汽油辛烷值的经验计算
1.辛烷值

辛烷值汽油辛烷值是汽油在稀混合气情况下抗爆性的表示单位,在数值上等于在规定条件下与试样抗爆性相同时的标准燃料中所含异辛烷的体积百分数。
辛烷值定义英文名称:octane number辛烷值的测定是在专门设计的可变压缩比的单缸试验机中进行。
标准燃料由异辛烷和正庚烷的混合物组成。
异辛烷用作抗爆性优良的标准,辛烷值定为100;正庚烷用作抗爆性低劣的标准,辛烷值为0。
将这两种烃按不同体积比例混合,可配制成辛烷值由0到100的标准燃料。
按不同体积比例混合,可配制成辛烷值由0到100的标准燃料。
混合物中异辛烷的体积百分数愈高,它的抗爆性能也愈好。
在辛烷值试验机中测定试样的辛烷值时,提高压缩比到出现标准爆燃强度为止,然后,保持压缩比不变,选择某一成分的标准燃料在同一试验条件下进行测定,使发动机产生同样强度的爆燃。
当确定所取标准燃料如恰好是由70%异辛烷和30%正庚烷组成的,则可评定出此试油的辛烷值等于70。
[常见燃料的辛烷值燃料研究法辛烷值马达法辛烷值抗暴度十六烷<-30正辛烷-10正庚烷0柴油15-25异辛烷100 90-92 95-96E10汽油87-93E85汽油105甲烷107典型的二冲程外侧引擎所需辛烷值69 65 67区别汽油车用汽油的牌号是按照辛烷值区分的。
共有66、70、76、80、85等号。
例如,70号车用汽油即表明该汽油辛烷值不低于70。
根据辛烷值的实测结果可判定属哪一牌号的车用汽油;提高经济性能辛烷值是表示汽化器式发动机燃料的抗爆性能好坏的一项重要指标,列于车用汽油规格的首项。
汽油的辛烷值越高,抗爆性就越好,发动机就可以用更高的压缩比。
也就是说,如果炼油厂生产的汽油的辛烷值不断提高,则汽车制造厂可随之提高发动机的压缩比,这样既可提高发动机功率,增加行车里程数,又可节约燃料,对提高汽油的动力经济性能是有重要意义的;化学意义汽油的辛烷值和汽油的化学组成,特别是汽油中烃类分子结构有密切关系;抗爆剂测定加有抗爆剂的汽油的辛烷值,可估量抗爆剂的效果,找出适宜的抗爆剂加入量。
辛烷值的测定方法

马达法
马达法测定的辛烷值是以较高的混合气温度和较高的发
动机转速的苛刻条件为其特征的试验室标准发动机测得
的辛烷值.测定条件较苛刻,转速为900r/min,进气温度149摄氏度,它反映汽车在高速,重负荷条件下的汽油抗爆性。
研究法
研究法测定的辛烷值是以较低的混合气温度和较低的发动机转速的中等苛刻条件为其特征的试验室标准发动机测得的辛烷值.测定条件缓和,转速为600r/min,进气为室温。
这种辛烷值的测定反映汽车在市区慢速行驶时的汽油抗爆性。
对同一种汽油,其研究法辛烷值比马达法辛烷值高约0-15个单位,两者之间差值称为敏感性或敏感度。
检测原理是,将被测样品同空气混合加热到规定的温度,如: 马达法165 ℃±15 ℃; 研究法52 ℃±10 ℃, 送入发动机中燃烧。
在气缸中通过一测爆装置———磁致伸缩式压力传感器,其作用是将气缸内压力的变化转化成电信号。
将电信号输入显示器中,根据显示器中的读数计算出样品的辛烷值。
采用理化指标计算汽油辛烷值

Ca c lto fGa o i t n lu a i n o s lne Oc a e Num b rbv Ph sc Ia e ia n ie e y ia nd Ch m c II d c s
DA I Yo ng— c a , AI Zhu q n hu n D — ig ( . c o l f Perc e ia g n ei g,Lio i gS i u iest 1 S h o to h m c l o En ie rn a nn h h a Un vriy,Fu h nL a n n 1 0 1 P. C ia; s u i o ig 1 3 0 , R. h n
s a da d r q r m e . The e u ton r a d,sm pl nd w i — a plc ton m e h ort ac a i N. Th y ha t n r e uie nt q a i s a e a r pi i e a de p ia i t od f he c lulton ofO e ve s m e hig r f r nta ale o r o t n e e e ilv u s f r p odu tq a iy c ntoli p t o e m ei e y o r to c u lt o r n e r l u r fn r pe a in. Ke r s: Oc a e num b r Ditla in a e; De iy; Ar m a i o e t Ol fni o e t ; Br i aue;Ca c lto ywo d tn e ; s ilto r ng nst o tcc nt n ; e i cc nt n om ne v l l ua i n
组 成密切相 关 , 因此 可 以采 用 由理 化指 标来 计 算 汽 油 的辛烷值 。 辛 烷值测 定标准 方 法 有 马达 法 ( N) GB T MO ( /
汽油调合中质量指标的计算方法

