生物化学实验报告
生物化学实验报告(共2篇)

生物化学实验报告(共2篇)篇一:生物化学实验报告2012年生物化学实验b姓名:学号:实验时间:实验分组:组内成员:任课教师:实验报告xxxx 2012年11月17日摘要1. 实验部分1.1试剂与仪器1.试剂:(2)1 mol/l 醋酸,1 mol/l naoh,硫酸铵。
(3)平衡缓冲液:0.01 mol/l tris-hcl,ph 8.0。
(5)酶的底物溶液:用底物缓冲液配制15×10-3 mol/l 对硝基苯磷酸二钠溶液。
(7)分离胶缓冲液:1.5 mol/l tris-hcl缓冲液,ph 8.8,已加入10% sds。
(8)浓缩胶缓冲液:0.5 mol/l tris-hcl缓冲液,ph 6.8,已加入10% sds。
(13)脱色液:500 ml 10%甲醇和10%冰醋酸的脱色液1000 ml。
匀浆机、eppebdorf5型冷冻离心机、gsy—2型恒温水浴、uv762型紫外可见分光光度计。
1.2 小牛肠碱性磷酸酶提取方法2)将小肠粘膜液集中倒入匀浆机中,加冰冷蒸馏水,高速匀浆,重复多次。
3)缓慢加入冰冷正丁醇高速匀浆重复多次。
在4℃,10000 rpm条件下离心。
4)用滤布过滤去除杂质,倒入分液漏斗中,静止分层,取下层水相,用hac溶液调ph到4.9。
5)得到上清后放入离心管中,用naoh溶液调ph至6.5,称取硫酸铵加到离心管中溶解;再加冰冷丙酮,混匀,4℃静置30 min以上。
6)上清液中加入冰冷丙酮,4℃放置30 min以上。
4℃,10000 rpm,离心。
7)取沉淀溶于平衡缓冲液至全部溶解至冰箱保存待用。
1.3 小牛肠碱性磷酸酶酶活检测方法2)紫外分光光度计检测条件为405 nm波长,测定时间60 s,取值2 s,记录范围0.0-1.5。
上下倒2次,放回分光光度计中,测定酶动力学曲线1.4 聚丙烯凝胶制备分离胶制备(浓度10%,制备量10 ml)试剂用量 h2o30% 丙烯酰胺1.5 mol/l tris-hcl缓冲液ph 8.810% 过硫酸铵temed4.1 ml 3.4 ml 2.4 ml 100 μl 10 μl浓缩胶制备(浓度5%,制备量6 ml)试剂 h2o30% 丙烯酰胺0.5 mol/l tris-hcl缓冲液ph 6.810% 过硫酸铵temed用量3.4 ml 1.0 ml 1.5 ml 60 μl 8 μl1.5 考马斯亮蓝法测定蛋白质含量3)各取100 μl加入到5 ml考马斯亮蓝试管中,混匀,反应5 min以上。
生物化学实验报告格式范文

生物化学实验报告格式范文
生物化学实验报告格式范文主要包括以下几个部分:实验名称、实验目的、实验原理、实验材料与试剂、实验过程、实验结果与分析、结论。
下面是一个具体的实验报告范例:
实验名称:蛋白质的提取与分离
实验目的:掌握蛋白质的提取与分离方法,了解蛋白质纯化的过程。
实验原理:蛋白质是生物体内重要的功能分子,其提取与分离在生物研究和应用中具有重要意义。
本实验通过盐析、透析等方法对蛋白质进行提取,然后利用凝胶色谱技术对蛋白质进行分离纯化。
实验材料与试剂:蛋白质溶液、盐析剂、透析袋、凝胶色谱柱、缓冲液、标签试剂等。
实验过程:
1.蛋白质的提取:将蛋白质溶液与盐析剂混合,静置后收集上清液,进行透析,得到纯化的蛋白质溶液。
2.蛋白质的分离:将纯化的蛋白质溶液上样到凝胶色谱柱,用缓冲液洗脱,收集目标蛋白质峰。
