生物化学实验报告

合集下载

生物化学实验报告(共2篇)

生物化学实验报告(共2篇)

生物化学实验报告(共2篇)篇一:生物化学实验报告2012年生物化学实验b姓名:学号:实验时间:实验分组:组内成员:任课教师:实验报告xxxx 2012年11月17日摘要1. 实验部分1.1试剂与仪器1.试剂:(2)1 mol/l 醋酸,1 mol/l naoh,硫酸铵。

(3)平衡缓冲液:0.01 mol/l tris-hcl,ph 8.0。

(5)酶的底物溶液:用底物缓冲液配制15×10-3 mol/l 对硝基苯磷酸二钠溶液。

(7)分离胶缓冲液:1.5 mol/l tris-hcl缓冲液,ph 8.8,已加入10% sds。

(8)浓缩胶缓冲液:0.5 mol/l tris-hcl缓冲液,ph 6.8,已加入10% sds。

(13)脱色液:500 ml 10%甲醇和10%冰醋酸的脱色液1000 ml。

匀浆机、eppebdorf5型冷冻离心机、gsy—2型恒温水浴、uv762型紫外可见分光光度计。

1.2 小牛肠碱性磷酸酶提取方法2)将小肠粘膜液集中倒入匀浆机中,加冰冷蒸馏水,高速匀浆,重复多次。

3)缓慢加入冰冷正丁醇高速匀浆重复多次。

在4℃,10000 rpm条件下离心。

4)用滤布过滤去除杂质,倒入分液漏斗中,静止分层,取下层水相,用hac溶液调ph到4.9。

5)得到上清后放入离心管中,用naoh溶液调ph至6.5,称取硫酸铵加到离心管中溶解;再加冰冷丙酮,混匀,4℃静置30 min以上。

6)上清液中加入冰冷丙酮,4℃放置30 min以上。

4℃,10000 rpm,离心。

7)取沉淀溶于平衡缓冲液至全部溶解至冰箱保存待用。

1.3 小牛肠碱性磷酸酶酶活检测方法2)紫外分光光度计检测条件为405 nm波长,测定时间60 s,取值2 s,记录范围0.0-1.5。

上下倒2次,放回分光光度计中,测定酶动力学曲线1.4 聚丙烯凝胶制备分离胶制备(浓度10%,制备量10 ml)试剂用量 h2o30% 丙烯酰胺1.5 mol/l tris-hcl缓冲液ph 8.810% 过硫酸铵temed4.1 ml 3.4 ml 2.4 ml 100 μl 10 μl浓缩胶制备(浓度5%,制备量6 ml)试剂 h2o30% 丙烯酰胺0.5 mol/l tris-hcl缓冲液ph 6.810% 过硫酸铵temed用量3.4 ml 1.0 ml 1.5 ml 60 μl 8 μl1.5 考马斯亮蓝法测定蛋白质含量3)各取100 μl加入到5 ml考马斯亮蓝试管中,混匀,反应5 min以上。

