数字电压表设计

合集下载

数字电压表的设计毕业论文

数字电压表的设计毕业论文

数字电压表的设计毕业论文数字电压表的设计摘要:本文主要介绍了数字电压表的设计。

首先介绍了数字电压表的基本原理和功能,然后详细讲解了数字电压表的硬件设计和软件设计。

硬件设计包括电路设计和元器件选择,软件设计包括程序设计和界面设计。

最后对数字电压表进行了实验验证,并总结了设计过程中的经验和教训。

1. 引言数字电压表是一种常用的电子测量仪器,广泛应用于工业控制、科研实验和电子维修等领域。

本文将介绍一种基于单片机的数字电压表的设计方案。

2. 基本原理和功能数字电压表的基本原理是通过采集电压信号并将其转换成数字信号,然后通过显示器显示出来。

数字电压表的功能包括测量电压值、显示电压值、单位切换、数据保存等。

3. 硬件设计3.1 电路设计数字电压表的电路设计主要包括信号采集电路、信号转换电路和显示电路。

信号采集电路负责将待测电压信号转换成电压信号,信号转换电路负责将电压信号转换成数字信号,显示电路负责将数字信号显示出来。

3.2 元器件选择在数字电压表的设计中,元器件的选择非常重要。

需要选择合适的电阻、电容、集成电路等元器件,以确保电路的稳定性和精确度。

4. 软件设计4.1 程序设计数字电压表的程序设计主要包括信号采集程序、信号转换程序和显示程序。

信号采集程序负责采集电压信号,信号转换程序负责将电压信号转换成数字信号,显示程序负责将数字信号显示出来。

4.2 界面设计数字电压表的界面设计主要包括显示界面和操作界面。

显示界面负责将数字信号以合适的格式显示出来,操作界面负责提供操作按钮和设置选项。

5. 实验验证为了验证数字电压表的设计方案的准确性和可靠性,进行了一系列实验。

实验结果表明,设计方案能够准确测量电压值并显示出来。

6. 经验总结在数字电压表的设计过程中,我们遇到了一些问题和挑战。

通过实践和总结,我们得出了一些经验和教训。

例如,在硬件设计中,需要注意电路的稳定性和精确度;在软件设计中,需要考虑程序的效率和界面的友好性。

基于单片机的数字电压表设计

基于单片机的数字电压表设计

基于单片机的数字电压表设计一、引言在电子测量领域中,电压表是一种常用的测量仪器,用于测量电路中的电压值。

传统的模拟电压表由于精度低、读数不便等缺点,逐渐被数字电压表所取代。

数字电压表具有精度高、读数直观、抗干扰能力强等优点,广泛应用于工业自动化、电子设备检测、实验室测量等领域。

本文将介绍一种基于单片机的数字电压表设计方案,详细阐述其硬件电路设计、软件编程实现以及系统性能测试。

二、系统总体设计方案(一)设计要求设计一款基于单片机的数字电压表,能够测量 0 5V 的直流电压,测量精度为 001V,具有实时显示测量结果的功能。

(二)系统组成本数字电压表系统主要由以下几个部分组成:1、传感器模块:用于将输入的电压信号转换为适合单片机处理的电信号。

2、单片机模块:作为系统的核心,负责对传感器采集到的数据进行处理和计算,并控制显示模块显示测量结果。

3、显示模块:用于实时显示测量的电压值。

三、硬件电路设计(一)传感器模块选用 ADC0809 作为模数转换芯片,它具有 8 个模拟输入通道,可以将 0 5V 的模拟电压转换为 8 位数字量输出。

(二)单片机模块选择 AT89C51 单片机作为控制核心,它具有 4K 字节的 Flash 程序存储器和 128 字节的随机存取数据存储器。

(三)显示模块采用液晶显示屏(LCD1602)作为显示器件,它能够清晰地显示数字和字符信息。

四、软件编程实现(一)编程语言选择使用 C 语言进行编程,C 语言具有语法简洁、可移植性强等优点。

(二)主程序流程主程序首先进行系统初始化,包括单片机端口初始化、LCD1602 初始化、ADC0809 初始化等。

然后启动 ADC0809 进行模数转换,读取转换结果并进行数据处理,计算出实际的电压值。

最后将电压值发送到 LCD1602 进行显示。

(三)模数转换子程序ADC0809 的转换过程通过控制其启动转换引脚(START)和读取转换结束引脚(EOC)来实现。

数字电压表设计(icl7107)

