矩阵与伴随矩阵的关系

合集下载

伴随矩阵的秩与矩阵的秩的关系的证明

伴随矩阵的秩与矩阵的秩的关系的证明

伴随矩阵的秩与矩阵的秩的关系的证明要证明伴随矩阵的秩与矩阵的秩之间的关系,我们先回顾一下伴随矩阵的定义和性质。

设矩阵A是一个n阶方阵,它的伴随矩阵记作Adj(A),那么Adj(A)的定义是:对于A的每一个元素a_ij,其代数余子式A_ij对应的元素adj(a_ij)构成的矩阵,即Adj(A) = [adj(a_ij)]。

我们知道,对于一个n阶方阵A,A的秩等于其非零行(列)向量组的维数,也等于其行(列)向量组的极大线性无关组的向量个数。

现在我们来证明伴随矩阵Adj(A)的秩与矩阵A的秩之间的关系:证明:设A是一个n阶方阵。

1)如果A是一个非奇异矩阵(即可逆矩阵),那么根据A的可逆性,我们知道A的行(列)向量组的秩等于n,即A的秩为n。

而伴随矩阵Adj(A)是一个n阶方阵,根据伴随矩阵的定义,我们可以得知Adj(A)的每一个元素都是由A的代数余子式构成的。

根据代数余子式的性质,我们知道当A是非奇异矩阵时,其所有的代数余子式都不等于零。

所以Adj(A)中的每一个元素都不等于零,即Adj(A)的秩也为n。

2)如果A是一个奇异矩阵(即非可逆矩阵),那么根据奇异矩阵的定义,A的行(列)向量组一定是线性相关的,即存在非零的线性组合使得线性组合等于零向量。

而伴随矩阵Adj(A)的每一个元素都由A的代数余子式构成,根据代数余子式的性质,我们知道当A的行(列)向量组线性相关时,其某个代数余子式等于零。

所以Adj(A)中的至少有一个元素等于零,即Adj(A)的秩小于n。

综上所述,伴随矩阵Adj(A)的秩与A的秩之间存在如下关系:1)当A是非奇异矩阵时,Adj(A)的秩等于n,即Adj(A)的秩等于A的秩。

2)当A是奇异矩阵时,Adj(A)的秩小于n,即Adj(A)的秩小于A的秩。

这就完成了伴随矩阵的秩与矩阵的秩之间关系的证明。

伴随矩阵和原矩阵的行列式的关系

伴随矩阵和原矩阵的行列式的关系

伴随矩阵和原矩阵的行列式的关系下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!伴随矩阵与原矩阵行列式的关系探析在线性代数的世界里,矩阵和行列式是两个重要的概念,它们之间存在着紧密的联系。

矩阵伴随的公式

矩阵伴随的公式

矩阵伴随的公式
摘要:
一、矩阵伴随的定义与性质
- 伴随矩阵的概念
- 伴随矩阵的性质
二、矩阵伴随的计算方法
- 伴随矩阵的计算公式
- 伴随矩阵与矩阵其他性质的关系
三、矩阵伴随在实际应用中的作用
- 矩阵求解问题
- 矩阵对角化问题
正文:
矩阵伴随是线性代数中一个非常重要的概念,它与矩阵的性质有着紧密的联系。

伴随矩阵可以看作是矩阵的一个“伴随”性质,它可以用来描述矩阵的某些特性,如矩阵的秩、行列式、逆矩阵等。

一、矩阵伴随的定义与性质
伴随矩阵的概念最早可以追溯到19 世纪,它是一个与给定矩阵相关的矩阵,具有如下性质:
- 伴随矩阵是一个方阵,其行数和列数与原矩阵相同;
- 伴随矩阵的元素是原矩阵元素的代数余子式;
- 伴随矩阵具有某些与原矩阵相同的性质,如行列式、秩、逆矩阵等。

伴随矩阵的性质是矩阵理论中的重要内容,它可以帮助我们更好地理解矩阵的性质,进而解决一些实际问题。

二、矩阵伴随的计算方法
伴随矩阵的计算公式是:
A = |A|A
其中,|A|是矩阵A 的行列式,A是矩阵A 的逆矩阵。

伴随矩阵与矩阵的其他性质也有密切关系,例如,一个矩阵的秩等于其行向量组或列向量组的秩,而伴随矩阵的秩等于原矩阵的秩。

三、矩阵伴随在实际应用中的作用
伴随矩阵在实际应用中有着广泛的应用,例如:
- 在求解线性方程组时,伴随矩阵可以用来检验方程组的解是否正确;
- 在矩阵对角化问题中,伴随矩阵可以用来求解对角矩阵;
- 在计算机图形学中,伴随矩阵可以用来计算图形的旋转矩阵等。