实验报告生物化学实验结果与分析

实验报告生物化学实验结果与分析

实验报告生物化学实验结果与分析实验报告:生物化学实验结果与分析本次实验旨在研究蛋白质的组成和功能。

通过对不同样本进行定性和定量分析,我们探索了不同蛋白质的特性和潜在应用。

以下是实验结果和分析。

1. 实验方法我们使用了多种技术和试剂来分析蛋白质样本。

首先,我们采用聚丙烯酰胺凝胶电泳(SDS-PAGE)方法,将不同样本中的蛋白质分离。

接着,我们使用染色剂对蛋白质进行染色,并通过分析染色带的迁移距离和颜色密度,评估蛋白质的相对含量。

最后,我们利用质谱技术,鉴定和分析蛋白质的序列和结构。

2. 实验结果与分析2.1 蛋白质组成分析在SDS-PAGE实验中,我们观察到每个样本中的多个蛋白质带。

根据迁移距离和颜色密度,我们可以初步判断不同样本中蛋白质的相对含量和分布情况。

通过与已知标准品进行比对,我们鉴定了几种主要蛋白质。

进一步的质谱分析结果显示,这些蛋白质具有不同的氨基酸序列和结构。

2.2 蛋白质功能分析针对不同样本中的蛋白质,我们通过文献研究和功能检测,评估了它们可能的功能和应用。

例如,在样本A中,我们发现一种具有抗氧化性质的蛋白质,可以用于制备抗氧化剂;在样本B中,我们发现一种具有抗菌活性的蛋白质,对抗多种细菌有显著抑制作用。

这些发现为进一步研究和应用这些蛋白质提供了潜在的方向。

2.3 蛋白质结构与功能关系通过蛋白质质谱分析和文献研究,我们尝试探究蛋白质结构与功能之间的关系。

通过比对不同样本中蛋白质的结构,我们发现不同结构和序列的蛋白质可能具有不同的功能和特性。

例如,在一些样本中,我们发现含有特定结构域的蛋白质对特定生物过程具有重要影响。

这一发现为进一步研究和改造蛋白质提供了理论基础。

3. 结论和展望通过本次实验,我们成功分析了不同样本中蛋白质的组成和功能。

我们发现不同样本中存在多种蛋白质,并且这些蛋白质具有不同的氨基酸序列、结构和功能。

这为进一步研究和应用蛋白质提供了基础和方向。

然而,本次实验还存在一些限制,如样本数量不足和分析深度有限等。

生物化学实训课实验报告

生物化学实训课实验报告

一、实验名称:蛋白质分子量测定——凝胶层析法二、实验目的:1. 理解凝胶层析法的原理和操作步骤。

2. 掌握蛋白质分子量测定的方法。

3. 分析实验结果,并探讨影响实验结果的因素。

三、实验原理:凝胶层析法是一种分离和纯化蛋白质的方法,其原理是利用凝胶的分子筛作用,根据蛋白质分子大小不同进行分离。

凝胶是一种多孔材料,其孔径大小与蛋白质分子大小相匹配,使得小分子蛋白质能够进入凝胶内部,而大分子蛋白质则无法进入,从而实现分离。

四、实验材料与试剂:1. 蛋白质样品:如鸡蛋清、血清等。

2. 凝胶:如聚丙烯酰胺凝胶、琼脂糖凝胶等。

3. 电泳缓冲液:如Tris-HCl缓冲液、硼酸缓冲液等。

4. 标准蛋白质分子量对照品:如已知分子量的蛋白质。

5. 电泳仪、电泳槽、紫外灯等。

五、实验步骤:1. 准备凝胶:将凝胶溶解在适当浓度的缓冲液中,倒入模具中,制成凝胶板。

2. 准备样品:将蛋白质样品与适量的电泳缓冲液混合,加入样品缓冲液,制成样品溶液。

3. 制备标准蛋白质分子量对照品:将已知分子量的蛋白质溶解在电泳缓冲液中,制成标准蛋白质溶液。

4. 加样:将样品溶液和标准蛋白质溶液分别加入凝胶板上的孔中。

5. 电泳:将凝胶板放入电泳槽中,加入电泳缓冲液,接通电源,进行电泳。

6. 显色:电泳完成后,将凝胶板取出,放入含有显色剂的溶液中,进行显色。

7. 测量:用紫外灯照射凝胶板,观察蛋白质条带的位置,并记录下蛋白质分子量。

六、实验结果与分析:1. 通过观察电泳图谱,可以清晰地看到蛋白质条带,其中标准蛋白质分子量对照品的条带位置已知,可以用来判断样品蛋白质分子量的大小。

2. 实验结果显示,样品蛋白质分子量分布较广,存在多个分子量大小不同的蛋白质。

3. 通过比较样品蛋白质条带与标准蛋白质条带的位置,可以估算出样品蛋白质的分子量。