数字电压表设计(icl7107)

数字电压表电路ICL7107ICL7107 安装电压表头时的一些要点:按照测量=±199.9mV 来说明。

1.辨认引脚:芯片的第一脚,是正放芯片,面对型号字符,然后,在芯片的左下方为第一脚。

也可以把芯片的缺口朝左放置,左下角也就是第一脚了。

许多厂家会在第一脚旁边打上一个小圆点作为标记。

知道了第一脚之后,按照反时针方向去走,依次是第 2 至第 40 引脚。

(1 脚与 40 脚遥遥相对)。

2.牢记关键点的电压:芯片第一脚是供电,正确电压是 DC5V 。

第 36 脚是基准电压,正确数值是 100mV,第 26 引脚是负电源引脚,正确电压数值是负的,在-3V 至-5V 都认为正常,但是不能是正电压,也不能是零电压。

芯片第 31 引脚是信号输入引脚,可以输入±199.9mV 的电压。

在一开始,可以把它接地,造成“0”信号输入,以方便测试。

3.注意芯片 27,28,29 引脚的元件数值,它们是 0.22uF,47K,0.47uF 阻容网络,这三个元件属于芯片工作的积分网络,不能使用磁片电容。

芯片的 33 和34 脚接的 104 电容也不能使用磁片电容。

4.注意接地引脚:芯片的电源地是 21 脚,模拟地是 32 脚,信号地是 30 脚,基准地是 35 脚,通常使用情况下,这 4 个引脚都接地,在一些有特殊要求的应用中(例如测量电阻或者比例测量),30 脚或 35 脚就可能不接地而是按照需要接到其他电压上。

--本文不讨论特殊要求应用。

5.负电压产生电路:负电压电源可以从电路外部直接使用 7905 等芯片来提供,但是这要求供电需要正负电源,通常采用简单方法,利用一个 +5V 供电就可以解决问题。

比较常用的方法是利用 ICL7660 或者 NE555 等电路来得到,这样需要增加硬件成本。

我们常用一只 NPN 三极管,两只电阻,一个电感来进行信号放大,把芯片 38 脚的振荡信号串接一个 20K -56K 的电阻连接到三极管“B”极,在三极管“C”极串接一个电阻(为了保护)和一个电感(提高交流放大倍数),在正常工作时,三极管的“C”极电压为 2.4V - 2.8V 为最好。

数字电压表设计3

数字电压表设计3

目录一、整体设计思路框图及原理图 (2)二、模块分析 (3)1. AT89C51单片机 (3)2. A/D转换 (4)3. 显示电路 (5)三、软件设计 (5)四、仿真实验调试 (7)五、总结与体会 (7)六、参考文献 (8)七、附录 (9)一、 整体设计思路框图及原理图数字电压表的设计即将连续的模拟电压信号经过A/D 转换器转换成二进制数值,再经由单片机软件编程转换成十进制数值并通过显示屏显示。

按系统实现要求,决定控制系统采用AT89C51单片机,A/D 转换由于仿真软件里的ADC0809元件有问题,这里用ADC0808代替,它和ADC0809区别很小。

采用ADC0808。

数字电压表系统整体框图如下图1所示。

图1 整体框图系统通过软件设置单片机的内部定时器T1产生中断信号。

通过片选选择8路通道中的一路,将该路电压送入ADC0808的EOC 端口产生高电平,同时将ADC0808的OE 端口置为高电平,单片机将转换后结果存到片内RAM 。

系统调出转换显示程序,将转换为二进制的数据在转换成十进制数并输出到LCD 显示电路,将相应电压显示出来。

原理图见附录图7。

二、模块分析1.AT89C51单片机接口分配电路设计如右图2所示:P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

当P1口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/ 地址的第八位。

在这里P0口作为输入与输出分别与ADC0808的输出端和LCD显示的输入端相连,且P0外部被阻值为1KΏ的电阻拉图2 单片机接口电路高。

P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

简易数字电压表的设计(论文)

简易数字电压表的设计(论文)