汽油调合生产中巧用XLS表格进行重要指标的计算汽油调合就是将性质相近的两种或者两种以上的石油组分按规定比例,利用一定设备,通过一定方法,达到混合均匀而生产出符合客户指标需求的新产品的生产过程。
目前调合汽油的组分油主要有六类,包括醇醚类(MTBE、TAME、乙醇等)、轻油类(石脑油、油田稳定轻烃、煤制油轻烃、200#轻油前馏分、抽余油等)、烷基化汽油、催化汽油、碳五类(精碳五、拔头油、高烯烃碳五等)、芳烃类(重整汽油、150#重芳烃、加氢碳九、二甲苯、三甲苯、芳构化或异构化轻芳烃及进口欧混芳烃等)。
目前油品调合主要使用的方法有两种,分别是油罐调合和管道调合。
涉及油品质量指标的项目有几十个,而汽油调合生产中涉及的主要指标有辛烷值、蒸气压、馏程、芳烃含量、烯烃含量、硫含量等。
在汽油质量指标项目中,有些在调和过程中呈现加成关系,有的则不呈现加成关系。
辛烷值在汽油调合时要作为首要指标来考量。
辛烷值无固定的通用公式,实际生产操作可以采用线性回归比较法来估算。
该方法属于经验加和型计算公式,计算方便,容易操作,但是计算结果比实际结果小,在实际生产中按照不同组分的掺调比例很容易找到实际调合偏差点。
该方法将非线性问题在数学意义上进行了线性化,减小了问题的复杂度,对于可加成或者近似加成的质量指标都可用该方法进行计算,比如硫含量、氯含量、密度、芳烃含量、烯烃含量等。
但在实际操作中应掌握不同油品性质用该方法调合计算时的正负效应。
线性回归比较法计算辛烷值示例:RON=aRON1+bRON2+cRON3+------式中a.b.c是各组分的质量百分含量。
RON1.RON2.RON3是各组分汽油的辛烷值。
在实际生产中,我们一般先根据实际需要计算出密度、辛烷值、饱和蒸汽压这三个指标,再通过微调各组分比例调整其他指标。
我们先把需要的组分基本数据输入XLS表格,如图一,本例采用6种组分来调和成品,各组分质量比假设如下;图一:先合计质量比是否为整数1,如图二图二:为计算方便引入一个体积参数指标,方便通过质量比来算出体积比如图:三、四、五、六图三:图四:图六:依次算出各组分的体积参数,结果如图七将各组分体积参数累加,得到总体积参数,如图八、图九图八:图九:这样就可以算出成品的密度,如图十图十:继续算出各组分的体积百分比,如图十一、十二、十三图十一:图十二:如上依次算出各组分的体积百分比。
车用汽油研究法辛烷值测量方法浅析