4. 影响实验结果的因素包括凝胶的制备、电泳条件、显色剂的选择等。

七、讨论与心得:1. 凝胶层析法是一种常用的蛋白质分离和纯化方法,具有操作简单、分离效果好等优点。

大学生物化学实验报告

大学生物化学实验报告

一、实验名称:蛋白质分子量测定——凝胶层析法二、实验目的:1. 了解凝胶层析法的基本原理和操作步骤。

2. 学习利用凝胶层析法测定蛋白质的分子量。

3. 培养实验操作技能和数据处理能力。

三、实验原理:凝胶层析法是一种利用凝胶作为固定相,通过分子大小不同的物质在凝胶孔径中的移动速度差异来实现分离的方法。

在凝胶层析中,大分子物质不能进入凝胶内部的孔径,而小分子物质可以进入孔径,从而在洗脱过程中,大分子物质先流出,小分子物质后流出。

通过测量不同分子量蛋白质的洗脱体积,可以计算出其分子量。

四、实验材料与试剂:1. 凝胶层析柱(直径1.5cm,长30cm)2. 凝胶(聚丙烯酰胺凝胶)3. 蛋白质样品(已知分子量)4. 标准样品(已知分子量)5. 洗脱液(Tris-HCl缓冲液)6. 显色剂(考马斯亮蓝G-250)7. 移液器8. 旋转混匀器9. 分光光度计五、实验步骤:1. 准备凝胶层析柱:将凝胶倒入层析柱中,用洗脱液充分浸泡凝胶,直至凝胶膨胀并固定在层析柱中。

2. 准备样品:将蛋白质样品和标准样品分别稀释至适当浓度。

3. 加样:将蛋白质样品和标准样品分别加入凝胶层析柱中,用洗脱液洗脱,收集不同洗脱体积的洗脱液。

4. 显色:将收集到的洗脱液加入考马斯亮蓝G-250显色剂,室温下显色10分钟。

5. 测量:用分光光度计测定显色液在595nm处的吸光度值。

6. 数据处理:以标准样品的分子量为横坐标,吸光度值为纵坐标,绘制标准曲线。

根据蛋白质样品的吸光度值,从标准曲线上查得蛋白质的分子量。

六、实验结果:(此处插入实验数据表格,包括标准样品和蛋白质样品的分子量、洗脱体积、吸光度值等)七、实验分析:通过凝胶层析法,成功分离了蛋白质样品,并测定了其分子量。

实验结果表明,蛋白质样品的分子量与标准样品的分子量相符,说明实验操作正确。

八、讨论与心得:1. 凝胶层析法是一种简单、有效的蛋白质分离方法,可用于测定蛋白质的分子量。

2. 在实验过程中,要注意凝胶层析柱的制备、样品的加入和洗脱液的收集等操作步骤,以保证实验结果的准确性。

生物化学实验报告

生物化学实验报告

实验名称:蛋白质分子量测定——凝胶层析法实验日期:2023年10月26日实验目的:1. 理解凝胶层析法的原理和操作步骤。

2. 通过凝胶层析法测定蛋白质的分子量。

3. 掌握蛋白质分离和鉴定技术。

实验原理:凝胶层析法,也称为分子筛层析法或排阻层析法,是一种基于分子大小差异进行分离的方法。

凝胶是一种多孔材料,其孔径大小不一,能够根据分子的大小将混合物中的不同组分分离。

在凝胶层析中,大分子蛋白质不能进入凝胶内部的孔洞,因此沿着凝胶颗粒间的缝隙快速移动,而小分子蛋白质则可以进入凝胶内部,移动速度较慢。

通过比较不同蛋白质在凝胶层析中的迁移距离,可以推断其分子量。

实验器材与试剂:- 凝胶层析柱- 凝胶- 蛋白质样品- 标准蛋白质分子量对照品- 缓冲液(pH 7.4)- 标记笔- 移液器- 洗脱液- 紫外线检测仪实验步骤:1. 准备凝胶层析柱,用标记笔标记起始线。

2. 将凝胶加入层析柱中,使其填充均匀,注意避免气泡。

3. 准备蛋白质样品和标准蛋白质对照品,用缓冲液稀释至适当浓度。

4. 用移液器将蛋白质样品和标准蛋白质对照品分别加入层析柱的起始线处。

5. 加入洗脱液,调节流速,保持洗脱液面始终高于凝胶表面。

6. 收集洗脱液,每隔一定时间取样,用紫外线检测仪检测蛋白质的吸收峰。

7. 根据标准蛋白质对照品的分子量和迁移距离,绘制标准曲线。

8. 根据样品的迁移距离和标准曲线,计算样品的分子量。

实验结果:- 蛋白质样品和标准蛋白质对照品在凝胶层析中的迁移距离分别为:样品A 2.5 cm,样品B 3.0 cm;标准蛋白质对照品1 2.0 cm,标准蛋白质对照品2 3.5 cm。

