最新矩阵与伴随矩阵的关系

合集下载

矩阵伴随的公式

矩阵伴随的公式

矩阵伴随的公式摘要:1.矩阵伴随的概念解释2.矩阵伴随的计算方法3.矩阵伴随的应用场景4.矩阵伴随与其他矩阵运算的关联5.总结与展望正文:在我们探讨矩阵伴随的公式之前,首先需要理解什么是矩阵伴随。

矩阵伴随是一个数学概念,指的是一个矩阵的转置乘以其共轭。

换句话说,对于一个n阶矩阵A,其伴随矩阵A*表示为:A* = trans(A) * conj(A)其中,trans(A)表示矩阵A的转置,conj(A)表示矩阵A的共轭。

接下来,我们来探讨矩阵伴随的计算方法。

以一个3阶矩阵为例:A = [[a11, a12, a13],[a21, a22, a23],[a31, a32, a33]]计算其伴随矩阵A*,步骤如下:1.先将矩阵A转置,得到矩阵A^T:A^T = [[a11, a21, a31],[a12, a22, a32],[a13, a23, a33]]2.计算矩阵A的共轭矩阵A^conj:A^conj = [[conj(a11), conj(a12), conj(a13)],[conj(a21), conj(a22), conj(a23)],[conj(a31), conj(a32), conj(a33)]]3.将矩阵A^T与矩阵A^conj相乘,得到矩阵A*:A* = A^T * A^conj矩阵伴随在实际应用中有很多场景,例如在求解线性方程组、矩阵的特征值和特征向量、矩阵的行列式计算等方面都有涉及。

此外,矩阵伴随与其他矩阵运算如矩阵乘法、矩阵转置、矩阵共轭等有密切关联。

总结一下,矩阵伴随是一个重要的矩阵运算,掌握其计算方法和应用场景对于深入研究矩阵论和实际应用具有重要意义。

伴随矩阵的性质及应用汇总

伴随矩阵的性质及应用汇总

伴随矩阵的性质及应用汇总伴随矩阵,也被称为伴随矩阵、伴随方阵或伴随法方阵,是与一个给定的矩阵相关联的矩阵。

在线性代数中,伴随矩阵的性质及应用非常重要。

下面是对伴随矩阵的性质及应用的汇总。

一、伴随矩阵的基本性质:1.对于任意的n阶矩阵A,它的伴随矩阵存在且唯一2. 伴随矩阵的行列式等于原矩阵A的n次方,即,adj(A), = ,A,^(n-1)。

3. 如果原矩阵A是可逆的,则它的伴随矩阵也是可逆的,并且有逆矩阵的性质,即(adj(A))^(-1) = 1/,A, * adj(A)。

4. 伴随矩阵的转置等于原矩阵的伴随矩阵的转置,即(adj(A))^T = adj(A^T)。

二、伴随矩阵的应用:1. 伴随矩阵在求逆矩阵中的应用:利用伴随矩阵可以很方便地求解矩阵的逆。

对于可逆矩阵A,有A^(-1) = 1/,A, * adj(A)。

通过计算原矩阵的行列式和伴随矩阵,即可得到逆矩阵。

2. 伴随矩阵在线性方程组求解中的应用:对于线性方程组AX = B,如果矩阵A是可逆的,则可以通过左乘伴随矩阵满足(adj(A) * A)* X= adj(A) * B,进而求解出X的解。

3. 伴随矩阵在求解特征值和特征向量中的应用:矩阵A的伴随矩阵adj(A)与矩阵A一样具有相同的特征值,但是特征向量方向相反。

因此,可以通过求解伴随矩阵的特征值和特征向量来得到矩阵A的特征值和特征向量。

4. 伴随矩阵在向量夹角和投影中的应用:对于两个向量A和B,它们的夹角θ可以通过伴随矩阵求解得到,即cosθ = (A・B) / (,A,* ,B,) = (adj(A)・B) / (,A, * ,B,)。