山东化工SHANDONG CHEMICAL INDUSTRY-106-2020年第49卷车用汽油研究法辛烷值测量方法浅析刘慈祥,夏攀登,田娟,白林智(山东省产品质量检验研究院,山东济南250100)摘要:本文主要介绍了CFR辛烷值机法和近红外光谱法测定车用汽油研究法辛烷值的原理,分析了这两种研究法辛烷值测定方法的优缺点,指出了各种情形下应如何选择合适的研究法辛烷值测定方法%关键词:研究法辛烷值;CFR辛烷值机法;近红外光谱法中图分类号:TE626文献标识码:A文章编号:1008-021X(2020)19-0106-01辛烷值是衡量车用汽油质量合格与否的重要指标,主要反应车用汽油的抗爆性能%我国车用汽油国家标准中采用研究法辛烷值(RON)和马达法辛烷值(MON)来判定车用汽油的抗爆性能,其中汽油的研究法辛烷值为市场销售车用汽油的标号数值%1研究法辛烷值测定方法简介目前,研究法辛烷值的常规测定方法为GB/P5487-2005《汽油辛烷值的测定研究法》,该方法是利用辛烷值试验机来模拟发动机工作原理的台架试验方法。
随着消费市场对于车用汽油的需求量不断增加,车用汽油的销售周期明显缩短,常规的辛烷值机测定方法已经越来越难以满足监管部门对于时效性的要求%因此,近年来不断涌现出许多新的测定研究法辛烷值的方法,主要包括:介电常数法、核磁共振法、近红外法、气相色谱法等其中,介电常数法及气相色谱法测定研究法辛烷值具有很大的局限性,例如测定加入抗爆剂的汽油辛烷值及车用乙醇汽油辛烷值所得结果误差较大而近红外光谱法由于其可以快速的测定车用汽油研究法辛烷值,近几年发展较为迅速%现从测定原理、优缺点及应用前景等方面对辛烷值机测定法和近红外光谱法进行探讨对比%2辛烷值机法和近红外光谱法的测定原理汽油中各类碳氢化合物的成分比例决定了汽油辛烷值的高低,汽油辛烷值越高,抗爆性就越好%GB/P5487-2005《汽油辛烷值的测定研究法》是利用CFR辛烷值测定仪和专用的电子爆震仪器在规定的运转条件下,将待测车用汽油样品与自动配样器配制的已知辛烷值的正标混合燃料的爆震性能进行对比,从而确定待测车用汽油样品的研究法辛烷值%根据试验方法的不同,又分为内插法和压缩比法两种测定方法近红外光谱法利光谱仪对已知研究法烷的车样品进行扫描,由于不同的化学基团和有机化合物具有不同的特征吸收波长,所以得到的近红外谱图和样品的成分之间有着密切的联系%然后再利用合适的关联方法,将车用汽油样品的辛烷值数据和近红外光谱图关联起来,建立分析校正模型5+利用近红外光谱仪测得未知样品的近红外光谱图,将其代入建立的分析校正模型中,即可计算出其相应的研究法辛烷值%3辛烷值机法和近红外光谱法方法比对3.1试验成本比对CFR辛烷值测定仪及自动配样器价格昂贵、购置成本较高,体积庞大,在仪器安装及后期维护保养时成本较大%近红外光谱仪购置成本低,体积较小便于安装%另外,CFR辛烷值机法测定辛烷值需要400-500mL汽油样品,而近红外光谱法只需1~2mL汽油样品,对于产量较大的炼厂而言,每年可在质省大的样%,CFR烷机法试验时配制正标混合燃料,原料需从国外进口价格较高%因此,近红外光谱仪在安装和使用过程中可节省大量成本%但是,近红外光谱法前期样品数据的采集及分析校正模型的建立较为复杂%3.2试验过程比对CFR辛烷值机法测定辛烷值时,时间较长(需提前热机45 min左右)、操作步骤复杂(需校正大气压及进气温度等)、影响因素较多,对试验人员的技术要求高。
辛烷值测定方法

异辛烷(2,2,4-三甲基戊烷)的抗爆性较好,辛烷值给定为100。
正庚烷的抗爆性差,给定为0。
汽油辛烷值的测定是以异辛烷和正庚烷为标准燃料,按标准条件,在实验室标准单缸汽油机上用对比法进行的。
调节标准燃料组成的比例,使标准燃料产生的爆震强度与试样相同,此时标准燃料中异辛烷所占的体积百分数就是试样的辛烷值。
依测定条件不同,主要有以下几种辛烷值:①马达法辛烷值测定条件较苛刻,发动机转速为900r/min,进气温度149°C。
它反映汽车在高速、重负荷条件下行驶的汽油抗爆性。
②研究法辛烷值测定条件缓和,转速为600r/min,进气为室温。
这种辛烷值反映汽车在市区慢速行驶时的汽油抗爆性。
对同一种汽油,其研究法辛烷值比马达法辛烷值高约0~15个单位,两者之间差值称敏感性或敏感度。
③道路法辛烷值也称行车辛烷值,用汽车进行实测或在全功率试验台上模拟汽车在公路上行驶的条件进行测定。
道路辛烷值也可用马达法和研究法辛烷值按经验公式计算求得。
马达法辛烷值和研究法辛烷值的平均值称作抗爆指数,它可以近似地表示道路辛烷值。
======某一汽油在引擎中所产生之爆震,正好与98%异辛烷及2%正庚烷之混合物的爆震程度相同,即称此汽油之辛烷值为98。
此燃油若再渗合其它添加剂,辛烷值可大于98或小于98甚或超过100。
一般所谓的95、92无铅汽油即是指其辛烷值,所以95比92的抗爆性来的好。
辛烷值只是一个相对指标,而不是真的只以正庚烷或异辛烷来混合,所以有些燃油再渗合其它添加剂时的辛烷值可以超过100,可以为负。
若车辆『压缩比』在9.1以下者应以92无铅汽油为燃料;压缩比9.2至9.8使用95无铅汽油;压缩比9.8以上或者涡轮增压引擎车种才需要使用98无铅汽油。
品名辛烷值品名辛烷值正壬烷-45 异辛烷100正辛烷-17 甲苯103.5正庚烷0 甲醇107正戊烷62.5 乙醇1082-戊烯80 苯1151-丁烯97 甲基第三丁基醚116乙基苯98.9辛烷值愈高,代表抑制引擎震爆能力愈强,但要配合汽引擎之压缩比使用。
辛烷值操作培训讲