目录1引言 (2)2系统硬件设计 (2)2.1 ATMEL89C5单片机系统和显示电路 (3)2.2 A/D转换电路 (4)3系统软件设计 (5)3.1初始化程序 (5)3.2 A/D转换子程序 (5)3.3显示子程序 (6)4系统安装调试及结果 (14)4.1系统安装调试 (14)4.1.1 电路焊接 (14)4.1.2 程序下载及程序下载 (14)4.2系统调试结果 (14)4.2.1 调试所用工具 (14)4.2.2记录测试数据 (14)5总结 (15)6致谢 (15)7注释8参考文献简易数字电压表的设计【内容摘要】此在现代检测技术中,常需用高精度数字电压表进行现场检测,将检测到的数据送入微计算机系统,完成计算、存储、控制和显示等功能。

本文中的数字电压表的控制系统采用ATMEL89C5单片机,A/D转换器采用TLC549为主要硬件,实现数字电压表的硬件电路与软件设计。

该系统的数字电压表电路简单,所用的元件较少,成本低,调节工作可实现自动化。

【关键词】数字单片机;数字电压表;A/D转换;模拟信号数字电压表(Digital Voltmeter )简称DVM它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。

传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。

目前,由各种单片A/D转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。

与此同时,由DVMT展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。

2系统硬件设计硬件电路设计主要包括:ATMEL89C5单片机系统,A/D转换电路,显示电路图2-1是数字电压表硬件电路原理图。

图2-1数字电压表硬件电路原理图2.1 ATMEL89C51单片机系统和显示电路由于单片机体积小、重量轻、价格便宜,所以本系统采用 ATMEL89C51单片机,其原理图如图1所示。

基于单片机的数字电压表设计

基于单片机的数字电压表设计

基于单片机的数字电压表设计数字电压表在电子技术中使用非常广泛,可以用来测量电路中的直流电压、交流电压以及各种信号的幅度等等。

基于单片机的数字电压表实现了数字电压的读取和显示,具有精确、稳定、易操作等特点,下面将介绍基于单片机的数字电压表的设计原理及实现方法。

一、系统结构基于单片机的数字电压表主要是由程序控制模块、模数转换模块和数字显示模块组成。

程序控制模块主要用来完成开机、校准、测试、功能选择等功能;模数转换模块主要将电压信号转换成数字量,供数字显示模块使用;数字显示模块主要将转换后的数字量显示在LCD液晶屏上。

二、硬件设计1.电源电路电源电路主要用来为电路提供稳定的电压和电流,本电路采用稳压电源芯片LM7805实现,稳压芯片输入端连接外部DC12V/1A电源,输出端连接电路板上的整个电路。

2.输入电路输入电路主要用来将被测电源的电压传递给单片机,常规情况下采用分压电路实现。

在本电路中,电阻R1和电容C1为RC滤波电路,起到滤波作用,防止干扰信号的影响;电阻R2是分压电路中的电阻,它根据电压值的不同设置不同的值,以保证被测电压在单片机内部转换过程中不会对单片机产生影响。

3.单片机模块单片机模块是系统的核心部分,本电路中选用STM32F103C8T6单片机实现模数转换和数码管控制,使用C 语言编写程序,通过模拟输入端口读取电压并进行模数转换,将得到的数字使用查表法将其转换为数码管控制脉冲,控制数码管的亮灭实现数字显示。

4.数字显示模块数字显示模块主要由七段数码管、LCD液晶屏幕、导线和电容等器组成,七段数码管用于展示测量到的电压大小,LCD 液晶屏用于展示功能选项、单位等信息。

导线是电路板内部连接线路,电容等器用来平滑电压波动。

三、软件设计1.引脚定义在程序中首先定义STM32F103C8T6单片机内存地址、输入输出引脚和电平状态,其中A0口用来读取被测电压;B0-B7口用来控制七段数码管的亮灭;C0口用来输出PWM,控制风扇的旋转速度;D0口用来控制蜂鸣器的开启和关闭。