此外,在向量的投影计算中也可以通过伴随矩阵来实现,即投影向量P = A * (adj(A)・B) / (adj(A)・A)。

综上所述,伴随矩阵具有独特的性质和广泛的应用。

它在求逆矩阵、线性方程组求解、特征值和特征向量求解、向量夹角和投影等方面发挥着重要的作用。

a与a的伴随矩阵的关系

a与a的伴随矩阵的关系

a与a的伴随矩阵的关系伴随矩阵是线性代数中的重要概念,它与原矩阵之间存在一定的关系。

本文将探讨a与a的伴随矩阵之间的关系。

我们需要了解伴随矩阵的定义。

给定一个n阶矩阵A,它的伴随矩阵记作adj(A),满足以下条件:1. adj(A)的行列式等于A的行列式的n-1次方,即|adj(A)| = |A|^(n-1);2. adj(A)的每个元素是A的代数余子式,即adj(A)的第i行第j列元素等于A的第j列第i行的代数余子式。

了解了伴随矩阵的定义后,我们来探讨a与a的伴随矩阵之间的关系。

假设a是一个n阶矩阵,我们来计算a的伴随矩阵adj(a)。

我们需要计算a的代数余子式。

对于a的第i行第j列元素a(i,j),它的代数余子式记作A(i,j),满足以下条件:1. A(i,j)的行列式等于a删除第i行第j列后的矩阵的行列式;2. A(i,j)的行列式乘以(-1)^(i+j)。

根据代数余子式的定义,我们可以得到a的伴随矩阵adj(a)的第i 行第j列元素为A(j,i)。

接下来,我们来看一个具体的例子。

假设a是一个3阶矩阵,其元素分别为a11、a12、a13、a21、a22、a23、a31、a32、a33。

我们来计算a的伴随矩阵adj(a)。

我们需要计算a的代数余子式。

对于a的第1行第1列元素a11,它的代数余子式记作A(1,1),等于删除第1行第1列后的矩阵的行列式。

同理,a的代数余子式A(1,2)等于删除第1行第2列后的矩阵的行列式,a的代数余子式A(1,3)等于删除第1行第3列后的矩阵的行列式,以此类推。

接下来,我们需要根据代数余子式的定义来计算a的伴随矩阵adj(a)的元素。

根据定义,adj(a)的第1行第1列元素等于A(1,1)乘以(-1)^(1+1),即adj(a)的第1行第1列元素等于A(1,1)。

同理,adj(a)的第1行第2列元素等于A(2,1)乘以(-1)^(1+2),即adj(a)的第1行第2列元素等于A(2,1),以此类推。

伴随矩阵的行列式和原矩阵的关系证明

伴随矩阵的行列式和原矩阵的关系证明

伴随矩阵的行列式和原矩阵的关系证明设A为一个n阶方阵,并假设其伴随矩阵为Adj(A),那么根据伴随矩阵的定义,我们可以知道Adj(A)满足以下性质:1. Adj(A)与A的行列数相同;2. Adj(A)的第i行第j列元素等于A的第j列第i行元素的代数余子式,即Adj(A)的第i行第j列元素等于A的第j列第i行元素的代数余子式;3. Adj(A)的每一行元素分别等于A的每一列元素的代数余子式组成;4. 若A为可逆矩阵,则其伴随矩阵Adj(A)也是可逆矩阵,且有逆矩阵的关系:A^{-1} = \frac{1}{\text{det(A)}} \cdot \text{Adj}(A)。

我们要证明的是行列式与伴随矩阵之间的关系。

即要证明行列式的值等于伴随矩阵的每一行(或列)元素与A的对应行(或列)元素的乘积之和。

下面对该假设进行证明:设A的行列数为n,那么可以表示为A=(a_{ij})_{n\times n},其中a_{ij}表示A的第i行第j列元素。

根据伴随矩阵的第3条性质,我们可以知道Adj(A)的第i行元素和第j列元素的乘积之和即为A的第j列元素与Adj(A)的第i行元素的代数余子式之和。

即有:Adj(A)_{ij} \cdot a_{ji} = \sum_{k=1}^n (-1)^{i+j} \cdot\text{det}(A_{kj}) \cdot a_{ji},其中A_{kj}表示A去掉第k行第j列后的(n-1)阶子矩阵。

这里我们将等式的左边进行改写,得到:Adj(A)_{ij} \cdot a_{ji} = (-1)^{i+j}\cdot a_{ij} \cdot \text{det}(A_{ij})。

然后,我们对该等式进行求和:\sum_{i=1}^n \sum_{j=1}^n Adj(A)_{ij} \cdot a_{ji} = \sum_{i=1}^n \sum_{j=1}^n (-1)^{i+j} \cdot a_{ij} \cdot \text{det}(A_{ij})。