矩阵的转置和伴随矩阵的计算

矩阵的转置和伴随矩阵的计算

矩阵的转置和伴随矩阵的计算矩阵在数学中具有广泛的应用,是线性代数中重要的概念之一。

其中,矩阵的转置和伴随矩阵也是运用比较广泛的一种概念。

矩阵的转置是指将一个矩阵中的行和列交换得到的新矩阵。

如果矩阵A的大小为m*n,那么A的转置矩阵AT的大小就是n*m。

其实际操作就是将原矩阵沿着主对角线镜像,并交换行和列。

例如,如果有一个矩阵A=[1 2 3; 4 5 6],转置矩阵AT就是:AT=[1 4; 2 5; 3 6]。

矩阵的转置有很多应用,其中一个是用于矩阵的乘法。

对于矩阵乘法AB,如果A的大小为m*n,B的大小为n*p,那么乘积C=AB的大小为m*p。

在矩阵乘法中,我们可以看到在乘法运算中,如果A的列数等于B的行数,它们才是可乘的。

但是,在列向量和行向量的乘法中,则没有限制,因为列向量可以看做是一个m*1的矩阵,而行向量则可以看做是一个1*n的矩阵。

另外,在一些数学公式的推导中,矩阵的转置也会被用到。

例如,在求导中,矩阵的转置可以用来得到一个向量的Jacobi矩阵,从而计算偏导数。

伴随矩阵则是指一个矩阵的伴随矩阵的每个元素是该矩阵的代数余子式所组成的矩阵,并且该矩阵转置后得到的矩阵就是原矩阵的逆矩阵。

具体而言,如果矩阵A的大小为n*n,它的代数余子式为Aij,则伴随矩阵的大小也为n*n,其中第i行第j列的元素为Aij的代数余子式。

伴随矩阵常常用于求解线性方程组的解。

对于一个线性方程组Ax=B,如果A存在逆矩阵,那么其解就是x=A^-1*B,而A的逆矩阵就是其伴随矩阵除以该矩阵行列式的结果,即A^-1=adj(A)/det(A)。

因此,我们需要先求出矩阵A的伴随矩阵和行列式,才能得到A的逆矩阵。

此外,伴随矩阵还可以用于矩阵的对角化。

对于一个n*n的矩阵A,如果它满足A的伴随矩阵的特征值都为0,那么A就是可对角化的。

如果A可对角化,我们可以将其表示成一个对角矩阵D和一个可逆矩阵P的乘积形式,即A=PDP^-1,其中P和P^-1的列向量为A的特征向量,D的对角元素为A的特征值。

关于伴随矩阵的几个问题

关于伴随矩阵的几个问题

作者: 徐火球
作者机构: NULL
出版物刊名: 武汉交通职业学院学报
页码: 95-98页
主题词: 伴随矩阵 n阶矩阵 矩阵A 非奇异矩阵 齐次线性方程组 代数余子式 方程组的解 矩阵的秩 可逆矩阵 向量组的秩
摘要: 其中A ij(i,j=1,2,…,n)为A的元素a ij的代数余子式.伴随矩阵也是一个n阶矩阵.一般来说,已知n阶矩阵求出它的伴随矩阵是较为麻烦的,本文在不求出伴随矩阵的前提下,就n阶矩阵A的伴随矩阵的几个问题进行讨论.下文中E均表示n阶单位矩阵.一 引理我们知道,对于n阶矩阵A,下面的一些结论都是成立的.引1.对于任何n阶矩阵A,它与它的伴随矩阵A,都有:。

最新矩阵与伴随矩阵的关系

最新矩阵与伴随矩阵的关系

方阵A 与其伴随矩阵*A 的关系摘 要 本文给出了n 阶方阵A 的伴随矩阵*A 的定义,讨论了n 阶方阵A 与其伴随矩阵*A 之间的关系,例如A 与*A 之间的关系,并且给出了相应的证明过程. 关键词 矩阵、伴随矩阵、关系、证明在高等代数课程中我们学习了矩阵,伴随矩阵。