3.蛋白质的鉴定:对分离得到的蛋白质进行SDS-PAGE电泳,然后转移到膜上进行Western Blot分析,验证蛋白质的分离效果。
实验结果与分析:
1.SDS-PAGE电泳结果显示,提取的蛋白质分子量与理论值相符。
2.Western Blot分析结果显示,分离纯化的蛋白质能够与对应的抗体特异性结合,说明分离效果良好。
结论:通过本实验,我们成功提取并分离了蛋白质,掌握了蛋白质纯化的基本方法。
实验结果表明,盐析、透析和凝胶色谱技术等方法可以有效地用于蛋白质的提取与分离。
生物化学实训课实验报告

一、实验名称:蛋白质分子量测定——凝胶层析法二、实验目的:1. 理解凝胶层析法的原理和操作步骤。
2. 掌握蛋白质分子量测定的方法。
3. 分析实验结果,并探讨影响实验结果的因素。
三、实验原理:凝胶层析法是一种分离和纯化蛋白质的方法,其原理是利用凝胶的分子筛作用,根据蛋白质分子大小不同进行分离。
凝胶是一种多孔材料,其孔径大小与蛋白质分子大小相匹配,使得小分子蛋白质能够进入凝胶内部,而大分子蛋白质则无法进入,从而实现分离。
四、实验材料与试剂:1. 蛋白质样品:如鸡蛋清、血清等。
2. 凝胶:如聚丙烯酰胺凝胶、琼脂糖凝胶等。
3. 电泳缓冲液:如Tris-HCl缓冲液、硼酸缓冲液等。
4. 标准蛋白质分子量对照品:如已知分子量的蛋白质。
5. 电泳仪、电泳槽、紫外灯等。
五、实验步骤:1. 准备凝胶:将凝胶溶解在适当浓度的缓冲液中,倒入模具中,制成凝胶板。
2. 准备样品:将蛋白质样品与适量的电泳缓冲液混合,加入样品缓冲液,制成样品溶液。
3. 制备标准蛋白质分子量对照品:将已知分子量的蛋白质溶解在电泳缓冲液中,制成标准蛋白质溶液。
4. 加样:将样品溶液和标准蛋白质溶液分别加入凝胶板上的孔中。
5. 电泳:将凝胶板放入电泳槽中,加入电泳缓冲液,接通电源,进行电泳。
6. 显色:电泳完成后,将凝胶板取出,放入含有显色剂的溶液中,进行显色。
7. 测量:用紫外灯照射凝胶板,观察蛋白质条带的位置,并记录下蛋白质分子量。
六、实验结果与分析:1. 通过观察电泳图谱,可以清晰地看到蛋白质条带,其中标准蛋白质分子量对照品的条带位置已知,可以用来判断样品蛋白质分子量的大小。
2. 实验结果显示,样品蛋白质分子量分布较广,存在多个分子量大小不同的蛋白质。
3. 通过比较样品蛋白质条带与标准蛋白质条带的位置,可以估算出样品蛋白质的分子量。
4. 影响实验结果的因素包括凝胶的制备、电泳条件、显色剂的选择等。
七、讨论与心得:1. 凝胶层析法是一种常用的蛋白质分离和纯化方法,具有操作简单、分离效果好等优点。
大学生物化学实验报告

一、实验名称:蛋白质分子量测定——凝胶层析法二、实验目的:1. 了解凝胶层析法的基本原理和操作步骤。
2. 学习利用凝胶层析法测定蛋白质的分子量。
3. 培养实验操作技能和数据处理能力。
三、实验原理:凝胶层析法是一种利用凝胶作为固定相,通过分子大小不同的物质在凝胶孔径中的移动速度差异来实现分离的方法。
在凝胶层析中,大分子物质不能进入凝胶内部的孔径,而小分子物质可以进入孔径,从而在洗脱过程中,大分子物质先流出,小分子物质后流出。
通过测量不同分子量蛋白质的洗脱体积,可以计算出其分子量。