- 根据标准曲线,样品A的分子量为 10 kDa,样品B的分子量为 15 kDa。

讨论与分析:本实验成功地将蛋白质样品与标准蛋白质对照品分离,并测定了样品的分子量。

凝胶层析法是一种简单、有效的蛋白质分离和鉴定技术,广泛应用于生物化学和分子生物学研究中。

生物化学实验报告

生物化学实验报告

生物化学实验报告一、实验目的本实验的目的是通过比较原淀粉、糖粉、滑石粉及无机盐等对酶水解作用的影响,了解和掌握酶的底物特异性、温度敏感性及pH敏感性。

二、实验原理酶是一类具有催化功能的特殊蛋白质,可以在生物体内加速对物质的转化过程。

酶的活性受到多种因素的影响,如底物特异性、温度、pH值等。

本实验中,选取了α-淀粉酶作为模型酶,通过观察其对不同底物的水解作用,以及在不同温度和pH值下的活性变化情况,来分析上述因素对酶活性的影响。

三、实验步骤1. 准备四个试管,分别加入原淀粉溶液、糖粉溶液、滑石粉溶液及无机盐溶液。

2. 在每个试管中加入适量的α-淀粉酶溶液,混匀后放置于恒温水浴中反应一段时间。

3. 分别取出各试管,加入碘液进行显色反应,观察溶液颜色的变化,并记录结果。

四、实验结果与分析经过实验观察发现,原淀粉溶液和滑石粉溶液没有出现颜色变化,说明α-淀粉酶对它们没有水解作用;而糖粉溶液和无机盐溶液出现了蓝黑色,说明α-淀粉酶对它们有水解作用。

这说明α-淀粉酶对底物的水解具有一定的特异性。

此外,实验还发现α-淀粉酶的活性受到温度和pH值的影响。

在不同温度下,α-淀粉酶的活性变化情况如下:当温度较低时,酶的活性较低,水解作用较慢;当温度逐渐升高时,酶的活性逐渐增强,水解作用加快;当温度超过一定范围后,酶的活性开始下降,甚至完全失活。

这表明酶的活性受到温度的限制,存在一个较适宜的工作温度范围。

同样地,在不同pH值下,α-淀粉酶的活性也有所变化。

实验结果显示,当pH值在酶的最适范围内时,酶的活性最高,水解作用最强;当pH值偏离最适范围时,酶的活性下降,水解作用减弱。

这说明酶的活性也受到环境的静电作用的影响,存在一个较适宜的pH值范围。

五、实验总结通过本次实验,我们进一步了解了酶的特性和具体影响因素。

酶的底物特异性以及温度和pH值对酶活性的影响是使用酶进行实验和应用的重要参考因素。

此外,本实验还展示了酶与底物之间的相互作用和调控机制,在理解酶的功能和应用方面具有重要意义。

生物化学实验报告参考模板

生物化学实验报告参考模板

实验一考马斯亮蓝G-250染色法测定蛋白质的含量(p24)一、目的要求掌握考马斯亮蓝(Coomassie Brilliant Blue)法测定蛋白质含量原理和方法。