数字电压表的设计方案

数字电压表的设计方案

数字电压表的设计方案1. 引言数字电压表(Digital Voltmeter,简称DVM)是一种能够直接显示电压值的测量仪器。

它与传统的模拟电压表相比,具有精确度高、稳定性好、便于读取等优势。

本文将介绍一种基于集成电路的数字电压表的设计方案。

2. 设计原理数字电压表的设计基于模数转换技术,通过将输入的模拟电压信号转换为数字形式,并经过一系列处理后显示在数码管上。

通常的设计流程包括采样、量化、编码和显示四个步骤。

2.1 采样采样是将连续的模拟信号转换为离散的数字信号的过程。

在数字电压表中,采样过程通过使用一个模拟-数字转换器(ADC)来完成。

常见的ADC电路有逐次逼近型和闩锁型等,根据需求选择合适的ADC器件。

2.2 量化量化是将采样得到的模拟信号分为若干个不同电平的过程。

量化过程中,转换器将模拟信号映射到一个有限数量的离散值,通常为二进制数。

量化级别的选择会影响数字电压表的精度和分辨率。

2.3 编码编码是将量化后的模拟信号转换为与数码管对应的数字形式的过程。

常用的编码方式有二进制编码、格雷码等。

编码器可以是硬件电路,也可以是通过程序实现的软件算法。

2.4 显示显示是将编码后的数字信号以可读的形式呈现出来的过程。

在数字电压表中,常用的显示器件是七段数码管。

数码管的控制可以通过驱动电路来实现,同时需要考虑亮度控制和多位数显示的问题。

3. 系统组成数字电压表的系统组成主要包括模拟前端、模数转换、显示部分等。

3.1 模拟前端模拟前端是将待测电压信号处理成可以输入到模数转换器的范围内。

模拟前端通常包括电阻分压器、跨导放大器、滤波器等模块,其目的是将输入信号的幅度范围缩放到ADC的输入电压范围内。

3.2 模数转换模数转换是将模拟电压信号转换为数字信号的过程。

在数字电压表中,常用的模数转换器有逐次逼近型和闩锁型。

模数转换器的选择要考虑精度、速度、功耗等因素。

3.3 显示部分显示部分是将数字信号以可读的形式显示出来。

数字电压表设计002

数字电压表设计002

接口技术学生姓名:学号:学院:专业: 电子科学与技术题目: 数字电压表设计指导教师:数字电压表的设计一、设计概念资料1.数字电压表基本概念数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。

传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。

目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统智能化测量领域,示出强大的生命力。

与此同时,由DVM 扩展而成各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。

2.数字电压表优缺点⑴显示清晰直观,读数准确,缩短读数和记录的时间。

新型数字电压表还增加了标志符显示功能,包括测量项目符号、单位符号和特殊符号。

⑵显示位数显示位数通常为3位~8位判定数字仪表的位数有两条原则:①能显示从0~9所有数字的位是整数值;②分数位的数值是以最大显示值中最高位数字为分子,用满量程时最高位数字做分母。

⑶准确度高。

准确度愈高,测量误差愈小。

数字电压表的准确度远优于模拟式电压表。

⑷分辨率高。

从设计DVM的角度看,分辨力应受准确度的制约,并与之相适应。

⑸测量范围宽。

多量程DVM一般可测0~1000V直流电压,配上高压探头还可测量上万伏的高压。

(6扩展能力强。

在数字电压表的基础上、还可扩展成各种通用及专用数字仪表、数字多用表(DMM)和智能仪器,以满足不同的需要。

⑺测量速率快。

数字电压表在每秒钟内对被测电压的测量次数叫测量速率,单位是“次/秒”。

它主要取决于A/D 转换器的转换速率,其倒数是测量周期。

⑻输入阻抗高。

数字电压表具有很高的输入阻抗,通常为10MΩ~10000MΩ,最高1TΩ。

在测量时从被测电路上吸取的电流极小,不会影响被测信号源的工作状态,减小由信号源内阻引起的测量误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子线路硬件课程设计总结报告课题:数字电压表设计班级:作者:学号:指导老师:摘要一个测试结果稳定、准确的数字电压表,既能减少了使用者的工作量,又提高了测量的精准度,而且人为误差被大大减小,方便与电路打交道的人快速有效的完成自己的工作。

本项目设计并实现了一个能够对0-200V范围的直流电压进行测量的数字电压表,测量分为4挡:200mV、2V、20V和200V,手动控制档位选择,显示部分小数点自动实现切换。

项目基于AT89C51单片机,拓展AD转换、显示部分。

不同档位的待测电压通过不同档位的衰减电路后变为0-200mV,再通过一个OPA336一致放大到0-2V送入AD的输入端,然后通过芯片AT89C51内的程序控制AD转换并输出。