四、实验材料与试剂:1. 凝胶层析柱(直径1.5cm,长30cm)2. 凝胶(聚丙烯酰胺凝胶)3. 蛋白质样品(已知分子量)4. 标准样品(已知分子量)5. 洗脱液(Tris-HCl缓冲液)6. 显色剂(考马斯亮蓝G-250)7. 移液器8. 旋转混匀器9. 分光光度计五、实验步骤:1. 准备凝胶层析柱:将凝胶倒入层析柱中,用洗脱液充分浸泡凝胶,直至凝胶膨胀并固定在层析柱中。
2. 准备样品:将蛋白质样品和标准样品分别稀释至适当浓度。
3. 加样:将蛋白质样品和标准样品分别加入凝胶层析柱中,用洗脱液洗脱,收集不同洗脱体积的洗脱液。
4. 显色:将收集到的洗脱液加入考马斯亮蓝G-250显色剂,室温下显色10分钟。
5. 测量:用分光光度计测定显色液在595nm处的吸光度值。
6. 数据处理:以标准样品的分子量为横坐标,吸光度值为纵坐标,绘制标准曲线。
根据蛋白质样品的吸光度值,从标准曲线上查得蛋白质的分子量。
六、实验结果:(此处插入实验数据表格,包括标准样品和蛋白质样品的分子量、洗脱体积、吸光度值等)七、实验分析:通过凝胶层析法,成功分离了蛋白质样品,并测定了其分子量。
实验结果表明,蛋白质样品的分子量与标准样品的分子量相符,说明实验操作正确。
八、讨论与心得:1. 凝胶层析法是一种简单、有效的蛋白质分离方法,可用于测定蛋白质的分子量。
2. 在实验过程中,要注意凝胶层析柱的制备、样品的加入和洗脱液的收集等操作步骤,以保证实验结果的准确性。
生物化学实验报告

实验名称:蛋白质分子量测定——凝胶层析法实验日期:2023年10月26日实验目的:1. 理解凝胶层析法的原理和操作步骤。
2. 通过凝胶层析法测定蛋白质的分子量。
3. 掌握蛋白质分离和鉴定技术。
实验原理:凝胶层析法,也称为分子筛层析法或排阻层析法,是一种基于分子大小差异进行分离的方法。
凝胶是一种多孔材料,其孔径大小不一,能够根据分子的大小将混合物中的不同组分分离。
在凝胶层析中,大分子蛋白质不能进入凝胶内部的孔洞,因此沿着凝胶颗粒间的缝隙快速移动,而小分子蛋白质则可以进入凝胶内部,移动速度较慢。
通过比较不同蛋白质在凝胶层析中的迁移距离,可以推断其分子量。
实验器材与试剂:- 凝胶层析柱- 凝胶- 蛋白质样品- 标准蛋白质分子量对照品- 缓冲液(pH 7.4)- 标记笔- 移液器- 洗脱液- 紫外线检测仪实验步骤:1. 准备凝胶层析柱,用标记笔标记起始线。
2. 将凝胶加入层析柱中,使其填充均匀,注意避免气泡。
3. 准备蛋白质样品和标准蛋白质对照品,用缓冲液稀释至适当浓度。
4. 用移液器将蛋白质样品和标准蛋白质对照品分别加入层析柱的起始线处。
5. 加入洗脱液,调节流速,保持洗脱液面始终高于凝胶表面。
6. 收集洗脱液,每隔一定时间取样,用紫外线检测仪检测蛋白质的吸收峰。
7. 根据标准蛋白质对照品的分子量和迁移距离,绘制标准曲线。
8. 根据样品的迁移距离和标准曲线,计算样品的分子量。
实验结果:- 蛋白质样品和标准蛋白质对照品在凝胶层析中的迁移距离分别为:样品A 2.5 cm,样品B 3.0 cm;标准蛋白质对照品1 2.0 cm,标准蛋白质对照品2 3.5 cm。
- 根据标准曲线,样品A的分子量为 10 kDa,样品B的分子量为 15 kDa。
讨论与分析:本实验成功地将蛋白质样品与标准蛋白质对照品分离,并测定了样品的分子量。
凝胶层析法是一种简单、有效的蛋白质分离和鉴定技术,广泛应用于生物化学和分子生物学研究中。
生物化学实验报告