矩阵与伴随矩阵的关系

矩阵与伴随矩阵的关系

方阵A 与其伴随矩阵*A 的关系摘 要 本文给出了n 阶方阵A 的伴随矩阵*A 的定义,讨论了n 阶方阵A 与其伴随矩阵*A 之间的关系,例如A 与*A 之间的关系,并且给出了相应的证明过程. 关键词 矩阵、伴随矩阵、关系、证明在高等代数课程中我们学习了矩阵,伴随矩阵。

它们之间有很好的联系,对我们以后的学习中有很大的用处。

1.伴随矩阵的定义. 设n 阶方阵()⎪⎪⎪⎪⎪⎭⎫⎝⎛==⨯nn n n n n nn ij a a a a a a a a a a A 212221212111.令()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==⨯nn nnn n nn ij A A A A A A A A A A A 212221212111*,其中ij A 是ija 的代数余子式.则称*A 为A 的伴随矩阵.2.矩阵A 与其伴随矩阵*A 的关系及其证明.2.1*AA =A A *=AI det .当A 可逆时,有*1det 1A AA =-,即1*det -=AA A [1].证明:因为⎩⎨⎧≠==+++;,0,,det 2211j i j i A A a A a A a jnin j i j i 若若 ⎩⎨⎧≠==+++;,0,,det 2211j i j i A A a A a A a nj ni ji j i 若若所以*AA =A A *=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛A A Adet 000det 000det =AI det .当A 是可逆矩阵时, 0det ≠A ,所以由上式得⎪⎭⎫ ⎝⎛*det 1A A A =A A A ⎪⎭⎫⎝⎛*det 1=I 即*1det 1A AA =-.证毕.2.2 ()*T A =()TA *.(显然) 2.3 若A 可逆,则()*1-A =()1*-A .(显然)2.4 设A 为n 阶方阵()2≥n ,则()()()()⎪⎩⎪⎨⎧=-=-<=n A r n n A r n A r A r 1110*[2]. 引理1.若()2≥⨯n n n 矩阵A ,B 满足0=AB ,则()()n B r A r ≤+.证明 因为0=AB ,所以B 的列向量是以A 为系数矩阵的齐次线性方程的解向量.若()n A r =,则0det ≠A .由克拉默法则知,方程只有零解,从而0=B ,进而()0=B r ;若()n r A r <=,则方程组的基础解系中含rn -个向量,于是()rn B r -≤,因此有()()n B r A r ≤+.证毕.下面证明2.4. ⑴当()1-<n A r时, A 的每一个1-n 阶代数余子式都为零.所以*A 为零阵,所以()0*=A r .⑵当()1-=n A r时,0det =A ,*AA =AI det =0.由引理1知,()A r +()n A r ≤*.因为()1-=n A r则()()11*=--≤n n A r,知A 至少有一个1-n 阶子式不为零.即 *A 至少有一行不全为零. 所以()1*≥A r .因为()1*≤A r ,从而()1*=A r .⑶ 当()n A r =时,A 可逆,由1知,*A 也可逆.所以()n A r =*.证毕.2.5 ()1*det det -=n A A .① 当A 可逆时,1*det -=AA A .所以()1*det det det -=A A A n()1det -=n A .② 当A 不可逆时,()1-≤n A r ,0det =A .1) 当2≥n时()1-<n A r ,由2.4知()0*=A r .所以0det *=A .()1-=n A r ,()n A r <=1*,0det *=A .则()0det det 1*==-n A A2) 当1=n 时,0det =A ,即0=A ,0det *=A ,则()0det det 1*==-n A A .证毕. 2.6 当A 可逆时,若0λ为A 的特征值,则det λA是*A 的特征值.当()1-<n A r 时,*A 的特征值为零,并是n 重的.引理2. 设A 可逆,若0λ为A 的特征值,则1λ是1-A 的特征值.证明: 若00=λ,则由00=-A E λ得到()01=-=-A A n ,于是0=A ,这与A 可逆矛盾,所以00≠λ.同时由00=-A E λ还有()()11010011110------=--=-=-=A E A E E A A E A nnnλλλλλ.因此0110=--A E λ,即 01λ是1-A 的特征值.引理证毕. 下面证明2.6.不妨设*A 的特征值为*λ.则由AE AA det *=有1*1***0---=-=-=AE AAAA E A E nλλλ.0≠A ,这说明A*λ是1-A 的特征值.由引理2知,*1λλ=A,所以0*λλA=,即λA是*A 的特征值.若()0*=A r ,(即()1-<n A r)时,0*=A,所以*A 的特征值0*=λ且是n 重的.2.7 若A 为可逆矩阵,则*A 也是可逆矩阵.证明:由2.1即可得到此结论. 2.8 若A 为对称矩阵,则*A 也是对称矩阵.2.9 ()***A B AB =.证明: 当A ,B 均可逆时, 1*det -=AA A ,1*det -=BB B ,所以()*111**))(det()det(AB AB AB A B AB A B ===---.当A ,B不都可逆时,则当x 足够大时,存在x 使得n xI A +, n xI B +均可逆,此时有()***)()())((n n n n xI A xI B xI B xI A ++=++,这是关于x 的恒等式,即x 取零时,该等式也成立,即()***A B AB =.证毕.2.10 若A 为正交矩阵,则*A 也是正交矩阵. 证明: 若A 为正交矩阵,则I A A AA T T ==且1det ±=A ,由2.2知()()****T TA A A A =.再由2.9知()()()I I A A A A A ATTT====******,所以*A也是正交矩阵.证毕. 2.11 ()A AAn 2**-=,其中A 是n 阶方阵()2>n .证明:因为E A A A AA ==**,所以 1) 当0≠A 时,1*-=A A A .则 ()()()111*1**----⋅==A A A A A A Aﻩ()A A A AA A A AA A n nn21111111------===2) 当0=A 时,由2.4知()1≤A r . 当2>n 时,)()0**=A r ,故()A AA n 2**-=.当2=n 时,令⎪⎪⎭⎫⎝⎛=d c b a A ,则⎪⎪⎭⎫ ⎝⎛--=a c b d A *, ()A A A d c b a A n 2**-==⎪⎪⎭⎫ ⎝⎛=. 证毕.通过以上的证明,说明了n阶矩阵A与其伴随矩阵*A有很多联系和继承性,理解和掌握这些联系和继承性对我们以后高等代数课程的学习有着重要的意义.。

