方差分析spss操作2 研究生剖析

合集下载

利用SPSS做方差分析教程

利用SPSS做方差分析教程

利用SPSS做方差分析教程简介在进行数据分析时,往常我们需要通过样本对总体进行推断。

然而,由于样本的随机性质和误差,我们需要应用一些常见的统计方法,如方差分析。

方差分析是一种用于比较两个或多个平均值的统计方法。

它比基于t检验的两个样本测试更灵活,因为它可以用于比较两个或多个样本数据。

SPSS是一个功能强大的数据分析工具,它提供了丰富的数据分析功能。

在本文中,我们将介绍如何使用SPSS进行方差分析。

软件准备首先,你需要下载并安装SPSS软件。

你可以到IBM的网站上下载SPSS试用版或购买正式版。

数据文件准备在进行方差分析之前,我们需要准备好数据文件。

在本次实验中,我们将使用实验数据。

该数据是每个组的平均次数和标准偏差。

可以使用以下命令查看数据:GROUP Mean Std. Deviation1 15.00 1.7342 21.00 2.1603 19.25 2.6004 23.75 1.7085 23.20 2.078执行分析在SPSS中选择“Analyze”>“General Linear Model”>“Univariate”。

1.选择因素在弹出的“Univariate”窗口中,选择要分析的有影响因素和结果变量,如下所示:Independent Variable: GroupDependent Variable: Mean2.统计在“Univariate”窗口中,选择要执行的统计分析,如下所示:Descriptive StatisticsHomogeneity of Variance TestsANOVA缺省情况下,所有三个分析选项都是选中的。

3.Descriptives在选择“Descriptives”选项后,可以查看每个组的样本数量、平均值和标准偏差。

结果如下所示:Group N Mean Std. Deviation1 4 15.00 1.7342 4 21.00 2.1603 4 19.25 2.6004 4 23.75 1.7085 4 23.20 2.0784.Homogeneity of Variance Tests在选择“Homogeneity of Variance Tests”选项后,可以查看每个组方差是否相等。