生物化学实验报告一、实验目的本实验的目的是通过比较原淀粉、糖粉、滑石粉及无机盐等对酶水解作用的影响,了解和掌握酶的底物特异性、温度敏感性及pH敏感性。
二、实验原理酶是一类具有催化功能的特殊蛋白质,可以在生物体内加速对物质的转化过程。
酶的活性受到多种因素的影响,如底物特异性、温度、pH值等。
本实验中,选取了α-淀粉酶作为模型酶,通过观察其对不同底物的水解作用,以及在不同温度和pH值下的活性变化情况,来分析上述因素对酶活性的影响。
三、实验步骤1. 准备四个试管,分别加入原淀粉溶液、糖粉溶液、滑石粉溶液及无机盐溶液。
2. 在每个试管中加入适量的α-淀粉酶溶液,混匀后放置于恒温水浴中反应一段时间。
3. 分别取出各试管,加入碘液进行显色反应,观察溶液颜色的变化,并记录结果。
四、实验结果与分析经过实验观察发现,原淀粉溶液和滑石粉溶液没有出现颜色变化,说明α-淀粉酶对它们没有水解作用;而糖粉溶液和无机盐溶液出现了蓝黑色,说明α-淀粉酶对它们有水解作用。
这说明α-淀粉酶对底物的水解具有一定的特异性。
此外,实验还发现α-淀粉酶的活性受到温度和pH值的影响。
在不同温度下,α-淀粉酶的活性变化情况如下:当温度较低时,酶的活性较低,水解作用较慢;当温度逐渐升高时,酶的活性逐渐增强,水解作用加快;当温度超过一定范围后,酶的活性开始下降,甚至完全失活。
这表明酶的活性受到温度的限制,存在一个较适宜的工作温度范围。
同样地,在不同pH值下,α-淀粉酶的活性也有所变化。
实验结果显示,当pH值在酶的最适范围内时,酶的活性最高,水解作用最强;当pH值偏离最适范围时,酶的活性下降,水解作用减弱。
这说明酶的活性也受到环境的静电作用的影响,存在一个较适宜的pH值范围。
五、实验总结通过本次实验,我们进一步了解了酶的特性和具体影响因素。
酶的底物特异性以及温度和pH值对酶活性的影响是使用酶进行实验和应用的重要参考因素。
此外,本实验还展示了酶与底物之间的相互作用和调控机制,在理解酶的功能和应用方面具有重要意义。
生物化学实验报告参考模板

实验一考马斯亮蓝G-250染色法测定蛋白质的含量(p24)一、目的要求掌握考马斯亮蓝(Coomassie Brilliant Blue)法测定蛋白质含量原理和方法。
二、实验原理考马斯亮蓝法测定蛋白质浓度,是利用蛋白质─染料结合的原理,定量的测定微量蛋白浓度的快速、灵敏的方法。
这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在得到广泛的应用。
这一方法是目前灵敏度最高的蛋白质测定法。
考马斯亮兰G-250染料在酸性溶液中为棕红色,当它与蛋白质通过范德华键结合后,变为蓝色。
在酸性溶液中与蛋白质结合,使染料的最大吸收峰(lmax)的位置,由465nm变为595nm。
且在蛋白质一定浓度范围内符合比尔定律,通过测定595nm处光吸收的增加量可知与其结合蛋白质的量。
研究发现,染料主要是与蛋白质中的碱性氨基酸(特别是精氨酸)和芳香族氨基酸残基相结合。
考马斯亮蓝染色法的突出优点是:(1)灵敏度高,据估计比Lowry法约高四倍,其最低蛋白质检测量可达1mg。
这是因为蛋白质与染料结合后产生的颜色变化很大,蛋白质-染料复合物有更高的消光系数,因而光吸收值随蛋白质浓度的变化比Lowry法要大的多。
(2)测定快速、简便,只需加一种试剂。
完成一个样品的测定,只需要5分钟左右。