它们之间有很好的联系,对我们以后的学习中有很大的用处。

1.伴随矩阵的定义. 设n 阶方阵()⎪⎪⎪⎪⎪⎭⎫⎝⎛==⨯nn n n n n nn ij a a a a a a a a a a A 212221212111.令()⎪⎪⎪⎪⎪⎭⎫⎝⎛==⨯nn nnn n nn ij A A A A A A A A A A A 212221212111*,其中ij A 是ij a 的代数余子式.则称*A 为A 的伴随矩阵.2.矩阵A 与其伴随矩阵*A 的关系及其证明.2.1*AA =A A *=AI det .当A 可逆时,有*1det 1A AA =-,即1*det -=AA A [1].证明:因为⎩⎨⎧≠==+++;,0,,det 2211j i j i A A a A a A a jnin j i j i 若若 ⎩⎨⎧≠==+++;,0,,det 2211j i j i A A a A a A a nj ni ji j i 若若所以*AA =A A *=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛A A Adet 000det 000det =AI det .当A 是可逆矩阵时, 0det ≠A ,所以由上式得⎪⎭⎫ ⎝⎛*det 1A A A =A A A ⎪⎭⎫⎝⎛*det 1=I 即*1det 1A AA =-.证毕. 2.2()*T A =()TA *.(显然)2.3 若A 可逆,则()*1-A=()1*-A .(显然)2.4 设A 为n 阶方阵()2≥n ,则()()()()⎪⎩⎪⎨⎧=-=-<=n A r n n A r n A r A r 1110*[2]. 引理1.若()2≥⨯n nn 矩阵A ,B 满足0=AB ,则()()n B r A r ≤+.证明 因为0=AB ,所以B 的列向量是以A 为系数矩阵的齐次线性方程的解向量.若()n A r=,则0det ≠A .由克拉默法则知,方程只有零解,从而0=B ,进而()0=B r ;若()n r A r <=,则方程组的基础解系中含rn -个向量,于是()rn B r -≤,因此有()()n B r A r ≤+.证毕. 下面证明2.4. ⑴当()1-<n A r时, A 的每一个1-n 阶代数余子式都为零.所以*A 为零阵,所以()0*=A r .⑵当()1-=n A r时,0det =A ,*AA =AI det =0.由引理1知,()A r+()n A r ≤*.因为()1-=n A r 则()()11*=--≤n n A r ,知A 至少有一个1-n 阶子式不为零.即 *A 至少有一行不全为零. 所以()1*≥A r .因为()1*≤A r ,从而()1*=A r .⑶ 当()n A r =时,A 可逆,由1知,*A 也可逆.所以()n A r =*.证毕.2.5 ()1*det det -=n A A .① 当A 可逆时,1*det -=AA A .所以()1*det det det -=A A A n ()1det -=n A .② 当A 不可逆时,()1-≤n A r ,0det =A .1) 当2≥n时()1-<n A r ,由2.4知()0*=A r .所以0det *=A .()1-=n A r ,()n A r <=1*,0det *=A .则()0det det 1*==-n A A2) 当1=n 时,0det =A ,即0=A ,0det *=A ,则()0det det 1*==-n A A .证毕. 2.6 当A 可逆时,若0λ为A 的特征值,则det λA是*A 的特征值.当()1-<n A r 时,*A 的特征值为零,并是n 重的. 引理2. 设A 可逆,若0λ为A 的特征值,则1λ是1-A 的特征值.证明: 若00=λ,则由00=-A E λ得到()01=-=-A A n ,于是0=A ,这与A 可逆矛盾,所以00≠λ.同时由00=-A E λ还有()()11010011110------=--=-=-=A E A E E A A E A nnnλλλλλ.因此0110=--A E λ,即 01λ是1-A 的特征值.引理证毕. 下面证明2.6.不妨设*A 的特征值为*λ.则由AE AA det *=有1*1***0---=-=-=AE AAAA E A E nλλλ.0≠A ,这说明A*λ是1-A 的特征值.由引理2知,*1λλ=A,所以0*λλA=,即λA是*A 的特征值.若()0*=A r ,(即()1-<n A r)时,0*=A,所以*A 的特征值0*=λ且是n 重的.2.7 若A 为可逆矩阵,则*A 也是可逆矩阵.证明:由2.1即可得到此结论.2.8 若A 为对称矩阵,则*A 也是对称矩阵. 2.9 ()***A B AB =.证明:当A ,B 均可逆时, 1*det -=AA A ,1*det -=BB B ,所以()*111**))(det()det(AB AB AB A B AB A B ===---.当A ,B不都可逆时,则当x 足够大时,存在x 使得n xI A +, nxI B +均可逆,此时有()***)()())((n n n n xI A xI B xI B xI A ++=++,这是关于x 的恒等式,即x 取零时,该等式也成立,即()***A B AB =.证毕.2.10 若A 为正交矩阵,则*A 也是正交矩阵. 证明:若A 为正交矩阵,则I A A AA TT==且1det ±=A ,由2.2知()()****T TAA A A=.再由2.9知()()()I I A A A A A ATTT====******,所以*A也是正交矩阵.证毕. 2.11 ()A AAn 2**-=,其中A 是n 阶方阵()2>n .证明:因为E A A A AA ==**,所以 1) 当0≠A 时,1*-=A A A .则 ()()()111*1**----⋅==A A A A A A A()A A A AA A A AA A n nn21111111------===2) 当0=A 时,由2.4知()1≤A r . 当2>n 时,)()0**=A r ,故()A AA n 2**-=.当2=n 时,令⎪⎪⎭⎫⎝⎛=d c b a A ,则⎪⎪⎭⎫ ⎝⎛--=a c b d A *, ()A A A d c b a A n 2**-==⎪⎪⎭⎫ ⎝⎛=. 证毕.通过以上的证明,说明了n 阶矩阵A 与其伴随矩阵*A 有很多联系和继承性,理解和掌握这些联系和继承性对我们以后高等代数课程的学习有着重要的意义.全等三角形提高练习1. 如图所示,△AB C ≌△ADE ,BC 的延长线过点E ,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF 的度数。

