4线性规划的基本理论

合集下载

线性规划PPT课件

线性规划PPT课件

线性规划的基本定理
线性规划的解存在性
对于任何线性规划问题,都存在至少一个最优解。
最优解的唯一性
在某些情况下,线性规划问题的最优解是唯一的,这取决于目标函 数和约束条件的形状和位置。
解的稳定性
线性规划问题的最优解是稳定的,即使目标函数或约束条件略有变 化,最优解也不会发生大的变化。
03
线性规划的求解方法
优缺点:内点法具有全局收敛性和对初始点不敏 感的优点,但计算量较大,需要较高的计算资源 。
椭球法
01
总结词:几何方法
02
03
04
详细描述:椭球法是一种基 于几何方法的线性规划算法。 它将可行解的边界表示为椭 球,通过迭代移动椭球中心
来逼近最优解。
算法步骤:椭球法的基本步 骤包括初始化、构建椭球和 迭代更新。在每次迭代中, 根据当前椭球的位置和方向 来更新中心和半径,直到满
运输问题
总结词
运输问题是线性规划在物流和供应链管理中的重要应用,旨在优化运输成本、 运输时间和运输量等目标。
详细描述
运输问题通常需要考虑多个出发地、目的地、运输方式和运输成本等因素。通 过线性规划方法,可以找到最优的运输方案,使得总运输成本最低、运输时间 最短,同时满足运输量和运输路线的限制。
投资组合优化问题
03
单纯形法
单纯形法是线性规划的标 准算法,通过迭代和优化, 找到满足约束条件的最大 或最小目标函数值。
初始解
在应用单纯形法之前,需 要先找到一个初始解,这 可以通过手动计算或使用 软件工具来实现。
迭代过程
单纯形法通过不断迭代和 优化,逐步逼近最优解, 每次迭代都需要重新计算 目标函数值和最优解。
线性规划的几何意义

线性规划知识点

线性规划知识点

线性规划知识点一、概述线性规划是一种数学优化方法,用于求解线性约束条件下的最优解问题。

它在运筹学、管理科学、经济学等领域有着广泛的应用。

线性规划的目标是通过线性目标函数的最小化或最大化,找到使得一系列线性约束条件得到满足的最优解。

二、基本概念1. 线性规划模型线性规划模型由目标函数和约束条件组成。

目标函数是需要最小化或最大化的线性函数,约束条件是一系列线性不等式或等式。

2. 可行解可行解是满足所有约束条件的解。

在线性规划中,可行解构成了一个可行域,即满足所有约束条件的解的集合。

3. 最优解最优解是使得目标函数取得最小或最大值的可行解。

在线性规划中,最优解可以是有限的,也可以是无穷的。

4. 线性规划的标准形式线性规划的标准形式包括以下特点:- 目标函数为最小化形式;- 所有约束条件为等式形式;- 变量的取值范围为非负数。

1. 图形法图形法是线性规划最直观的解法之一。

它通过绘制变量的可行域图形,找到目标函数的最优解。

2. 单纯形法单纯形法是一种迭代算法,通过不断地移动解的位置来逐步逼近最优解。

它是线性规划中应用最广泛的解法之一。

3. 对偶理论对偶理论是线性规划中的重要概念之一。

它通过将原始问题转化为对偶问题,从而得到原始问题的最优解。

四、线性规划的应用线性规划在实际生活中有着广泛的应用,以下是一些常见的应用领域:1. 生产计划线性规划可以用于确定最佳的生产计划,以最小化生产成本或最大化利润。

2. 运输问题线性规划可以用于解决运输问题,如货物的最佳配送方案、最短路径等。

3. 金融投资线性规划可以用于优化投资组合,以最大化投资收益或最小化风险。

4. 资源分配线性规划可以用于确定最佳的资源分配方案,如人力资源、物资等。

尽管线性规划在许多问题中有着广泛的应用,但它也存在一些局限性:1. 线性假设线性规划的基本假设是目标函数和约束条件都是线性的,这限制了它在处理非线性问题上的应用。