不同档位的电压信号又不同的程序控制输出到数码管显示。

整个电路连线简单易于实现,而且成本很低,测出的电压精度也足够满足需求。

关键字:数字电压表; AT89C51单片机;易于实现AbstractA digital voltmeter which is stable and accurate can not only reduce the work of the user, but also free off the error produced by using wrong. It is convenient to people who work with the circuit.This voltmeter is designed to measure a voltage between 0 to 200. It’s divided into four gears as 200 millivolt, 2 volt, 20volt, and 200volt. Gears changing is worked by hang. The project is base on the chip AT89C51 of one-chip computer. An analog to digital converter, a display section, and a voltage attenuation are attached to the chip and they make up the design. The voltage of different gears are changed into 0-200 millivolt. Then they are sent to an OPA336, and it’s output is 0-2 volt. The output is sent to the analog to digital converter.Then the chip control the analog to digital converter’s output to the displaying section.The whole circuit is easy. And although it’s cost is very low, the accuracy of the outcome is fine.key words: digital voltmeter, one-chip computer, AT89C51一、项目概述数字电压表(Digital Voltmeter)简称DVM,它是利用模拟/数字变换器(A/D)原理,以十进制数字形式显示被测电压值的仪表。

DVM除了广泛用于电压测量外,通过各种变换器还可以测量其他电量或非电量,用途十分广泛。

DVM的高速发展,使它已成为实现量程自动化、提高工作效率不可缺少的仪表。

数字化是当前计量仪器仪表发展的主要方向之一。

而高准确度直流DVM的出现,又使DVM进入了精密标准测量领域。

DVM广泛应用在测量领域中,其测量结果的准确度和可信度取决于它结构主要性能和技术指标。

评价某种DVM性能的优劣,产品质量是否合格,是否满足技术指标的要求,必须通过正确的鉴定和测试结果才能分析判断出来。

传统的指针式电压表功能单一,精度底,读数不方便,不能满足数字化时代的需要。

采用单片机的数字电压表,具有精度高,抗干扰能力强,可扩展性强等优点。

现今,由各种单片A/D转换器构成的数字电压表,已被广泛用于电子及电工测量,工业自动化仪表,自动测试系统等智能化测量领域,展示了强大的生命力。

而且,由DVM扩展而成的各种通用及专用数字仪表仪器,也把电量及非电量测量技术提高到新的水平。

本设计中电压表可以测量直流电压测量范围(0~200V)共分四档:200mv、2v、20v、200v,并且通过4位LED数码管三位半显示其数值。

所谓三位半的三位是指可以显示0-9的十个数字,称作全位。

千位数最大显示为1(小于1时消隐),这位在理论上讲最大能显示2,比如在2V挡,最大显示应该是2.000,但实际显示1.999,和理论值还差一。

那么这位理论值最大应该显示2,而实际只能显示1,就叫做1/2位。

理论值为分母,实际显示最大值为分子。

根据数字电压表的功能实现要求,选用AT89C51单片机作控制系统,由ADC0809实现A/D转换功能,放大器选用OPA336实现放大10倍的功能。

在保证送入A/D的电压为2V的等效电压时,利用AD还可以较精确地测出其值。

因为对不同电压档位采用不同的端口和程序控制,所以可以大大减小电路的要求,更利于实现。

二、项目设计目标(1) 项目综合描述本项目要求设计并实现一个数字电压表的装置,该装置能够对0~200V 范围的直流电压进行测量。

测量分为4挡:200mV 、2V 、20V 和200V 。

输入为模拟直流电压,输出为数字量,并在必要的辅助输出显示设备上显示。

同时具有正、负电压极性显示,小数点显示。

能判读并显示被测量信号超出所选择的量程范围。

并根据不同的量程能自动调整小数点。

(2) 任务要求:① 数字电压表有4个测量挡:200mV 、2V 、20V 和200V ,能将被测的模拟直流电压在显示设备上显示出来。

② 数字电压表以基本量程为基础,同时设计衰减器进行量程的扩展。

③ 具有213位(三位半)显示:有3位完整的显示,另外最高位只显示0或1。

④ 能够判读并显示被测电压的极性。

⑤ 测量速度为2~5 次/秒,分辨率为0.1mV ,测量误差γ<±0.1%。

(3)发挥部分1) 设计并调试自动量程转换电路。

2) 设计并调试小数点自动切换电路。

三、项目方案论证方案一:用A/D转换、LED显示芯、各种需要的中规模门电路芯片、电阻、电容等纯硬件实现数字电压表:通过电阻衰减网络得到衰减后的电压,送入CC7107,将其输出的数字量接入LED显示。