伴随矩阵求逆公式

伴随矩阵求逆公式

伴随矩阵求逆公式
一、伴随矩阵的定义。

设A = (a_ij)为n阶方阵,A_ij是a_ij的代数余子式,则矩阵A的伴随矩阵A^*定义为A^*=(A_ji),即A^*的第i行第j列元素是A的第j行第i列元素的代数余子式。

二、伴随矩阵与原矩阵的关系及求逆公式。

1. 对于n阶方阵A,有A A^*=A^*A = AE(其中E为n阶单位矩阵,A为A的行列式)。

2. 当A≠0时,A可逆,且A^-1=(1)/(A)A^*。

三、求伴随矩阵的步骤及求逆的示例。

1. 求伴随矩阵的步骤。

- 对于给定的n阶矩阵A,先求出每个元素a_ij的代数余子式A_ij。

- 根据伴随矩阵的定义A^*=(A_ji)构造出伴随矩阵。

2. 求逆的示例。

- 设A=(ab cd),n = 2。

- 首先求A的行列式A=ad - bc。

- 然后求A的代数余子式,A_11=d,A_12=-c,A_21=-b,A_22=a。

- 所以A^*=(d - b -ca)。

- 当A=ad - bc≠0时,A^-1=(1)/(ad - bc)(d - b -ca)。

矩阵与它伴随矩阵的关系1

矩阵与它伴随矩阵的关系1

矩阵与它伴随矩阵的关系摘 要 通过对矩阵和伴随矩阵的学习,本文主要给出了伴随矩阵的定义和总结了它的一些性质,如伴随矩阵的逆,行列式,转置,秩,矩阵的伴随矩阵的伴随矩阵与矩阵本身的关系等.以及矩阵与它的伴随矩阵的关系,如两矩阵相似,则它们的伴随矩阵也相似等.关键词 矩阵;伴随矩阵;转置;可逆;行列式;秩;相似矩阵;正定矩阵1伴随矩阵的定义设,则它的伴随矩阵,其中 ()n n ij a A ⨯=()nn ij b A ⨯=*ji ij A b =为中的代数余子式.(),,,3,2,1,n j i =ij A A ij a 2伴随矩阵的性质以及矩阵与它伴随矩阵的关系2.1 .I A A A AA ==**2.2 若A 非奇异,则.*11A AA =-2.3 .()()TTA A **=证 当可逆时,,且也可逆.A 1*-=A A A T A 故 =()()1*-=TT T A A A ()TA A 1-另一方面, =()()TTA A A 1*-=()T A A 1-由上两式推出 .()()TTA A **=2.4 .()()1**1--=A A 证 当可逆时,,且也可逆.A 1*-=A A A 1-A 故 ()()A AA A A 1111*1==----又由 E A A A A A A =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛**11故 也可逆,且*A ()A AA 11*=-从而 .()()1**1--=A A 2.5 (为实数).()*1*A a aA n -=a 证 设,再设 ,()nn ij a A ⨯=()()n n ij b aA ⨯=*那么为行列式中划去第行和第列的代数余子式阶行列式,ij b aA j i 1-n 其中每行提出公因子后,可得a ji n ij A ab 1-=()n j i ,2,1,=由此即证.()*1*A a aA n -= 2.6 .1*-=n AA ()2≥n 证当可逆时,由于 两边取行列式A ,1*-=A A A 得 11*--==n nAA A A 当不可逆时,这时秩A ,0=A 1*≤A 所以从而也有 .0*=A 1*-=n AA 所以对任意阶方阵都有n ,A .1*-=n AA 2.7 当秩时,则秩.当秩时则秩.,当秩n A =n A =*1-=n A 1*=A 2-≤n A 则秩.0*=A 证 当秩那么由上面的(1)式有,0≠⇒=A n A 0*≠==nA I A AA 所以 即秩,0*≠A nA =* 当秩 ,01=⇒-=A n A 0*==I A AA 从而秩 又因秩所以至少有一个代数余子式,1*≤A ,1-=n A ,0≠ij A 从而秩于是秩,1*≥A ,1*=A 当秩所以秩2-=n A ⇒0*=A 0*=A 同理秩时,秩.2-<n A 0*=A 2.8 .()A AA n 2**-=证 当秩时,可逆,用左乘(1)式两边可得n A =A A ,0≠1-A (1)1*-=A A A 在(1)式中用换得A *A(2)()()A A A A AA A A n n 211****1---=⎪⎪⎭⎫⎝⎛==当秩时,则秩1-≤n A 0,1*=≤A A 从而秩 (3)()A AA n 2**0-== 综合(2)(3)两式,即证.