2. 离散性问题线性规划通常适用于连续变量的问题,对于离散变量的问题,它的应用受到限制。

线性规划的理论与实例分析

线性规划的理论与实例分析

线性规划的理论与实例分析线性规划(Linear Programming,简称LP)是一种重要的运筹学工具,常常被应用于生产、物流、金融等领域中的优化问题。

本文将从理论和实例两个角度,介绍线性规划的基本概念、模型及求解方法。

一、线性规划的基本概念线性规划的基本概念包括决策变量、目标函数、约束条件等。

(一)决策变量决策变量是指影响问题结果的变量,通常用x1、x2、 (x)表示。

例如,生产线上的机器数量、产品的产量等都是决策变量。

(二)目标函数目标函数是指要最大化或最小化的某个指标,通常用z表示。

例如,最小化成本、最大化利润等都是目标函数。

(三)约束条件约束条件是指在问题求解中要满足的条件。

例如,不超过机器限制数量、满足生产需求等都是约束条件。

通常用不等式或等式形式表示。

二、线性规划的模型线性规划的一般形式可表示为:最大化或最小化目标函数:Z = c1x1 + c2x2 + … + cnxn约束条件:a11x1 + a12x2 + … + a1nxn ≤ b1a21x1 + a22x2 + … + a2nxn ≤ b2……am1x1 + am2x2 + … + amnxn ≤bm或x1, x2, … , xn ≥ 0 (非负性约束条件)其中,c1、c2、…、cn为各决策变量的系数,a11、a12、…、amn为各约束条件中各决策变量的系数,b1、b2、…、bm为约束条件的值,x1、x2、…、xn为决策变量,非负性约束条件也称为非负约束。