二、实验原理考马斯亮蓝法测定蛋白质浓度,是利用蛋白质─染料结合的原理,定量的测定微量蛋白浓度的快速、灵敏的方法。

这种蛋白质测定法具有超过其他几种方法的突出优点,因而正在得到广泛的应用。

这一方法是目前灵敏度最高的蛋白质测定法。

考马斯亮兰G-250染料在酸性溶液中为棕红色,当它与蛋白质通过范德华键结合后,变为蓝色。

在酸性溶液中与蛋白质结合,使染料的最大吸收峰(lmax)的位置,由465nm变为595nm。

且在蛋白质一定浓度范围内符合比尔定律,通过测定595nm处光吸收的增加量可知与其结合蛋白质的量。

研究发现,染料主要是与蛋白质中的碱性氨基酸(特别是精氨酸)和芳香族氨基酸残基相结合。

考马斯亮蓝染色法的突出优点是:(1)灵敏度高,据估计比Lowry法约高四倍,其最低蛋白质检测量可达1mg。

这是因为蛋白质与染料结合后产生的颜色变化很大,蛋白质-染料复合物有更高的消光系数,因而光吸收值随蛋白质浓度的变化比Lowry法要大的多。

(2)测定快速、简便,只需加一种试剂。

完成一个样品的测定,只需要5分钟左右。

由于染料与蛋白质结合的过程,大约只要2分钟即可完成,其颜色可以在1小时内保持稳定,且在5分钟至20分钟之间,颜色的稳定性最好。

因而完全不用像Lowry法那样费时和严格地控制时间。

(3)干扰物质少。

如干扰Lowry法的K+、Na+、Mg2+离子、Tris缓冲液、糖和蔗糖、甘油、巯基乙醇、EDTA等均不干扰此测定法。

此法的缺点是:(1)由于各种蛋白质中的精氨酸和芳香族氨基酸的含量不同,因此考马斯亮蓝染色法用于不同蛋白质测定时有较大的偏差,在制作标准曲线时通常选用g—球蛋白为标准蛋白质,以减少这方面的偏差。

(2)仍有一些物质干扰此法的测定,主要的干扰物质有:去污剂、Triton X-100、十二烷基硫酸钠(SDS)等。

生物质化学实验报告(3篇)

生物质化学实验报告(3篇)

第1篇一、实验目的1. 了解生物质化学的基本概念和实验方法。

2. 掌握生物质化学实验的基本操作技巧。

3. 通过实验,加深对生物质化学原理的理解。

二、实验原理生物质化学是研究生物质中化学组成、结构和性质的一门学科。

生物质包括植物、动物、微生物等,其化学组成主要包括碳水化合物、蛋白质、脂质、核酸等。

生物质化学实验主要包括生物质提取、分离、鉴定和测定等。

三、实验材料与仪器1. 实验材料- 生物质样品(如玉米秸秆、小麦秸秆等)- 酶(如纤维素酶、淀粉酶等)- 酸、碱等化学试剂- 乙醇、丙酮等有机溶剂2. 实验仪器- 研钵- 烧杯- 试剂瓶- 电子天平- 离心机- 恒温水浴锅- 显微镜- 紫外可见分光光度计1. 生物质提取(1)称取一定量的生物质样品,置于研钵中,加入适量的水,研磨成浆状。

(2)将浆状物过滤,收集滤液。

2. 生物质分离(1)取一定量的滤液,加入适量的酶,在恒温水浴锅中反应一定时间。

(2)反应结束后,加入适量的丙酮,使蛋白质沉淀。

(3)离心分离,收集沉淀物。

3. 生物质鉴定(1)取一定量的沉淀物,加入适量的双缩脲试剂,观察颜色变化。

(2)取一定量的沉淀物,加入适量的苏丹Ⅲ试剂,观察颜色变化。

4. 生物质测定(1)取一定量的沉淀物,加入适量的葡萄糖标准溶液,用紫外可见分光光度计测定吸光度。

(2)根据吸光度计算生物质中葡萄糖的含量。

五、实验结果与分析1. 生物质提取实验成功提取了生物质中的可溶性成分。

2. 生物质分离实验成功分离了生物质中的蛋白质和脂质。

3. 生物质鉴定实验结果表明,生物质中主要含有蛋白质和脂质。

4. 生物质测定实验结果表明,生物质中葡萄糖的含量为X g/g。

1. 生物质提取过程中,研磨时间和水量对提取效果有较大影响。

适当增加研磨时间和水量可以提高提取效果。

2. 生物质分离过程中,酶的种类和反应时间对分离效果有较大影响。

选择合适的酶和反应时间可以提高分离效果。

3. 生物质鉴定过程中,试剂的种类和用量对鉴定结果有较大影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一糖类的性质实验(一)糖类的颜色反应一、实验目的1、了解糖类某些颜色反应的原理。

2、学习应用糖的颜色反应鉴别糖类的方法。

二、颜色反应(一)α-萘酚反应1、原理糖在浓无机酸(硫酸、盐酸)作用下,脱水生成糠醛及糠醛衍生物,后者能与α-萘酚生成紫红色物质。

因为糠醛及糠醛衍生物对此反应均呈阳性,故此反应不是糖类的特异反应。

2、器材试管及试管架,滴管3、试剂莫氏试剂:5%α-萘酚的酒精溶液1500mL.称取α-萘酚5g,溶于95%酒精中,总体积达100 mL,贮于棕色瓶内。

用前配制。

1%葡萄糖溶液100 mL1%果糖溶液100 mL1%蔗糖溶液100 mL1%淀粉溶液100 mL%糠醛溶液100 mL浓硫酸 500 mL4、实验操作取5支试管,分别加入1%葡萄糖溶液、1%果糖溶液、1%蔗糖溶液、1%淀粉溶液、%糠醛溶液各1 mL。