矩阵与它伴随矩阵的关系1

矩阵与它伴随矩阵的关系1

矩阵与它伴随矩阵的关系摘 要 通过对矩阵和伴随矩阵的学习,本文主要给出了伴随矩阵的定义和总结了它的一些性质,如伴随矩阵的逆,行列式,转置,秩,矩阵的伴随矩阵的伴随矩阵与矩阵本身的关系等.以及矩阵与它的伴随矩阵的关系,如两矩阵相似,则它们的伴随矩阵也相似等.关键词 矩阵;伴随矩阵;转置;可逆;行列式;秩;相似矩阵;正定矩阵1伴随矩阵的定义设,则它的伴随矩阵,其中 ()n n ij a A ⨯=()nn ij b A ⨯=*ji ij A b =为中的代数余子式.(),,,3,2,1,n j i =ij A A ij a 2伴随矩阵的性质以及矩阵与它伴随矩阵的关系2.1 .I A A A AA ==**2.2 若A 非奇异,则.*11A AA =-2.3 .()()TTA A **=证 当可逆时,,且也可逆.A 1*-=A A A T A 故 =()()1*-=TT T A A A ()TA A 1-另一方面, =()()TTA A A 1*-=()T A A 1-由上两式推出 .()()TTA A **=2.4 .()()1**1--=A A 证 当可逆时,,且也可逆.A 1*-=A A A 1-A 故 ()()A AA A A 1111*1==----又由 E A A A A A A =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛**11故 也可逆,且*A ()A AA 11*=-从而 .()()1**1--=A A 2.5 (为实数).()*1*A a aA n -=a 证 设,再设 ,()nn ij a A ⨯=()()n n ij b aA ⨯=*那么为行列式中划去第行和第列的代数余子式阶行列式,ij b aA j i 1-n 其中每行提出公因子后,可得a ji n ij A ab 1-=()n j i ,2,1,=由此即证.()*1*A a aA n -= 2.6 .1*-=n AA ()2≥n 证当可逆时,由于 两边取行列式A ,1*-=A A A 得 11*--==n nAA A A 当不可逆时,这时秩A ,0=A 1*≤A 所以从而也有 .0*=A 1*-=n AA 所以对任意阶方阵都有n ,A .1*-=n AA 2.7 当秩时,则秩.当秩时则秩.,当秩n A =n A =*1-=n A 1*=A 2-≤n A 则秩.0*=A 证 当秩那么由上面的(1)式有,0≠⇒=A n A 0*≠==nA I A AA 所以 即秩,0*≠A nA =* 当秩 ,01=⇒-=A n A 0*==I A AA 从而秩 又因秩所以至少有一个代数余子式,1*≤A ,1-=n A ,0≠ij A 从而秩于是秩,1*≥A ,1*=A 当秩所以秩2-=n A ⇒0*=A 0*=A 同理秩时,秩.2-<n A 0*=A 2.8 .()A AA n 2**-=证 当秩时,可逆,用左乘(1)式两边可得n A =A A ,0≠1-A (1)1*-=A A A 在(1)式中用换得A *A(2)()()A A A A AA A A n n 211****1---=⎪⎪⎭⎫⎝⎛==当秩时,则秩1-≤n A 0,1*=≤A A 从而秩 (3)()A AA n 2**0-== 综合(2)(3)两式,即证.()A AA n 2**-=2.9 若为阶可逆矩阵,则.B A ,n ()***A B AB = 证 当时,由()()n B r A r == ()()**111*A B A A B B AB AB AB ===--- 当时,显然有()1-<n A r ()***0A B AB == 即 ()***A B AB = 当则存在初等矩阵使得(),1-=n A r ,,,,11t s Q Q P P ts Q Q A P P A 111= 这里直接验算可知,若是任意初等矩阵,C 是任意方().0,11-=n E diag A P 阵,则()()*1*1***,CA C A P C PC == 于是()()[]*1121*B Q Q A P P P AB t s = ()*1*112P B Q Q A P P t s == ()*1**11P P B Q Q A s t = ()*1**1*1P P A B Q Q s t ==*1**1*1**P