三、线性规划的求解方法线性规划有多种求解方法,这里主要介绍两种:单纯性法和对偶理论。

(一)单纯性法单纯性法是线性规划的一种基本算法,其实质是在各约束条件限制下寻找目标函数最大或最小值。

单纯性法基于以下两个原则:①某个极值点必定满足目标函数的所有约束条件;②各个变量所形成的可行解区域有限,且该区域的可行解点数有限。

单纯性法的具体过程如下:Step 1 建立初始单纯形表将约束条件转化为标准形式,即将约束条件化为”≤“的形式,并加入人工变量,得到初始单纯形表。

高中线性规划

高中线性规划

高中线性规划高中线性规划是高中数学课程中的一个重要内容,它是线性代数的一部份,主要涉及到线性方程组的解法和应用。

线性规划是一种优化问题,通过数学模型和计算方法,寻觅使目标函数达到最大或者最小的变量值。

在实际应用中,线性规划可以用于资源分配、生产计划、投资决策等方面。

一、线性规划的基本概念线性规划的基本概念包括目标函数、约束条件和可行解。

目标函数是需要最大化或者最小化的线性函数,约束条件是限制变量取值范围的线性不等式或者等式,可行解是满足所有约束条件的变量取值组合。

二、线性规划的解法线性规划的解法主要有图形法、单纯形法和对偶理论等。

其中,图形法适合于二维线性规划问题,通过绘制约束条件的直线和目标函数的等值线,找到最优解。

单纯形法是一种迭代计算方法,通过不断调整基变量和非基变量的取值,逐步接近最优解。

对偶理论是线性规划的一个重要理论基础,通过对原始问题和对偶问题的转化和求解,可以得到最优解。

三、线性规划的应用案例1. 资源分配问题:某公司有限定的人力和物力资源,需要合理安排生产计划,以最大化利润。

通过线性规划,可以确定各项生产任务的分配比例,使得总利润最大化。

2. 投资决策问题:某投资者有一定的资金,希翼通过投资股票和债券来获取最大的回报。

通过线性规划,可以确定投资比例,使得预期收益最大化。

3. 运输问题:某物流公司需要将货物从多个仓库运送到多个客户处,希翼通过合理的运输方案,使得运输成本最小。

通过线性规划,可以确定货物的运输路径和运输量,使得总运输成本最小化。

四、线性规划的局限性线性规划在实际应用中存在一定的局限性。

首先,线性规划的模型假设目标函数和约束条件均为线性关系,但实际问题中往往存在非线性关系。

其次,线性规划的解法可能存在多个最优解或者无解的情况,需要结合实际情况进行判断。

此外,线性规划对数据的准确性要求较高,对于不确定性较大的问题,可能需要引入其他方法进行处理。

总结:高中线性规划是数学课程中的一部份,主要涉及到线性方程组的解法和应用。

第4章线性规划

第4章线性规划

f ( X ) 5 x1 4 x 2 4 x1 x 2 60 x1 x 2 24 x1 0 x2 0
(1) ( 2) ( 3) ( 4) ( 5)
例题21: • 首先由(4),(5)二式(x1≥ 0、x2 ≥ 0)知, 其解
在第一象限所在的范围,所以在画图时将第二、
产品Ⅰ 产品Ⅱ 资源总量
设 备(台时)
原料A(公斤) 原料B(公斤)
1
4 0
2
0 4
8
16 12
利 润(百元)
2
3
线性规划范例
• 例B. 任务分配问题
表2
产品
1 23
2 21
3 19
4 17
某公司拟生产4种产品, 可分配给下属的3个工厂 生产,由于工厂的地理位 置和设备不同,每个工厂 生产每种产品的成本不相 同,加工能力也不相同。 有关数据分别由表2和表3 给出。公司应如何给下属 各工厂分配任务,才能在 保证完成每种产品的任务 的条件下,使得公司所花 费的成本最少?
例 : x2 0 y 0, y x2
对于无限制变量的处理:同时引进两个非负变量, 然后用它们的差代替无限制变量。
例 : x2无限制 x2 y1 y2 y1 , y2 0
例题20: 将下述线性规划问题化为标准形
m i n s .t . f ( X ) x1 2 x 2 3 x 3 2 x1 x 2 x 3 9 3 x1 x 2 2 x 3 4 3 x1 2 x 2 3 x 3 6 x1 0, x 2 0, x 3无限制
含量限制 原 A B C 加工费(元/kg) 料 纱线1 ≥60% 无 ≤20% 1.5 纱线2 ≥15% ≥10% ≤60% 1.2 纱线3 无 无 50% 0.9 (元/kg) 6 4.5 3 (kg/月) 2000 2500 1200 原料成本 原料限量

线性规划的标准型和基本概念

线性规划的标准型和基本概念
(1)可行域可以是个凸多边形,可能无界,也可能为 空;
(2)若线性规划问题的最优解存在,它一定可以在 可行域的某一个顶点上得到;
(3)若在两个顶点上同时得到最优解,则该两点连 线上的所有点都是最优解,即LP有无穷多最优解;
(4)若可行域非空有界,则一定有最优解。
24
线性规划的标准形式
标准线性规划模型
minZ 3x1 2x2
st. -2x1 x 2 2
x1-3x2 3
x1 0,x2 0
x2 -2x1+x2=2
4
3 2
-▽Z=(3,2)
minZ 3x1 2x2
-2x1 x 2 2
x1-3x2 3
x1 0,x2 0
Z=
Z x1
,Z x 2
=(-3,-2)
x1-3x2=3
有限资源的合理配置有两类问题 如何合理的使用有限的资源,使生产经营的效益达到最大; 在生产或经营的任务确定的条件下,合理的组织生产,安排经 营活动,使所消耗的资源数最少。
例1,某制药厂生产甲、乙两种药品,生产这两种药品要消耗某种维生 素。生产每吨药品所需要的维生素量,所占用的设备时间,以及该厂每 周可提供的资源总量如下表所示:
j=1
j=1
其中 x为n+k非负剩余变量。
(3) 右端项为负
约束两端乘以(-1) (4) 非负变量与符号不受限制的变量
若 xi的符号不受限制,则可引进非负变量xi1,xi2,令 xi = xi1-xi2,这样就可以使线性规划里所有的变量都转化为有非负限 制的变量。
例7,将下述线性规划问题化为标准型
线性规划的一般数学模型
线性规划模型的特征: (1)用一组决策变量x1,x2,…xn表示某一方案,且在一般情况下,

线性规划知识点

线性规划知识点

线性规划知识点一、什么是线性规划线性规划是一种数学优化方法,用于解决在给定约束条件下的线性目标函数的最优化问题。

线性规划的目标函数和约束条件都是线性的,因此可以通过线性代数的方法进行求解。

线性规划在实际问题中有广泛的应用,如生产计划、资源分配、运输问题等。

二、线性规划的基本要素1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,通常表示为Z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中 Z 为目标函数值,c₁, c₂, ..., cₙ 为系数,x₁,x₂, ..., xₙ 为决策变量。