由于染料与蛋白质结合的过程,大约只要2分钟即可完成,其颜色可以在1小时内保持稳定,且在5分钟至20分钟之间,颜色的稳定性最好。
因而完全不用像Lowry法那样费时和严格地控制时间。
(3)干扰物质少。
如干扰Lowry法的K+、Na+、Mg2+离子、Tris缓冲液、糖和蔗糖、甘油、巯基乙醇、EDTA等均不干扰此测定法。
此法的缺点是:(1)由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同,因此考马斯亮蓝染色法用于不同蛋白质测定时有较大的偏差,在制作标准曲线时通常选用g—球蛋白为标准蛋白质,以减少这方面的偏差。
(2)仍有一些物质干扰此法的测定,主要的干扰物质有:去污剂、Triton X-100、十二烷基硫酸钠(SDS)等。
生物质化学实验报告(3篇)

第1篇一、实验目的1. 了解生物质化学的基本概念和实验方法。
2. 掌握生物质化学实验的基本操作技巧。
3. 通过实验,加深对生物质化学原理的理解。
二、实验原理生物质化学是研究生物质中化学组成、结构和性质的一门学科。
生物质包括植物、动物、微生物等,其化学组成主要包括碳水化合物、蛋白质、脂质、核酸等。
生物质化学实验主要包括生物质提取、分离、鉴定和测定等。
三、实验材料与仪器1. 实验材料- 生物质样品(如玉米秸秆、小麦秸秆等)- 酶(如纤维素酶、淀粉酶等)- 酸、碱等化学试剂- 乙醇、丙酮等有机溶剂2. 实验仪器- 研钵- 烧杯- 试剂瓶- 电子天平- 离心机- 恒温水浴锅- 显微镜- 紫外可见分光光度计1. 生物质提取(1)称取一定量的生物质样品,置于研钵中,加入适量的水,研磨成浆状。
(2)将浆状物过滤,收集滤液。
2. 生物质分离(1)取一定量的滤液,加入适量的酶,在恒温水浴锅中反应一定时间。
(2)反应结束后,加入适量的丙酮,使蛋白质沉淀。
(3)离心分离,收集沉淀物。
3. 生物质鉴定(1)取一定量的沉淀物,加入适量的双缩脲试剂,观察颜色变化。
(2)取一定量的沉淀物,加入适量的苏丹Ⅲ试剂,观察颜色变化。
4. 生物质测定(1)取一定量的沉淀物,加入适量的葡萄糖标准溶液,用紫外可见分光光度计测定吸光度。
(2)根据吸光度计算生物质中葡萄糖的含量。
五、实验结果与分析1. 生物质提取实验成功提取了生物质中的可溶性成分。
2. 生物质分离实验成功分离了生物质中的蛋白质和脂质。
3. 生物质鉴定实验结果表明,生物质中主要含有蛋白质和脂质。
4. 生物质测定实验结果表明,生物质中葡萄糖的含量为X g/g。
1. 生物质提取过程中,研磨时间和水量对提取效果有较大影响。
适当增加研磨时间和水量可以提高提取效果。
2. 生物质分离过程中,酶的种类和反应时间对分离效果有较大影响。
选择合适的酶和反应时间可以提高分离效果。
3. 生物质鉴定过程中,试剂的种类和用量对鉴定结果有较大影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的:1、熟悉工作曲线的制作方法及注意事项;2、掌握3, 5-二硝基水杨酸(DNS)比色定糖的原理和方法;3、掌握Folin-酚法测定蛋白质含量的原理和方法;4、掌握酶蛋白分离提纯的原理;5、掌握酶的比活力测定及其计算方法;6、掌握酶促反应动力学中用双倒数法测定Km的方法;7、运用正交试验法确定温度、pH值、离子浓度的最适条件。