P A Q Q B s t = 但是 *1**1*1*P P A Q Q s t()*1**1*1P P A Q Q s t = ()*1*1*11P P Q Q A P s t s -== ()*111t s Q Q A P P = *A = 于是()***A B AB =2.10 设是阶正定矩阵,则是正定矩阵.A *A 证 因为是阶正定矩阵,则,A n A A T =且的特征值又=,A ()n i i 2,1,0=>λ()()**T TA A =*A故为对称矩阵,且的特征值为*A *A ()n i Ai,,2,1,0 =>λ故为正定矩阵.2.11 若是正交矩阵,则是正交矩阵.A *A 证 因为是正交矩阵,则,12=A IA A T =于是()()()()()II AA AA A A A A A A A TTTT=====------1111211**故也是正交矩阵.*A 2.12 若矩阵与B 合同,且都可逆,则与合同.A B A ,*A *B 证 设存在可逆矩阵 (4),P B AP P T = 又都可逆,对(4)取逆,则有B A ,()1111----=B P A P T即 (5)11--=B C A C T 其中()TP C 1-= 再对(4)取行列式有 (6)B A P =2则由(1)(5)(6)知 ()()11--=⋅⋅B B C P A A C P T即 **B Q A Q T =其中是可逆矩阵C P Q = 故 与合同*A *B 2.13 若矩阵与B 相似,且都可逆,则与相似.A B A ,*A *B 证 设存在可逆矩阵 ,P BAP P =-1 由 ,I B BB =* 有 1*-=B B B ()111---=APP AP P P A P A 11--=P A A P 11--=PA P *1-= 所以与相似.*A *B 2.14 若与相似,则与有相同的特征多项式,特征根,行列式,迹,*A *B *A *B 秩.2.15若与相似,且,都可逆,则与B 不一定相似. (与B 分*A *B *A *B A A 别为与的原矩阵)*A *B 证 因为与的秩都是,所以与都有个原矩阵(*A *B n *A *B 1-n ,,其中分别是,(),1*-=A A i α()1*-=B B iβ1,2,1-=n i i i βα,*A 的所有次方根.)*B 1-n 设秩且有原矩阵,由2.2知n A =*A ()1*-=A A A 由2.6知 即 .1*-=n AA 1*-=n A A 设的所有次方根,则有*A 1-n 121,,-n ααα (),1*-=A A i α1,2,1-=n i 同理B 也得证.所以与B 不一定相似.A 参考文献:[1]张禾瑞,郝鈵新.高等代数(第五版)[M].北京:高等教育出版社,2007,6.[2]李志慧,李永明.高等代数中的典型问题与方法[M].北京:科学出版社,2001,6(7).[3]刘学生.线性代数分析[M].北京:高等教育出版社,2005,1(10).[4]卢刚.线性代数(第二版)[M].北京:高等教育出版社,2003,7(1).The Relationship of Matrix and Adjoint MatrixZhang Ri lian 20091103344College of Mathematics Science, Mathematics and Applied Mathematics ,Class 2009Advisor Xiang HuaAbstract :This article gives a definition of adjoint matrix and summarizes some of its properties, adjoint matrix inverse, determinant, transpose, rank. And the relationship of matrix and the adjoint matrix, Two sufficient conditions for the adjoint matrix of similar.Key words : adjoint matrix, determinant, transpose, rank, similar matrix, positivelydefinite matrix。