()A AA n 2**-=2.9 若为阶可逆矩阵,则.B A ,n ()***A B AB = 证 当时,由()()n B r A r == ()()**111*A B A A B B AB AB AB ===--- 当时,显然有()1-<n A r ()***0A B AB == 即 ()***A B AB = 当则存在初等矩阵使得(),1-=n A r ,,,,11t s Q Q P P ts Q Q A P P A 111= 这里直接验算可知,若是任意初等矩阵,C 是任意方().0,11-=n E diag A P 阵,则()()*1*1***,CA C A P C PC == 于是()()[]*1121*B Q Q A P P P AB t s = ()*1*112P B Q Q A P P t s == ()*1**11P P B Q Q A s t = ()*1**1*1P P A B Q Q s t ==*1**1*1**P P A Q Q B s t = 但是 *1**1*1*P P A Q Q s t()*1**1*1P P A Q Q s t = ()*1*1*11P P Q Q A P s t s -== ()*111t s Q Q A P P = *A = 于是()***A B AB =2.10 设是阶正定矩阵,则是正定矩阵.A *A 证 因为是阶正定矩阵,则,A n A A T =且的特征值又=,A ()n i i 2,1,0=>λ()()**T TA A =*A故为对称矩阵,且的特征值为*A *A ()n i Ai,,2,1,0 =>λ故为正定矩阵.2.11 若是正交矩阵,则是正交矩阵.A *A 证 因为是正交矩阵,则,12=A IA A T =于是()()()()()II AA AA A A A A A A A TTTT=====------1111211**故也是正交矩阵.*A 2.12 若矩阵与B 合同,且都可逆,则与合同.A B A ,*A *B 证 设存在可逆矩阵 (4),P B AP P T = 又都可逆,对(4)取逆,则有B A ,()1111----=B P A P T即 (5)11--=B C A C T 其中()TP C 1-= 再对(4)取行列式有 (6)B A P =2则由(1)(5)(6)知 ()()11--=⋅⋅B B C P A A C P T即 **B Q A Q T =其中是可逆矩阵C P Q = 故 与合同*A *B 2.13 若矩阵与B 相似,且都可逆,则与相似.A B A ,*A *B 证 设存在可逆矩阵 ,P BAP P =-1 由 ,I B BB =* 有 1*-=B B B ()111---=APP AP P P A P A 11--=P A A P 11--=PA P *1-= 所以与相似.*A *B 2.14 若与相似,则与有相同的特征多项式,特征根,行列式,迹,*A *B *A *B 秩.2.15若与相似,且,都可逆,则与B 不一定相似. (与B 分*A *B *A *B A A 别为与的原矩阵)*A *B 证 因为与的秩都是,所以与都有个原矩阵(*A *B n *A *B 1-n ,,其中分别是,(),1*-=A A i α()1*-=B B iβ1,2,1-=n i i i βα,*A 的所有次方根.)*B 1-n 设秩且有原矩阵,由2.2知n A =*A ()1*-=A A A 由2.6知 即 .1*-=n AA 1*-=n A A 设的所有次方根,则有*A 1-n 121,,-n ααα (),1*-=A A i α1,2,1-=n i 同理B 也得证.所以与B 不一定相似.A 参考文献:[1]张禾瑞,郝鈵新.高等代数(第五版)[M].北京:高等教育出版社,2007,6.[2]李志慧,李永明.高等代数中的典型问题与方法[M].北京:科学出版社,2001,6(7).[3]刘学生.线性代数分析[M].北京:高等教育出版社,2005,1(10).[4]卢刚.线性代数(第二版)[M].北京:高等教育出版社,2003,7(1).The Relationship of Matrix and Adjoint MatrixZhang Ri lian 20091103344College of Mathematics Science, Mathematics and Applied Mathematics ,Class 2009Advisor Xiang HuaAbstract :This article gives a definition of adjoint matrix and summarizes some of its properties, adjoint matrix inverse, determinant, transpose, rank. And the relationship of matrix and the adjoint matrix, Two sufficient conditions for the adjoint matrix of similar.Key words : adjoint matrix, determinant, transpose, rank, similar matrix, positivelydefinite matrix。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方阵A 与其伴随矩阵*A 的关系摘 要 本文给出了n 阶方阵A 的伴随矩阵*A 的定义,讨论了n 阶方阵A 与其伴随矩阵*A之间的关系,例如A 与*A 之间的关系,并且给出了相应的证明过程. 关键词 矩阵、伴随矩阵、关系、证明在高等代数课程中我们学习了矩阵,伴随矩阵。