2. 决策变量:决策变量是问题中需要决策的变量,通常表示为x₁, x₂, ..., xₙ。

决策变量的取值决定了目标函数的值。

3. 约束条件:约束条件限制了决策变量的取值范围。

约束条件可以是等式约束或不等式约束,通常表示为 a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁,a₂₁x₁ +a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂,...,aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ,其中 a₁₁, a₁₂, ..., aₙₙ 为系数,b₁, b₂, ..., bₙ 为常数。

4. 非负约束:线性规划中通常要求决策变量的取值非负,即 x₁ ≥ 0, x₂ ≥ 0, ...,xₙ ≥ 0。

三、线性规划的解法线性规划可以通过不同的方法进行求解,常见的方法包括图形法、单纯形法和内点法。

1. 图形法:图形法适用于二维或三维的线性规划问题。

首先将目标函数和约束条件转化为几何形式,然后在坐标系中绘制约束条件的图形,最后通过图形的分析找到最优解点。

2. 单纯形法:单纯形法是一种通过迭代寻找最优解的方法。

该方法从一个可行解开始,通过不断移动到相邻的可行解来逐步接近最优解。

单纯形法的核心是单纯形表,通过表格的变换和计算来确定下一个迭代点,直到找到最优解。

3. 内点法:内点法是一种通过迭代寻找最优解的方法。

线性规划的数学模型和基本性质

线性规划的数学模型和基本性质

1.线性规划介绍
美国科学院院士DANTZIG(丹齐克),1948年在 研究美国空军资源的优化配置时提出线性规划及其通用 解法 “单纯形法”。被称为线性规划之父。
线性规划之父的Dantzig (丹齐克)。据说,一次上课,Dantzig迟到 了,仰头看去,黑板上留了几个几个题目,他就抄了一下,回家后埋头 苦做。几个星期之后,疲惫的去找老师说,这件事情真的对不起,作业 好像太难了,我所以现在才交,言下很是 惭愧。几天之后,他的老师 就把他召了过去,兴奋的告诉他说他太兴奋了。Dantzig很不解 , 后来 才知道原来黑板上的题目根本就不是什么家庭作业,而是老师说的本领 域的未解决的问题,他给出的那个解法也就是单纯形法。这个方法是上 个世纪前十位的算法。
s.t.
2.线性规划数学模型
线性规划问题应用 市场营销(广告预算和媒介选择,竞争性定价,新产品 开发,制定销售计划) 生产计划制定(合理下料,配料,“生产计划、库存、 劳力综合”) 库存管理(合理物资库存量,停车场大小,设备容量) 运输问题 财政、会计(预算,贷款,成本分析,投资,证券管理) 人事(人员分配,人才评价,工资和奖金的确定) 设备管理(维修计划,设备更新) 城市管理(供水,污水管理,服务系统设计、运用)
1.线性规划介绍
线性规划研究的主要问题: 有一定的人力、财力、资源条件下,如何 合理安排使用,效益最高?
某项任务确定后,如何安排人、财、物, 使之最省?
2.线性规划数学模型
例1 美佳公司计划制造I,II两种家电产品。已知各 制造一件时分别占用的设备A、B的台时、调试时间及A、 B设备和调试工序每天可用于这两种家电的能力、各售出 一件时的获利情况如表I—l所示。问该公司应制造A、B两 种家电各多少件,使获取的利润为最大?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 线性规划本章主要内容:线性规划的基本理论 线性规划的单纯形法 线性规划的对偶理论 线性规划的对偶单纯形法教学目的及要求:理解线性规划的基本理论;掌握线性规划的单纯形法;理解线性规划的对偶理论;掌握线性规划的对偶单纯形法。