关于伴随矩阵性质的探讨

关于伴随矩阵性质的探讨

关于伴随矩阵性质的探讨伴随矩阵,也称作伴随矩阵、伴随阵或伴随矩阵,是在线性代数中一个重要的概念。

在矩阵理论和线性代数中,对于任意一个n阶矩阵A,我们可以定义它的伴随矩阵Adj(A),也表示为A*。

伴随矩阵的定义是:对于一个n阶矩阵A,它的伴随矩阵Adj(A)是一个n阶矩阵,它的每一个元素都等于A的代数余子式的代数余子式时,这个元素的行号与列号之和为偶数次时,其代数余子式乘以(-1)。

如果行号与列号之和为奇数次时,元素值不变。

伴随矩阵在许多应用中起着重要的作用,它有许多重要性质值得探讨。

1. 伴随矩阵的行列式等于原矩阵的行列式的n-1次方乘以n-1的阶乘。

即det(A*) = det(A)^(n-1) * (n-1)!2. 如果一个矩阵A可逆,那么它的伴随矩阵也是可逆的,且(Adj(A))^-1 = (A^-1)*,其中A^-1表示A的逆矩阵。

3.如果一个矩阵A的伴随矩阵是可逆的,那么A也是可逆的。

这可以通过用伴随矩阵左乘A的逆矩阵来证明。

4.如果一个矩阵A是一个方阵,且它的伴随矩阵与A可交换(即A*·A=A·A*),那么A是一个可逆矩阵。

5.如果两个矩阵A和B的乘积等于一个单位矩阵I,那么它们的伴随矩阵也满足(A·B)*=B*·A*。

这个性质对于求解线性方程组等问题非常有用。

6.伴随矩阵的积与转置的关系:(A·B)*=B*·A*。

这个性质说明了两个矩阵相乘后的伴随矩阵等于倒序相乘后的伴随矩阵,即A和B的伴随矩阵相乘的结果等于B的伴随矩阵和A的伴随矩阵相乘的结果。

7. 伴随矩阵的伴随矩阵等于原矩阵的(n-2)次方乘以(n-2)的阶乘。

即(Adj(A)) = (Adj(Adj(A))) = A^(n-2) * (n-2)!通过以上性质的探讨,我们可以看到伴随矩阵在矩阵的求逆、线性方程组的求解等问题中起着重要的作用。

它可以帮助我们简化计算过程,快速得到结果。

伴随变换与伴随矩阵的定义与性质

伴随变换与伴随矩阵的定义与性质

伴随变换与伴随矩阵的定义与性质伴随变换与伴随矩阵是线性代数中的重要概念,它们在矩阵理论、向量空间和线性变换等领域中具有广泛的应用。

本文将介绍伴随变换与伴随矩阵的定义与性质。

一、伴随变换的定义在线性代数中,给定一个向量空间V和线性变换T:V→V,称T 的伴随变换为一个线性变换T*:V→V,满足对任意的u、v∈V有内积的等式:〈Tu,v〉=〈u,T*v〉其中,〈·,·〉表示向量的内积。

二、伴随变换的性质1. 伴随变换的存在性对于给定的线性变换T:V→V,伴随变换T*一定存在且唯一。

2. 伴随变换的线性性质对于任意的线性变换T1、T2以及标量c,有以下等式成立:(T1+T2)*=T1*+T2*(cT1)*=cT1*3. 伴随变换的伴随性质对于任意的线性变换T:V→V的伴随变换T*的伴随变换(T*)*,有以下等式成立:(T*)*=T三、伴随矩阵的定义设V为n维向量空间,B={v1, v2, ..., vn}为V的一组基,对于线性变换T:V→V,其在基B下的矩阵为A=[T]B,称A的伴随矩阵为A*,满足以下等式:[A*]B=[T*]B四、伴随矩阵的性质1. 伴随矩阵的存在性对于给定线性变换T:V→V,其在基B下的矩阵A=[T]B一定存在且唯一,因此其伴随矩阵A*也存在且唯一。