再向5支试管中各加入2滴莫氏试剂,充分混合。

倾斜试管,小心地沿试管壁加入浓硫酸1 mL,慢慢立起试管,切勿摇动。

观察记录各管颜色。

(二)间苯二酚反应1、原理在酸作用下,酮醣脱水生成羟甲基糠醛,后者再与间苯二酚作用生成红色物质。

此反应是酮醣的特异反应。

醛糖在同样条件下呈色反应缓慢,只有在糖浓度较高或煮沸时间较长时,才呈微弱的阳性反应。

实验条件下蔗醣有可能水解而呈阳性反应。

2、器材试管及试管架,滴管3、试剂塞氏试剂:%间苯二酚-盐酸溶液1000 mL,称取间苯二酚0.05 g溶于30 mL 浓盐酸中,再用蒸馏水稀至1000 mL。

1%葡萄糖溶液100 mL1%果糖溶液100 mL1%蔗糖溶液100 mL4、实验操作取3试管,分别加入1%葡萄糖溶液、1%果糖溶液、1%蔗糖溶液各 mL。

再向3支试管中各加入塞氏试剂5 mL,充分混合。

将试管同时放入沸水浴中,。

观察记录各管颜色。

(二)糖类的还原作用一、实验目的1、理解并掌握糖类的还原性质;2、学习常用的鉴定糖类还原性的方法。

3、了解斐林氏、本尼迪克特试法检验糖的原理。

二、实验原理还原糖是指含有自由醛基(如葡萄糖)或酮基(如果糖)的单糖和某些二糖(如乳糖和麦芽糖)。

在碱性溶液中,还原糖能将Cu2+、Hg2+、Fe3+、Ag+等金属离子还原,而糖本身被氧化成糖酸及其他产物。

糖类的这种性质常被用于糖的定性和定量测定。

三、器材试管及试管架,水浴锅电炉四、试剂1 斐林试剂甲液氢氧化钠的质量分数为0.1 g/mL的溶液。

乙液硫酸铜的质量分数为0.05 g/mL的溶液。

2 本尼迪克特试剂3 1%葡萄糖溶液100 mL4 1%果糖溶液100 mL5、1%蔗糖溶液100 mL五实验操作六思考题1、斐林氏、本尼迪克特试法检验糖的原理是什么2、试比较斐林氏、本尼迪克特试法的方法。

实验二总糖的测定---蒽酮比色法一、实验目的掌握蒽酮法测定可溶性糖含量的原理和方法。

二、实验原理强酸可使糖类脱水生成糠醛,生成的糠醛或羟甲基糖醛与蒽酮脱水缩合,形成糠醛的衍生物,呈蓝绿色,该物质在620nm处有最大吸收。

在10-100ug范围内其颜色的深浅与可溶性糖含量成正比。

这一方法有很高的灵敏度,糖含量在30ug左右就能进行测定,所以可做为微量测糖之用。

一般样品少的情况下,采用这一方法比较合适。

三、仪器、试剂和材料1 .仪器(1) 分光光度计(2) 电子顶载天平(3) 三角瓶: 50m1 X 1(4) 大试管: 9 支(5) 试管架,试管夹(6) 漏斗,漏斗架(7) 容量瓶: 50 m1 X 2(8) 刻度吸管: 1m1X3 , 2m1X1 , 5mlX1(9) 水浴锅2 .试剂(1) 葡萄糖标准液: l00ug/ml(2) 浓硫酸(3) 蒽酮试剂: 蒽酮溶于100ml浓 H2SO4中当日配制使用。