教学重点:线性规划的单纯形法. 教学难点:线性规划的对偶单纯形法. 教学方法:启发式.教学手段:多媒体演示、演讲与板书相结合. 教学时间:6学时. 教学内容:§4.1 线性规划的基本理论考虑线性规划问题11min ;,1,2,,,0,1,2,,.nj j j n ij j i j j c x a x b i m x j n ==⎧⎪⎪⎪==⎨⎪⎪≥=⎪⎩∑∑ s.t. (LP)或min ;,0.T c x Ax b x ⎧⎪=⎨⎪≥⎩s.t. 其中 121212(,,,),(,,,),(,,,),(),T T T n n m ij m n x x x x c c c c b b b b A a ⨯====A 称为约束矩阵,Ax b =称为约束方程组,0x ≥称为非负约束.假定:rank()A m =.定义 在(LP )中,满足约束方程组及非负约束的向量x 称为可行解或可行点;所有可行解的全体称为可行解集或可行域,记作K ,即{,0}K Ax b x ==≥.使目标函数在K 上取到最小值的可行解称为最优解;最优解对应的目标函数值称为最优值.定义 在(LP )中,约束矩阵A 的任意一个m 阶满秩子方阵B 称为基,B 中m 个线性无关的列向量称为基向量,x 中与B 的列对应的分量称为关于B 的基变量,其余的变量称为关于B 的非基变量.任取(LP )的一个基12(,,,)m j j j B p p p = ,记12(,,,)m T B j j j x x x x = ,若令关于B 的非基变量都取0,则约束方程Ax b =变为B Bx b =.由于B 是满秩方阵,因此B Bx b =有唯一解1B x B b -=.记121(,,,)m T j j j B b x x x -= ,则由12,1,2,,,0,{1,2,,}{,,,}k k j j j m x x k m x j n j j j ===∀∈-所构成的n 维向量x 是Ax b =的一个解,称之为(LP )的关于B 的基本解.基本解满足约束方程组,但不一定满足非负约束,所以不一定是可行解.若10B b -≥,即基本解x 也是可行解,则称x 为(LP )的关于基B 的基本可行解,相应的基B 称为(LP )的可行基;当10B b ->时,称此基本可行解x 是非退化的,否则,称之为退化的.若一个(LP )的所有基本可行解都是非退化的,则称该(LP )是非退化的,否则,称它是退化的.例1 求下列线性规划问题的所有基本可行解.12123124min 44;4,2,0,1,2,3,4.j x x x x x x x x x j -⎧⎪-+=⎪⎨-++=⎪⎪≥=⎩s.t. 解 约束矩阵的4个列向量依次为12341110,,,1101p p p p -⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.全部基为113214323424534(,),(,),(,),(,),(,),B p p B p p B p p B p p B p p ===== 对于1B ,1x 和3x 为基变量,2x 和4x 为非基变量.令2x =4x =0,有1314,2,x x x +=⎧⎨-=⎩ 得到关于1B 的基本解(1)(2,0,6,0)T x =-,它不是可行解.对于2B ,1x 和4x 为基变量,2x 和3x 为非基变量.令2x =3x =0,有1144,2,x x x =⎧⎨-+=⎩ 得到关于2B 的基本解(2)(4,0,0,6)T x =,它是一个非退化的基本可行解.同理,可求得关于345,,B B B 的基本解分别为(3)(4)(5)(0,2,6,0),(0,4,0,6),(0,0,4,2)T T T x x x ==-=,显然,(3)x 和(5)x 均是非退化的基本可行解,而(4)x 不是可行解.因此,该问题的所有基本可行解为(2)(3)(5),,x x x .此外,因为这些基本可行解都是非退化的,所以该问题是非退化的.定理 1 设x 为(LP )的可行解,则x 为(LP )的基本可行解的充要条件是它的非零分量所对应的列向量线性无关.证明 不妨设x 的前r 个分量为正分量,即12(,,,,0,,0),0(1,2,,).T r j x x x x x j r =>=若x 是基本可行解,则取正值的变量12,,,r x x x 必定是基变量,而这些基变量对应的列向量12,,,r p p p 是基向量.故必定线性相关.反之,若12,,,r p p p 线性无关,则必有0r m ≤≤.当r m =时,12(,,,)r B p p p = 就是一个基;当r m <时,一定可以从约束矩阵A 的后n r -个列向量中选出m r -个,不妨设为12,,,r r m p p p ++ ,使121(,,,,,,)r r m B p p p p p += 成为一个基.由于x 是可行解,因此1rj j j x p b ==∑,从而必有1mj j j x p b ==∑.由此可知x 是关于B 的基本可行解.定理 2 x 是(LP )的基本可行解的充要条件是x 为(LP )的可行域的极点.证明 由定理4.1.1和定理2.2.2知结论成立. 例2 求下列线性规划问题的可行域的极点.1212314min ;22,2,0,1,2,3,4.j x x x x x x x x j -⎧⎪++=⎪⎨+=⎪⎪≥=⎩s.t. 