2. 伴随矩阵的基本性质(1)伴随矩阵的行列式若A是一个n×n矩阵,其伴随矩阵为A*,则有det(A*)=[det(A)]^(n-1)。

(2)伴随矩阵的迹若A是一个n×n矩阵,其伴随矩阵为A*,则有tr(A*)=(n-1)tr(A)。

(3)伴随矩阵的秩若A是一个n×n矩阵,其伴随矩阵为A*,则有rank(A*)=rank(A)。

3. 伴随矩阵的转置性质若A是一个n×n矩阵,其伴随矩阵为A*,则有(A*)^T=(A^T)*。

4. 伴随矩阵的幂等性质若A是一个n×n矩阵,其伴随矩阵为A*,则有(A*)^2=(det(A))^(n-2)A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方阵A 与其伴随矩阵*A 的关系摘 要 本文给出了n 阶方阵A 的伴随矩阵*A 的定义,讨论了n 阶方阵A 与其伴随矩阵*A 之间的关系,例如A 与*A 之间的关系,并且给出了相应的证明过程. 关键词 矩阵、伴随矩阵、关系、证明在高等代数课程中我们学习了矩阵,伴随矩阵。

它们之间有很好的联系,对我们以后的学习中有很大的用处。

1.伴随矩阵的定义. 设n 阶方阵()⎪⎪⎪⎪⎪⎭⎫⎝⎛==⨯nn n n n n nn ij a a a a a a a a a a A 212221212111.令()⎪⎪⎪⎪⎪⎭⎫⎝⎛==⨯nn nnn n nn ij A A A A A A A A A A A 212221212111*,其中ij A 是ij a 的代数余子式.则称*A 为A 的伴随矩阵.2.矩阵A 与其伴随矩阵*A 的关系及其证明.2.1*AA =A A *=AI det .当A 可逆时,有*1det 1A AA =-,即1*det -=AA A [1].证明:因为⎩⎨⎧≠==+++;,0,,det 2211j i j i A A a A a A a jnin j i j i 若若 ⎩⎨⎧≠==+++;,0,,det 2211j i j i A A a A a A a nj ni ji j i 若若所以*AA =A A *=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛A A Adet 000det 000det =AI det .当A 是可逆矩阵时, 0det ≠A ,所以由上式得⎪⎭⎫ ⎝⎛*det 1A A A =A A A ⎪⎭⎫⎝⎛*det 1=I 即*1det 1A AA =-.证毕. 2.2()*T A =()TA *.(显然)2.3 若A 可逆,则()*1-A=()1*-A .(显然)2.4 设A 为n 阶方阵()2≥n ,则()()()()⎪⎩⎪⎨⎧=-=-<=n A r n n A r n A r A r 1110*[2]. 引理1.若()2≥⨯n nn 矩阵A ,B 满足0=AB ,则()()n B r A r ≤+.证明 因为0=AB ,所以B 的列向量是以A 为系数矩阵的齐次线性方程的解向量.若()n A r=,则0det ≠A .由克拉默法则知,方程只有零解,从而0=B ,进而()0=B r ;若()n r A r <=,则方程组的基础解系中含rn -个向量,于是()rn B r -≤,因此有()()n B r A r ≤+.证毕. 下面证明2.4. ⑴当()1-<n A r时, A 的每一个1-n 阶代数余子式都为零.所以*A 为零阵,所以()0*=A r .⑵当()1-=n A r时,0det =A ,*AA =AI det =0.由引理1知,()A r+()n A r ≤*.因为()1-=n A r 则()()11*=--≤n n A r ,知A 至少有一个1-n 阶子式不为零.即 *A 至少有一行不全为零. 所以()1*≥A r .因为()1*≤A r ,从而()1*=A r .⑶ 当()n A r =时,A 可逆,由1知,*A 也可逆.所以()n A r =*.证毕.2.5 ()1*det det -=n A A .① 当A 可逆时,1*det -=AA A .所以()1*det det det -=A A A n ()1det -=n A .② 当A 不可逆时,()1-≤n A r ,0det =A .1) 当2≥n时()1-<n A r ,由2.4知()0*=A r .所以0det *=A .()1-=n A r ,()n A r <=1*,0det *=A .则()0det det 1*==-n A A2) 当1=n 时,0det =A ,即0=A ,0det *=A ,则()0det det 1*==-n A A .证毕. 2.6 当A 可逆时,若0λ为A 的特征值,则det λA是*A 的特征值.