3 .材料小麦分蘖节(或者其它材料)。

四、操作步骤1 .葡萄糖标准曲线的制作起浸于沸水浴中,管口加盖玻璃球,以防蒸发。

自水浴重新煮沸起,准确煮沸l0min 取出,用流水冷却,室温放置 10min ,在 620 nm 波长下比色。

以标准葡萄糖含量(ug) 作横坐标,以吸光值作纵坐标,作出标准曲线。

2 .植物样品中可溶性糖的提取将小麦分蘖节剪碎至 2mm 以下,准确称取 1g, 放入 50m1三角瓶中,加沸水25m1,在水浴中加盖煮沸10min ,冷却后过滤,滤液收集在50m1容量瓶中,定容至刻度。

吸取提取液2m1 ,置另一50m1 容量瓶中,以蒸馏水稀释定容,摇匀测定。

3 .测定吸取lml 已稀释的提取液于大试管中,加入蒽酮试剂,以下操作同标准曲线制作。

比色波长 620nm ,记录吸光度,在标准曲线上查出葡萄糖的含量(ug)。

查表所得糖含量(ug)×稀释倍数五、结果处理六、注意事项1 该显色反应非常灵敏,溶液中切勿混入纸屑及尘埃。

2 H2 SO4要用高纯度的。

3 不同糖类与蒽酮的显色有差异,稳定性也不同。

加热、比色时间应严格掌握。

七、思考题1蒽酮比色测定糖的原理是什么2 用水提取的糖类有哪些3 制作葡萄糖标准曲线应注意哪些事项4 分光光度计的原理是什么使用时需要注意哪些实验三粗脂肪的提取和定量测定一实验目的1.?学习和掌握粗脂肪提取的原理和测定方法。

2.?熟悉和掌握重量分析的基本操作,包括样品的处理、定量转移、烘干、恒重等。

二实验原理本法为重量法,用脂肪溶剂将脂肪提出后进行称量。

该法适用于固体和液体样品,通常将样品浸于脂肪溶剂,如乙醚或沸点为30-60度的石油醚,借助于索氏提取管进行循环抽提。

本法提取的脂溶性物质为脂肪类似物的混合物,其中含有脂肪,游离脂肪酸,磷脂,酯,固醇,芳香油,某些色素及有机酸等,因此,称为粗脂肪。

用该法测定样品含油量时,通常采用沸点低于60度的有机溶剂,此时,样品中结合状态的脂类(脂蛋白)不能直接提取出来,所以该法又称为游离脂类定量测定法。

三仪器、试剂和材料1 .仪器索式提取器,分析天平,烧杯,烘箱,干燥器,恒温水浴,脱脂棉,脱脂滤纸,镊子2 试剂和材料石油醚芝麻或者花生等油料种子。

四、实验步骤1.样品的准备将花生在80度烘箱内烘去水分,烘干时需避免过热,冷却后准确地称取1克左右放入研钵中研碎,再用滤纸将样品包裹好放入索氏提取管内。

注意勿使纸包内样品高于提取管的虹吸部分,研磨后的研钵应用滤纸擦净并将滤纸放入提取管内,用少量溶剂洗涤研钵,将溶剂倒入提取管中2.抽提洗净提取瓶于105度烘干至恒重,记下其重量。

装入石油醚达提取瓶容积的一半,连接提取器各部分,不能漏气(不能用凡士林或真空脂)。

加热提取:使石油醚每小时循环10-20次,约小时,用滤纸粗略判断脂肪是否提取完全。

蒸去石油醚,烘干至恒重。

3.称量计算粗脂肪%=脂肪重÷样品重×100%思考题1、索式提取法提取的为什么是粗脂肪2、做好本试验应注意哪些事项3、本实验装置磨口处为什么不能涂抹凡士林或真空脂实验四总氮量的测定——凯氏定氮法一、实验目的1、学习微量凯氏定氮法的原理2、掌握微量凯氏定氮法的操作技术,包括标准硫酸铵含量的测定,未知样品的消化、蒸馏、滴定及其含氮量的计算等。

二、实验原理凯氏定氮法常用于测定天然有机物(如蛋白质,核酸及氮基酸等)的含氮量。

天然的含氮有机物与浓硫酸共热时,其中的碳、氢二元素被氧化成二氧化碳和水,而氮则变成氨,并进一步与硫酸作用生成硫酸铵。

此时程称之为“消化”。

但是,这个反应进行得比较缓慢,通常需要加入硫酸钾或硫酸钠以提高反应的沸点,并加入硫酸铜作为催化剂,以促进反应的进行。

浓碱可使消化液中的硫酸铵分解,游离出氮,借水蒸汽将产生的氨蒸馏到一定量,一定浓度的硼酸溶液中,硼酸吸收氨后,氨与溶液中的氢离子结合,生成铵离子,使溶液中氢离子浓度降低。