它们之间有很好的联系,对我们以后的学习中有很大的用处。

1.伴随矩阵的定义. 设n 阶方阵()⎪⎪⎪⎪⎪⎭⎫⎝⎛==⨯nn nnn n nn ij a a a a a a a a a a A 212221212111.令()⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==⨯nn nnn n nn ij A A A A A A A A A A A212221212111*,其中ij A 是ij a 的代数余子式.则称*A 为A 的伴随矩阵. 2.矩阵A 与其伴随矩阵*A 的关系及其证明.2.1*AA =A A *=AI det .当A 可逆时,有*1det 1A AA =-,即1*det -=AA A [1].证明:因为⎩⎨⎧≠==+++;,0,,det 2211j i j i A A a A a A a jnin j i j i 若若⎩⎨⎧≠==+++;,0,,det 2211j i j i A A a A a A a nj ni j i j i 若若所以*AA =A A *=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛A A Adet 000det 000det =AI det .当A 是可逆矩阵时, 0det ≠A ,所以由上式得⎪⎭⎫ ⎝⎛*det 1A A A =A A A ⎪⎭⎫⎝⎛*det 1=I 即*1det 1A AA =-. 证毕.2.2 ()*T A =()TA *.(显然) 2.3 若A 可逆,则()*1-A =()1*-A .(显然)2.4 设A 为n 阶方阵()2≥n ,则()()()()⎪⎩⎪⎨⎧=-=-<=n A r n n A r n A r A r 1110*[2]. 引理1.若()2≥⨯n n n 矩阵A ,B 满足0=AB ,则()()n B r A r ≤+. 证明:因为0=AB ,所以B 的列向量是以A 为系数矩阵的齐次线性方程的解向量.若()n A r =,则0det ≠A .由克拉默法则知,方程只有零解,从而0=B ,进而()0=B r ;若()n r A r <=,则方程组的基础解系中含r n -个向量,于是()r n B r -≤,因此有()()n B r A r ≤+. 证毕. 下面证明2.4.⑴当()1-<n A r 时, A 的每一个1-n 阶代数余子式都为零.所以*A 为零阵,所以()0*=A r .⑵当()1-=n A r 时,0det =A ,*AA =AI det =0.由引理1知,()A r +()n A r ≤*.因为()1-=n A r 则()()11*=--≤n n A r,知A 至少有一个1-n 阶子式不为零.即 *A至少有一行不全为零. 所以()1*≥A r .因为()1*≤A r ,从而()1*=A r .⑶ 当()n A r =时,A 可逆,由1知,*A 也可逆.所以()n A r =*.证毕. 2.5 ()1*det det -=n A A .① 当A 可逆时,1*det -=AA A .所以()1*det det det -=A A A n()1det -=n A .② 当A 不可逆时,()1-≤n A r ,0det =A .1) 当2≥n 时()1-<n A r ,由2.4知()0*=A r .所以0det *=A .()1-=n A r ,()n A r <=1*,0det *=A .则()0det det 1*==-n A A2) 当1=n 时,0d e t =A ,即0=A ,0det *=A ,则()0d e t d e t 1*==-n A A .证毕.2.6 当A 可逆时,若0λ为A 的特征值,则0det λA是*A 的特征值.当()1-<n A r 时,*A 的特征值为零,并是n 重的. 引理2. 设A 可逆,若0λ为A 的特征值,则01λ是1-A的特征值.证明:若00=λ,则由00=-A E λ得到()01=-=-A A n ,于是0=A ,这与A 可逆矛盾,所以00≠λ.