解 因为约束矩阵的4个列向量依次为12341210,,,1001p p p p ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.全部基为112213314424534(,),(,),(,),(,),(,),B p p B p p B p p B p p B p p ===== 求得关于基12345,,,,B B B B B 的基本解分别为(1)(2)(3)(4)(5)(2,0,0,0),(2,0,0,0),(2,0,0,0),(0,1,0,2),(0,0,2,2)T T T T T x x x x x =====显然,(1)(2)(3),,x x x 均为退化的基本可行解,(4)(5),x x 是非退化的基本可行解.可行域有三个极点:(2,0,0,0)T ,(0,1,0,2)T ,(0,0,2,2)T .定理3 若(LP )有可行解,则它必有基本可行解. 证明 由定理2.2.1及定理4.1.2知结论成立.定理4 若(LP )的可行域K 非空有界,则(LP )必存在最优解,且其中至少有一个基本可行解为最优解.证明 根据推论 2.2.6,(LP )的任一可行解x 都可表示为(LP )的全部基本可行解12,,,k x x x 的凸组合,即 1,ki i i x x x K λ==∀∈∑,其中10(1,2,,),1ki i i i k λλ=≥==∑ .设s x 是使(LP )中目标函数值达到最小的基本可行解,即 1min T T s i i kc x c x ≤≤=,则11,k kTTT T i i i s s i i c x c x c x c x x K λλ===≥=∀∈∑∑.这表明,基本可行解s x 为(LP )的最优解.定理5 设(LP )的可行域K 无界,则(LP )存在最优解的充要条件是对K 的任一极方向d ,均有0T c d ≥.证明 根据定理2.2.10,(LP )的任一可行解x 都可写成11kli i j j i j x x d λμ===+∑∑,其中12,,,k x x x 为(LP )的全部基本可行解,12,,,l d d d 为K 的全部极方向,且10(1,2,,),1,0(1,2,,)ki i j i i k j l λλμ=≥==≥=∑ .于是,(LP )等价于下面以0(1,2,,)0(1,2,,)i j i k j l λμ≥=≥= 和为决策变量的线性规划问题111min ()();1,0,1,2,,,0,1,2,,.k lT Ti i j j i j k i i i j c x c d i k j l λμλλμ===⎧+⎪⎪⎪⎪=⎨⎪⎪≥=⎪≥=⎪⎩∑∑∑ s.t. 由于j μ可以任意大,因此若存在某个j d ,使0T j c d <,则上述问题的目标函数无下界,从而不存在最优解,从而(LP )不存在最优解.若1,2,,j l ∀= ,均有0T j c d ≥,设1min T T s i i kc x c x ≤≤=,则11()(),k lTTT T i i j j s i j c x c x c d c x x K λμ===+≥∀∈∑∑.所以基本可行解s x 是(LP )的最优解.推论6 若(LP )的可行域K 无界,且(LP )存在最优解,则至少存在一个基本可行解为最优解.证明 由定理4.1.5的证明过程可知结论成立.定理7 设在(LP )的全部基本可行解12,,,k x x x 中,使目标函数值最小者为12,,,s i i i x x x ;在K 的全部极方向12,,,l d d d 中,满足0T j c d =者为12,,,t j j j d d d .若(LP )存在最优解,则x 为(LP )的最优解的充要条件是存在10(1,2,,),1,0(1,2,,)pp qsi i j p p s q t λλμ=≥==≥=∑使11p p q q s ti i j j p q x x d λμ===+∑∑. (*)证明 因为(LP )存在最优解,所以由定理4.1.4和推论4.1.6及其证明知,基本可行解12,,,s i i i x x x 是(LP )的最优解.设x 具有(*)式的形式,则由推论2.2.6和定理2.2.10知,x 为(LP )的可行解,从而由(*)式知,111p p q q s tTTT T i i j j i p q c x c x c d c x λμ===+=∑∑因此,x 为(LP )的最优解.反之,设x 为(LP )的任一最优解,则x 为可行解,于是由推论2.2.6和定理2.2.10知,存在 10(1,2,,),1,0(1,2,,)ki i j i i k j l λλμ=≥==≥=∑ ,使 11k li i j j i j x x d λμ===+∑∑. (**)根据定理1.1.5,有 0,1,2,,T j c d j l ≥= , 且由1i x 为最优解知1,1,2,,T T i i c x c x i k ≥= .从而由上述两式容易用反证法证明:若(**)式中某个0i λ>,则i x 必为(LP )的最优解;若(**)式中某个0j μ>,则必有0T j c d =。

相关文档
最新文档