四 辛烷值及类型及方法标准 1.辛烷值试验机
辛烷值试验机是一台标准尺寸可变压缩比 的点燃式单缸四冲程汽油发动机。
辛烷值试验机构造 包括发动机总成、气化器、点火控制系
统、电力设备、仪表系统五部分。
2.测定方法标准 美国 ASTM-D2699 研究法辛烷值。 ASTM-D2700 马达法辛烷值。 中国 GB/T5487-85研究法辛烷值。 GB/T503-85马达法辛烷值。 国标与ASTM两者差异。
物理变化:汽油(液态)+能量→气态+液态; 化学变化:汽油+O2→热量+CO2+H2O。
五 辛烷值机的操作
CFR辛烷值机作为测定车用汽油抗爆震 性能的主要台架设备,保持其良好的运行状 态,直接关系到测量结果的准确性及可靠性。 正确掌握试验机的操作和理解试验方法,校 准仪器满足试验条件的要求,严格在试验条 件下测试,才能保证测定结果的准确度。这 涉及到电气、机械、仪表等诸多知识内容。
以上是我个人在实际操作CFR辛 烷值试验机过程中的实际经验以及对 国标与ASTM标准两个试样方法的一 些体会,由于本人技术水平有限,难 免存在一些错误的观点,恳请大家予
以纠正。 谢谢大家!
汽油燃烧是放热反应,在发动机内由热功 直接转换为机械功。
余气系数α α=实际空气量/理论空气量 α<0.8富油状态, α>0.9贫油状态。
压缩比
压缩比:发动机气缸有效总容积与燃烧室体积 之比。ε=V/V1
发动机热效率 η=1-1/εk-1
K——比热比
压缩比逾高,热效率逾高。高压缩比发动机需要高辛烷值的燃料。
不同海拔高度汽化器喉管直径
海拔高度,m
近红外光谱预测汽油辛烷值

前言烃加工工业中,连续在线监测关键石油物流的性质,是强化过程控制和炼厂信息系统集成的重要环节,为表征石油物流这一高度复杂的烃类混合物,引入了一系列测试手段和标准指标,总的来说,这些指标测试费用高、重复性差、试样用量大,在线实现时维护代价高,响应速度慢。
七十年代以来,近红外光谱(NIR)技术在分析机理、仪器制造、数据处理方面有了很大发展,与传统分析仪器相比,近红外分析仪有显著优势:光纤远程信号传输,可实现非接触式测量;一谱多用,只要建立模型,可同时测量多个指标;预处理简单,分析中不需化学试剂;响应速度快;易于制成小型紧凑的过程分析仪,在农作物分析等方面已建立实用标准[47]。
八十年代末,西雅图华盛顿大学过程分析化学中心(CPAC)进行了将近红外技术用于石油化学领域的研究,最重要的工作是测量汽油辛烷值,族组成和其它几个关键指标,随后在世界范围内的众多试验室和炼厂开展了这方面的研究工作,例如位于法国的BP拉菲尔炼厂将近红外技术大量用于过程控制,效益显著:在调合工艺中,一套近红外分析仪可替代两台辛烷机和一套雷德蒸汽压测试仪和其它蒸馏测试装置,月维护时间减小到数小时,光学仪器发生故障的平均时间间隔能够提高到几百小时,辛烷值测量范围增宽,重复性偏差小于0.1,该厂借助于近红外分析系统对乙烯蒸汽裂解炉的进料进行高频监测和优化,年收益百万美元,分析设备的投资可很快回收,还有利于下游分馏塔的稳定操作尽管NIR预测的重复性很好,在数学模型的设计上仍要谨慎从事。
因为近红外技术用于石油物流性质的预测是基于ASTM系列测定的二次方法,NIR模型只有在其适用范围内,才能获得与ASTM测试一样的准确性,当对象物流由于进料、工艺等原因偏离原模型的适用范围时,NIR模型必须重新标定。
如何提取NIR光谱和目标性质的统计关系是这门技术软件方面的关键。
一些典型的数学方法有主因子分析(PCA)、偏最小二乘法(PLS)、多元线性回归(MLR)、判别分析(DA)、聚类分析和人工神经网络(ANN)等,这些基本属于计量化学问题。