同时由00=-A E λ还有()()101010011110------=--=-=-=A E A E E A A E A nnnλλλλλ.因此0110=--A E λ,即 01λ是1-A 的特征值.引理证毕. 下面证明2.6.不妨设*A 的特征值为*λ.则由AE AA det *=有1*1***0---=-=-=AE AAAA E A E nλλλ.0≠A ,这说明A*λ是1-A 的特征值. 由引理2知,*1λλ=A,所以0*λλA=,即λA是*A 的特征值.若()0*=A r ,(即()1-<n A r )时,0*=A ,所以*A 的特征值0*=λ且是n 重的. 2.7 若A 为可逆矩阵,则*A 也是可逆矩阵.证明:由2.1即可得到此结论.2.8 若A 为对称矩阵,则*A 也是对称矩阵.2.9 ()***A B AB =.证明:当A ,B 均可逆时, 1*det -=AA A ,1*det -=BB B ,所以()*111**))(det()det(AB AB AB A B AB A B ===---.当A ,B 不都可逆时,则当x 足够大时,存在x 使得n xI A +, n xI B +均可逆,此时有()***)()())((n n n n xI A xI B xI B xI A ++=++,这是关于x的恒等式,即x 取零时,该等式也成立,即()***A B AB =.证毕.2.10 若A 为正交矩阵,则*A 也是正交矩阵. 证明: 若A 为正交矩阵,则I A A AA T T ==且1det ±=A ,由 2.2知()()****T TA A A A =.再由 2.9知()()()I I A A A A A A TTT====******,所以*A 也是正交矩阵.证毕.2.11 ()A AA n 2**-=,其中A 是n 阶方阵()2>n .证明:因为E A A A AA ==**,所以 1) 当0≠A 时,1*-=A A A .则 ()()()111*1**----⋅==A A A A A A A()A A A AA A A AA A n nn21111111------===2) 当0=A 时,由2.4知()1≤A r . 当2>n 时,)()0**=A r ,故()A AA n 2**-=.当2=n 时,令⎪⎪⎭⎫ ⎝⎛=d c b a A ,则⎪⎪⎭⎫ ⎝⎛--=a c b d A *,()A A A d c b a A n 2**-==⎪⎪⎭⎫ ⎝⎛=. 证毕.通过以上的证明,说明了n 阶矩阵A 与其伴随矩阵*A 有很多联系和继承性,理解和掌握这些联系和继承性对我们以后高等代数课程的学习有着重要的意义.参考文献[1] 张禾瑞.郝鈵新.高等代数.第五版.高等教育出版社,2007.6. [2] 朱焕.关丽杰.范慧玲.有关伴随矩阵的性质.高师理科学刊,2008,28-3.[3] 贾云峰. 矩阵与其伴随矩阵的特征值.陕西师范大学继续教育学报, 2007, 24-1.Matrix A and its relationship with the matrix *AZou Hongyun 20091101342College of Mathematics Science, Mathematics and Applied Mathematics ,Class 2009Advisor Wu XianghuaAbstract :In this paper, the definition of the matrix adjoint to discuss the square and its relationship with the matrix, for example, between A and *A , and gives the corresponding proof.Key words : Matrix, with the matrix, the relationship,prove。

相关文档
最新文档