1121*B Q Q A P P P AB t s =()*1*112P B Q Q A P P t s ==()*1**11P P B Q Q A s t =()*1**1*1P P A B Q Q s t ==*1**1*1**P P A Q Q B s t =但是 *1**1*1*P P A Q Q s t()*1**1*1P P A Q Q s t =()*1*1*11P P Q Q A P s t s -==()*111t s Q Q A P P =*A = 于是 ()***A B AB =2.10 设A 是阶正定矩阵,则*A 是正定矩阵. 证 因为A 是n 阶正定矩阵,则A A T =,且A 的特征值()n i i 2,1,0=>λ又()()**T TA A ==*A ,故*A 为对称矩阵,且*A 的特征值为()n i Ai,,2,1,0 =>λ故为正定矩阵.2.11 若A 是正交矩阵,则*A 是正交矩阵. 证 因为是正交矩阵,则,12=A I A A T =于是()()()()()I I AA A A A A A A A A A TTTT=====------1111211**故*A 也是正交矩阵.2.12 若矩阵A 与B 合同,且B A ,都可逆,则*A 与*B 合同.证 设存在可逆矩阵,P B AP P T = (4) 又B A ,都可逆,对(4)取逆,则有()1111----=B P A P T即 11--=B C A C T (5) 其中 ()TP C 1-=再对(4)取行列式有B A P =2(6) 则由(1)(5)(6)知 ()()11--=⋅⋅B B C P A A C P T即 **B Q A Q T = 其中C P Q =是可逆矩阵 故 *A 与*B 合同2.13 若矩阵A 与B 相似,且B A ,都可逆,则*A 与*B 相似. 证 设存在可逆矩阵,P B AP P =-1 由 I B BB =* ,有1*-=B B B ()111---=AP P AP P P A P A 11--=P A A P 11--=P A P *1-=所以*A 与*B 相似.2.14 若*A 与*B 相似,则*A 与*B 有相同的特征多项式,特征根,行列式,迹,秩.2.15若*A 与*B 相似,且*A ,*B 都可逆,则A 与B 不一定相似. (A 与B 分别为*A 与*B 的原矩阵)证 因为*A 与*B 的秩都是n ,所以*A 与*B 都有1-n 个原矩阵((),1*-=A A i α()1*-=B B i β,1,2,1-=n i ,其中i i βα,分别是*A ,*B 的所有1-n 次方根.)设秩n A =*且有原矩阵A ,由2.2知()1*-=A A A由2.6知 .1*-=n AA 即 1*-=n A A设*A 的所有1-n 次方根121,,-n ααα ,则有(),1*-=A A i α1,2,1-=n i同理B 也得证.所以A 与B 不一定相似.参考文献:[1]张禾瑞,郝鈵新.高等代数(第五版)[M].北京:高等教育出版社,2007,6.[2]李志慧,李永明.高等代数中的典型问题与方法[M].北京:科学出版社,2001,6(7). [3]刘学生.线性代数分析[M].北京:高等教育出版社,2005,1(10). [4]卢刚.线性代数(第二版)[M].北京:高等教育出版社,2003,7(1).The Relationship of Matrix and Adjoint MatrixZhang Ri lian 20091103344College of Mathematics Science, Mathematics and Applied Mathematics,Class 2009Advisor Xiang HuaAbstract:This article gives a definition of adjoint matrix and summarizes some of its properties, adjoint matrix inverse, determinant, transpose, rank. And the relationship of matrix and the adjoint matrix, Two sufficient conditions for the adjoint matrix of similar.Key words: adjoint matrix,determinant, transpose, rank, similar matrix, positively definite matrix。