当()1-<n A r 时,*A 的特征值为零,并是n 重的. 引理2. 设A 可逆,若0λ为A 的特征值,则1λ是1-A 的特征值.证明: 若00=λ,则由00=-A E λ得到()01=-=-A A n ,于是0=A ,这与A 可逆矛盾,所以00≠λ.同时由00=-A E λ还有()()11010011110------=--=-=-=A E A E E A A E A nnnλλλλλ.因此0110=--A E λ,即 01λ是1-A 的特征值.引理证毕. 下面证明2.6.不妨设*A 的特征值为*λ.则由AE AA det *=有1*1***0---=-=-=AE AAAA E A E nλλλ.0≠A ,这说明A*λ是1-A 的特征值.由引理2知,*1λλ=A,所以0*λλA=,即λA是*A 的特征值.若()0*=A r ,(即()1-<n A r)时,0*=A,所以*A 的特征值0*=λ且是n 重的.2.7 若A 为可逆矩阵,则*A 也是可逆矩阵.证明:由2.1即可得到此结论.2.8 若A 为对称矩阵,则*A 也是对称矩阵. 2.9 ()***A B AB =.证明:当A ,B 均可逆时, 1*det -=AA A ,1*det -=BB B ,所以()*111**))(det()det(AB AB AB A B AB A B ===---.当A ,B不都可逆时,则当x 足够大时,存在x 使得n xI A +, nxI B +均可逆,此时有()***)()())((n n n n xI A xI B xI B xI A ++=++,这是关于x 的恒等式,即x 取零时,该等式也成立,即()***A B AB =.证毕.2.10 若A 为正交矩阵,则*A 也是正交矩阵. 证明:若A 为正交矩阵,则I A A AA TT==且1det ±=A ,由2.2知()()****T TAA A A=.再由2.9知()()()I I A A A A A ATTT====******,所以*A也是正交矩阵.证毕. 2.11 ()A AAn 2**-=,其中A 是n 阶方阵()2>n .证明:因为E A A A AA ==**,所以 1) 当0≠A 时,1*-=A A A .则 ()()()111*1**----⋅==A A A A A A A()A A A AA A A AA A n nn21111111------===2) 当0=A 时,由2.4知()1≤A r . 当2>n 时,)()0**=A r ,故()A AA n 2**-=.当2=n 时,令⎪⎪⎭⎫⎝⎛=d c b a A ,则⎪⎪⎭⎫ ⎝⎛--=a c b d A *, ()A A A d c b a A n 2**-==⎪⎪⎭⎫ ⎝⎛=. 证毕.通过以上的证明,说明了n 阶矩阵A 与其伴随矩阵*A 有很多联系和继承性,理解和掌握这些联系和继承性对我们以后高等代数课程的学习有着重要的意义.全等三角形提高练习1. 如图所示,△AB C ≌△ADE ,BC 的延长线过点E ,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF 的度数。

2. 如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转52°,得到△A ′OB ′,边A ′B ′与边OB 交于点C (A ′不在OB 上),则∠A ′CO 的度数为多少?3. 如图所示,在△ABC 中,∠A=90°,D 、E 分别是AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数是多少?4. 如图所示,把△ABC 绕点C 顺时针旋转35°,得到△A ′B ′C ,A ′B ′交AC 于点D ,若∠A ′DC=90°,则∠A=5. 已知,如图所示,AB=AC ,A D ⊥BC 于D ,且AB+AC+BC=50cm,而AB+BD+AD=40cm ,则AD 是多少?6. 如图,Rt △ABC 中,∠BAC=90°,AB=AC ,分别过点B 、C 作过点AD 、E ,若BD=3,CE=2,则DE=7. 如图,AD是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,连接EF ,交AD 于G ,AD与EF 垂直吗?证明你的结论。

8. 如图所示,在△ABC 中,AD 为∠BAC 的角平分线,D E ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB=20cm ,AC=8cm ,求DE 的长。

AB'C A B。

相关文档
最新文档