称量技术:1、了解电子天平的用途2、了解电子天平的工作原理3、掌握电子天平的使用方法4、掌握电子天平使用前后的注意事项离心技术:1、了解离心机的基本原理和用途2、了解离心机的类型和用途3、了解离心机的型号和控制版面4、掌握离心机的使用方法5、掌握离心机使用的注意事项层析技术:1、了解层析技术的基本原理2、了解层析技术的分类情况3、了解各种层析技术的原理4、掌握凝胶层析技术光谱分析技术:1、学习掌握紫外可见、荧光、红外光谱分析技术原理2、了解仪器结构和分类3、熟练掌握常用仪器的使用方法和注意事项电泳技术:1、了解电泳的基本原理2、了解电泳的类型3、学习SDS-PAGE测定蛋白质分子量的原理4、掌握垂直板电泳的操作技术5、掌握琼脂糖凝胶电泳的操作技术6、了解转移电泳的基本原理和操作方法7、了解双向电泳的基本原理和操作方法二、实验原理:1、蔗糖酶的提取:①酵母菌的基本特征:单细胞,椭圆形、圆形或柱形。
长5-30μm,宽1-5μm。
②生物材料破碎方法:(1)机械(匀浆)法①研钵②玻璃或Teflon研棒匀浆器(50mL)Teflon:聚四氟乙烯先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机高,适用于少量组织和脏器。
③高速组织捣碎机(0.5-1L)将材料配成稀糊状液,放置于筒内约1/3 体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度。
此法适用于动物内脏组织、植物肉质种子等。
④高压匀质机(XL)高压下的细胞通过阀门流出时,细胞内外压力同时降低,但由于细胞膜的作用,胞外压力瞬间降至常压,而胞内压力相比之下降低较慢,从而在细胞内外形成压力差,使细胞膜破裂。
优点:快速,产热小,对蛋白损伤小,破碎效率高。
一次破碎效率可达90%以上(2)超声波处理法用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料,常在30 至60Hz 频率下处理10-15 分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施。
(3)反复冻融法将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内的水形成冰粒而剩余的细胞液中盐浓度增高引起溶胀,使细胞结构破碎。
设备简单、效率不高,时间长,注意蛋白酶!(4)化学处理法有些动物细胞可采用十二烷基磺酸钠(SDS)、去氧胆酸钠等细胞膜破坏。
(5)溶胞作用(酶溶解法)用生物酶将细胞壁和细胞膜消化溶解的方法。
常用的溶酶有溶菌酶、β-1,3-葡聚糖酶、蛋白酶等。
(6)自溶法将新鲜的生物材料存放于一定的pH和适当的温度下,细胞结构在自身所具有的各种水解酶(如蛋白酶和酯酶等)的作用下发生溶解,使细胞内含物释放出来。
2、蔗糖酶的纯化:①酶与蛋白质纯化过程的独有特点:(1)特定的一种酶在细胞内的含量很少……纯化困难(2)可以通过测定活力的办法加以跟踪……寻找关键②酶的纯化方法:1.酶的蛋白属性;两性电离:蛋白质分子除两端的氨基和羧基可解离外,氨基酸残基侧链中某些基团,在一定的溶液pH 条件下都可解离成带负电荷或正电荷的基团。
等电点(isoelectric point, pI):当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH 称为蛋白质的等电点。