然后用标准无机酸滴定,直至恢复溶液中原来氢离子浓度为止,最后根据所用标准酸的当量数(相当于待测物中氨的当量数)计算出待测物中的氮量。

滴定时用甲烯蓝和甲基红混合指示剂,其指示范围为,将NH4H2BO3的蓝色滴至原来H3BO3的蓝紫色即为终点。

本法适用范围毫克氮。

相对误差应小于2%。

三、材料、试剂与器具(一)材料人的血清或猪的血清(二)试剂1、浓硫酸(化学纯)2、30%氢氧化钠(分析纯)溶液3、%NaCl溶液4、硫酸钾—硫酸铜混合物:硫酸钾与硫酸铜(CuSO4、5H2O)以3:1(W/W)的配比混合研磨成粉末。

5、2%硼酸6、混合指示剂的配制:方法一:取50毫升%甲烯蓝无水醇溶液与200毫升%甲基红无水乙醇溶液混合配成,贮于棕色瓶备用,这种指示剂酸性时为紫色,碱性时为绿色,变色范围窄且灵敏。

方法二:%溴甲酚绿乙醇溶液10毫升与%甲基红乙醇溶液2毫升混和即成。

本指示剂的变色范围为紫红色灰色绿色7. HCl8. 硼酸一指示剂混合液:取100毫升2%硼酸溶液,滴加混合指示剂贮备液,摇匀后溶液呈现紫红色即可。

(约加1毫升左右混合指示剂)9.标准硫酸铵溶液(毫克氮/毫升)(三)、器具1、? 凯氏烧瓶2、? 消化架3、? 吸量管(1毫升、2毫升)4、? 量筒(10毫升)5、? 凯氏定氮蒸馏装置6、? 微量滴定管(3毫升、5毫升,可读至毫升)7、? 锥形瓶(50-100毫升)8、? 容量瓶(50毫升)四、操作步骤(一)样品的处理血清样品:取人血(或猪血),放于离心管中,于冰箱中放置过液,次日离心除去凝血块,上层黄色透明清液即为血清。

准确吸取血清毫升加入%NaCl 毫升,仔细混匀备用。

固体样品:某一固体样品中的含氮量是100克该物质(干重中所含氮的克数)来表示(%)。

因此在定氮前,应将固体样品中的水份除掉。

一般样品干燥的温度都采用105℃,因为非游离的水都不能在100℃以下烘干。

在称量瓶中称入一定量的磨碎的样品,然后置105℃的烘箱内干燥4小时。

用坩埚将称量瓶放入干燥器内,待降至室温后称重,按上述操作继续烘干样品。

每干燥1小时后,称量一次,直到两次称量的数量不变,即达恒重。

(二)消化取2个50毫升的凯氏烧瓶,向第一号烧瓶内加2毫升稀释血清溶液(或4毫升核酸制品溶液,或200毫克固体粉末)。

注意,用吸量管直接将溶液(或用试管加入固体样品)加至烧瓶底部,切勿沾于瓶口或瓶颈上,向2号烧瓶加入2毫升水作空白对照。

在每个烧瓶内加入硫酸钾—硫酸铜混合物约0.2克,浓硫酸3毫升,小瓷片两粒,摇匀。

将烧瓶约60度角固定在铁架上,每个瓶口放一小漏斗,在通风厨内的电炉上消化。

在消化开始时,应控制火力,不要使液体冲到瓶颈。

待瓶内水汽蒸完,硫酸开始分解并放出SO2白烟后,适当加强火力,继续消化,直至消化液呈透明绿色为止。

消化完毕,待烧瓶内容物冷却后,加蒸馏水10毫升(注意慢加,边加边摇)。

冷却后将瓶内容物转入50毫升的容量瓶中,并用蒸馏水洗烧瓶数次,溶液一并倒入容量瓶,最后定容至刻度摇匀,做上记号备用。

(三)蒸馏1、仪器的洗涤:仪器应先经一般洗涤,再经水蒸气洗涤。

相关文档
最新文档