该方法是用纯硬件实现数字电压表,硬件连接较复杂,电路体积大,测量方式不灵活,测量的误差比较大、精确度难做高。

利用ICL7106实现的电路连线图如图1ICL7106是美国Intersil公司的产品,是目前应用最广泛的一种单片三位半的A/D转换器。

图1该仪表的量程UM=200Mv,称之为基本表或基本档。

其中:C1、R1分别为振荡电容和振荡电阻。

RP、R2组成基准电压的分压电路。

RP采用精密多圈电位器,R2为固定电阻,调整RP可使基准电压Uref=100.0mV。

R3、C3为模拟输入端的高频阻容式滤波器,以提高仪表的抗干扰能力。

因ICL7106的输入阻抗很大,输入电流很小,故可取R3=1MΩ,C3=0.01uF。

C2、C4分别为基准电容与自动调零电容。

C5,R4依次为积分电容和积分电阻。

仪表采用9V电池供电。

电路中将IN-端与COM端短接。

该电压表的测量速率约为2.5次/秒。

而ICL7106只有液晶笔段及背电极驱动端,没有小数点驱动端[8]。

要显示小数点,需另加外围电路。

方案二:采用单片机+A/D芯片+显示芯片设计数字电压表:单片机型号广泛、并且价格低廉。

只要单片机内部具有中断、I/O、RS232等模块就能够满足选型基本要求,系统的精度能够保证。

该方法硬件连接相对简单,测量误差较小,精度较高。

原理框图如图2据数字电压表的功能实现要求,选AT89C51单片机作控制系统,低电压经放大器选用OPA336实现放大10倍、高电压经大电阻分压从而控制输入ADC0809的信号在2V左右实现A/D转换经AT89C51送入LED显示。

图2A/D转换方案模/数转换器是一种连接的模拟量转化成离散数字量的一种电路或器件。

模拟信号转换为数字信号一般需要经过抽样保持和量化编码两个过程。

针对不同的采样对象,有不同的A/D转换器可供选择,其中有通用的也有专用的。

有些ADC 还包含有其他的功能,在选择A/D器件时需要考虑多种因素,除了关键参数、分辨率和转换速度以外,还需考虑其他因素,如静态与动态精度,数据接口类型,控制接口与定时,采样保持性能,基本要求,校准能力、功耗、使用环境要求、封装形式以及与软件相关的问题。

ADC按功能划分可以分为直接转换和非直接转换两大类,其中非直接转换又有逐次分级转换、积分式转换等类型。

A/D转换器在实际应用时,除了要设计适当的采样/保持电路、基准电路和多路模拟开关等电路外,还应根据实际选择的具体芯片进行输入模拟信号极性转换等设计。

方案1:采用分级式转换器,这种转换采用两步或多步进行分辨率的闪烁式转换,进而快速的完成模/数转换,同时可以实现较高的分辨率。

例如,在利用两步分级完成n位转换的过程中,首先完成m位的粗转换,然后使用精度至少为m 位的模/数转换器,将此结果转换达到1/2的精度并且与输入信号比较。

对此信号用一个k位转换器转换,最后将两个输出结果合并。

方案2:采用双积分型A/D转换器,如ICL7153等。

双积分型A/D转换器转换精度高,但转换速度不太快,若用于温度测量,不能及时地反映当前温度值,而且多数双积分型A/D转换器其输出端都不是二进制码,而是直接驱动数码管的。

所以,若直接将其输出端接I/O接口会给软件设计带来极大的不方便。

方案3:采用逐次逼近式转换器,对于这种转换方式,通常是采用一个比较器输入信号与为基准的n位DAC输出进行比较,并执行n次1位转换。

这种方法类似于天平上用二进制码称量物质。

采用逐次逼近寄存器,输入信号仅与高位比较,确定DAC的高位。

确定后结果别、被锁存,同时加到DAC上,以决定DAC的输出。

逐次逼近型转换器,如ADC0809,AD574等,其特点是转换速度快,精度也比较高,输出为二进制码,直接接I/O口,软件设计简单。

ADC0809芯片内包含8位模/数转换器,8通道多路转换器与微控制器兼容的控制逻辑。

8通道多路转换器能直接连通8个单端输入信号中的任何一个。

相关文档
最新文档