大分子(胶体):分子量可自1 万至100 万之巨,其分子的直径可达1~100nm,为胶粒范围之内。
稳定的因素:颗粒表面电荷水化膜2.调节酶溶解度的方法;有机溶剂分级沉淀(1)改变离子强度;盐析硫酸铵分级沉淀(反抽提法)反抽提法(Back Extraction)例:E.coli RNA聚合酶42% - 50% 硫酸铵饱和度时沉淀通常方法:先33%-------再50%反抽提法:再42%将包含待分离酶在内的多种蛋白一起先沉淀出来,然后再选择适当的递减浓度的硫酸铵溶液来抽提沉淀物。
蛋白从溶液中沉淀析出十分容易,沉淀在溶液中溶解有高特异性。
(2)改变pH或温度;改酶变在介未电纯常化数之;前PI也是未知的,pH不宜变化过大,以免失活。
Cu,Zn-SOD的纯化可在70 oC,10 min。
(3)改变介电常数;有机溶剂分级沉淀:向水溶液中加入一定量亲水性的有机溶剂,降低溶质的溶解度,使其沉淀析出的分离纯化方法。
亲水性有机溶剂加入溶液后降低介质的介电常数,使溶质分子之间的静电引力增加,聚集形成沉淀。
亲水性有机溶剂的水合作用降低了自由水的浓度,压缩了表面水化膜的厚度,降低其亲水性,导致脱水凝集。
有机溶剂分级沉淀操作条件的控制:溶剂选择:常用的溶剂是乙醇、丙酮、甲醇,二甲基甲酰胺、二甲基亚砜也可做沉淀剂。
沉淀用有机溶剂的选择主要应考虑沉淀作用强、对生物分子的变性作用小、毒性小以及挥发性适中。
温度:使用有机溶剂沉淀生物大分子时应控制在低温下进行。
样品浓度的控制:一般认为蛋白质的初始浓度为0.5%-2% 为好。
3.根据酶分子大小、形状不同的分离方法;透析、凝胶层析(1)离心分离;最为常用分布在细胞器匀浆后离心(2)透析、超滤;利用具有一定孔径的亲水膜,在常压下依靠小分子物质的扩散运动,将含有高分子和其他小分子的溶液与纯水或缓冲溶液分隔的一种方法.用于去除大分子溶液中的小分子物质,称为脱盐。
用于去除大分子溶液中的溶剂,此称为浓缩。
(3)凝胶层析;凝胶层析的定义:凝胶是一种具有多孔、网状结构的分子筛。
利用这种凝胶分子筛对大小、形状不同的分子进行层析分离,称凝胶层析凝胶层析常见名称:凝胶过滤、分子筛层析、排阻层析、凝胶渗透层析。
凝胶层析的基本原理:凝胶层析是利用凝胶把分子大小不同的物质分离开的一种方法,其原理是分子筛效应,混合样品如同“过筛”一样,因分子大小的不同得以彼此分开。
在洗脱过程中,大分子不能进入凝胶内部,而沿凝胶颗粒间的空隙最先流出柱外;而小分子可以进入凝胶颗粒内部的多孔网状结构,路径长、流速慢,以至最后流出柱外。
凝胶层析的应用范围:凝胶层析法适用于分离和提纯蛋白质、酶、多肽、激素、多糖、核酸类等物质。
分子大小彼此相差25%的样品,只要通过单一凝胶床就可以完全将它们分开。
利用凝胶的分子筛特性,可对这些物质的溶液进行脱盐、浓缩、去热源和脱色。
凝胶层析的特点:凝胶层析操作简便,所需设备简单;分离效果较好,重复性高。
最突出的是样品回收率高,接近100%;分离条件缓和。
凝胶骨架亲水,分离过程又不涉及化学键的变化,所以对分离物的活性没有不良影响;应用广泛。
适用于各种生化物质,如肽类、激素、蛋白质、多糖、核酸的分离纯化、脱盐、浓缩以及分析测定等。
分离的分子量范围很宽,如Sephadex G类为102~105D;Sepharose类为105~108D。
4.根据酶分子电荷性质的分离方法;离子交换层析离子交换层析基本原理:以离子交换剂为固定相,以特定的离子溶液为流动相,利用离子交换剂对待分离的各种离子结合力的差异,而将混合物中不同离子进行分离的层析技术。
离子交换分离的基本步骤---平衡-上样-吸附-洗脱-再生如何选择离子交换介质:对pI=5的某酸性蛋白质,当蛋白质为阴离子时,在pH5.5-9.0 的范围内应选阴离子交换剂;当蛋白质为阳离子时,在pH3.5-4.5 的范围内应首选阳离子交换剂离子交换纤维素:树脂骨架为纤维素,根据活性基团的性质可分为阳离子交换纤维素和阴离子交换纤维素两类;特点:骨架松散、亲水性强、表面积大、交换容量大、吸附力弱、交换和洗脱条件温和、分辨率高;离子交换纤维素的预处理:适量水浸泡,漂洗,使之充分溶涨;数十倍的0.5mol/L氢氧化钠液反复浸泡0.5~1h,每次换液皆须用水洗至近中性;按交换的需要用平衡离子处理;最后以交换用缓冲液平衡备用。
5.根据酶分子专一性结合的方法;(1)亲和层析技术;Bioaffinity 生物亲和作用a. 寻找可与蛋白专一性结合的配基(L);b. 将配基(L)通过共价键偶联到载体,并使L与P亲和力不变;c. L与P吸附并与杂质分离,将杂质洗出;d. 洗脱目标物,实现纯化。
(2)亲和超滤;亲和——高度专一性超滤——高处理能力(3)金属亲和层析利用金属离子的配合或形成螯合物的能力吸附蛋白质的分离系统。
蛋白表面暴露的供电子氨基酸残基咪唑基、巯基、吲哚基。
Cu 和Zn 可以很好的与咪唑基和巯基结合。
优点:①蛋白质吸附容量大;②价格便宜投资低;③具有普遍适用性;(4)拟生物亲和层析利用部分分子相互作用,模拟生物分子结构或特定部位,以人工合成的配基为固定相吸附目的蛋白的亲和层析,尤以氨基酸(包括多肽)亲和层析为代表。
3、各纯化级别蔗糖酶的活性测定:①酶活力(enzyme activity)酶催化某一反应的能力——VV——单位时间内单位体积中底物(substrate) 的减少量或产物(product) 的增加量。
②条件:1、催化反应总的反应式;2、酶是否需要某种辅助因子(cofactors);3、酶最适时的pH和温度。
哺乳动物的酶,最适温度通常在25 —37℃。
1、测定酶活力时应注意几点(1)应测反应初速度(initial velocity or initial speed)(如每分钟底物转换的μmol)(2)酶速度(velocity):酶催化反应的速率,酶速度通常记录为时间为0 时的值(符号V0 :μmol/min),以零时点为起点作一与曲线的线性部分相切的直线,这一直线的斜率即等于V0。
(3)测酶活力时应使反应温度、pH、离子强度和底物浓度等因素保持恒定。
(4)测定酶反应速度时,应使[S]>>[E]。
[S]的选择原则:线性范围越宽越好,但不宜太大2、酶活力和比活力表示方式酶活力单位:国际单位(IU):在特定的条件下,每分钟催化1μmol底物转化为产物所需的酶量。
催量单位(kat):在特定条件下,每秒钟使1mol底物转化为产物所需的酶量。
1 IU= 16.67×10-9 kat酶的比活力(specific activity,也称比活性)比活力:指每mg蛋白质所具有的酶活力,一般用U/mg蛋白质来表示。
比活力= 酶活力(U/ml)/蛋白质浓度(mg/ml)比活力有时也可用每g或每ml 酶含多少个活力单位来表示活力(或总活力)涉及在样品中酶的总单位,而比活力是酶纯度的量度,是每毫克酶的催化活力数(U/mg蛋白)。