根据实验结果,进行多元方差分析SPSS操作步骤

根据实验结果,进行多元方差分析SPSS操作步骤

根据实验结果,进行多元方差分析SPSS操作步骤多元方差分析(MANOVA)是一种统计方法,用于比较两个以上组之间在多个连续因变量上的差异。

SPSS是一款功能强大的统计分析软件,可以用于进行多元方差分析。

下面是进行多元方差分析的SPSS操作步骤:1. 打开SPSS软件,并导入实验数据。

2. 在菜单栏选择“分析”(Analyze),然后选择“一元方差分析”(General Linear Model)。

3. 在弹出的对话框中,将多个连续因变量添加到“因变量”(Dependent Variables)框中。

点击“添加”按钮,然后选择需要分析的连续因变量。

4. 将一个或多个离散自变量添加到“因子”(Factors)框中。

点击“添加”按钮,然后选择需要分析的离散自变量。

5. 点击“选项”(Options)按钮,可以进行一些附加的设置。

例如,可以选择是否计算效应大小、调整误差项或进行共同协方差矩阵的检验等。

6. 点击“确定”按钮,开始进行多元方差分析。

7. 分析结果会显示在SPSS的输出窗口中。

可以查看因变量之间的差异是否显著,以及不同组之间是否存在显著差异。

8. 为了更好地理解结果,可以进一步进行后续分析。

例如,可以进行事后比较(Post hoc tests)来确定具体哪些组之间存在显著差异。

请注意,进行多元方差分析前,需要确保数据满足一些假设条件,如正态性、方差齐性和无多重共线性等。

另外,为了减少假阳性结果,应谨慎解释显著性水平。

以上是根据实验结果进行多元方差分析SPSS操作的步骤。

希望对您有所帮助!如有需要,请随时与我联系。

《SPSS数据分析教程》方差分析

《SPSS数据分析教程》方差分析

《SPSS数据分析教程》方差分析方差分析是一种常用的统计方法,用于比较三个或三个以上组之间的均值差异是否显著。

它用于探究不同组别的因素对所研究的因变量的影响是否具有统计显著性。

在SPSS数据分析教程中,方差分析是一个非常重要的分析方法。

本文将介绍方差分析的原理、SPSS中的操作步骤以及结果的解读。

方差分析的原理是基于三个或三个以上不同组别之间的方差之间的比较来判断均值之间的差异是否显著。

方差分析的核心思想是通过比较组内方差与组间方差的大小来判断均值的差异是否显著。

方差分析的原假设是所有组别的均值相等,而备择假设是至少存在一个组别的均值与其他组别的均值不相等。

在SPSS中进行方差分析的操作步骤如下:步骤1:打开SPSS软件,点击“变量视图”页面。

在第一栏输入不同组别的名称,例如“组别1”、“组别2”、“组别3”。

步骤2:在第二栏输入待分析的因变量名称,并设置其测量类型为“比例”。

步骤3:点击“数据视图”页面,输入各组别的数据。

确保每个组别的数据都在同一列中,并且分组的数据之间用“空格”或“逗号”隔开。

步骤4:点击菜单栏上的“分析,—比较手段,—单因素方差分析”。

步骤5:在方差分析的对话框中,将因变量移入因变量方框,将分组变量移入因子方框。

步骤6:点击“选项”按钮,出现选项对话框。

可以选择计算哪些统计量,如均值、标准差、总和平方和等。

步骤7:点击“确定”按钮,SPSS将得出方差分析的结果。

方差分析的结果包括了多个统计量,如SS(组间平方和)、SS(组内平方和)、MS(组内均方和)、MS(组间均方和)、F值和P值。

-SS(组间平方和)反映了组间差异的大小,SS(组内平方和)反映了组内差异的大小。

-MS(组间均方和)是SS(组间平方和)除以自由度(组间)得到的,反映了组间差异的平均大小。

-MS(组内均方和)是SS(组内平方和)除以自由度(组内)得到的,反映了组内差异的平均大小。

-F值是MS(组间均方和)除以MS(组内均方和)得到的,是判断组间差异是否显著的依据。

多因素方差分析SPSS的具体操作步骤

多因素方差分析SPSS的具体操作步骤

多因素方差分析SPSS的具体操作步骤步骤1:导入数据首先,打开SPSS软件,并导入包含需要进行方差分析的数据集。

可以通过"File"菜单中的"Open"选项或者使用快捷键"Ctrl+O"来打开数据文件。

步骤2:选择菜单接下来,选择"Analyze"菜单,然后选择"General Linear Model"子菜单中的"Univariate"选项。

这将打开"Univariate"对话框。

步骤3:设置变量在"Univariate"对话框中,将需要分析的因变量(Dependent Variable)拖放到"Dependent Variable"框中。

然后,将需要分析的自变量(Independent Variables)拖放到"Fixed Factors"框中。

步骤4:设置因素在"Univariate"对话框的"Options"选项卡中,单击"Model"按钮,打开"Model"对话框。

在该对话框中,将自变量按照其因素分类拖放到"Between-Subjects Factors"框中。

步骤5:进行分析在"Univariate"对话框的"Options"选项卡中,可以对方差分析的多个选项进行设置。

比如,可以选择是否计算非标准化残差(Univariate Tests of Between-Subject Effects)、是否计算偏差(Tests of Within-Subject Effects)、是否计算构造对比(Contrasts)等。

设置完相关选项后,单击"OK"按钮进行方差分析。

SPSS超详细操作:两因素多元方差分析(Two

SPSS超详细操作:两因素多元方差分析(Two

SPSS超详细操作:两因素多元方差分析(Two医咖会在之前的推文中,推送过多篇方差分析相关的文章,包括:单因素方差分析(One-Way ANOVA)双因素方差分析(Two-way ANOVA)三因素方差分析(Three-way ANOVA)单因素重复测量方差分析两因素重复测量方差分析三因素重复测量方差分析单因素多元方差分析(One-way MANOVA)每种方差分析的应用场景,以及该如何进行SPSS操作和解读结果,各位伙伴请点击相应的文章链接查看~~今天,我们再来介绍一种统计方法:两因素多元方差分析(Two-way Manova)。

一、问题与数据某研究者想研究三种干预方式(regular—常规干预;rote—死记硬背式干预;reasoning—推理式干预)对学生学习成绩的影响。

研究者记录了学生两门考试的成绩:文科成绩(humanities_score)和理科成绩(science_score)。

另外,基于之前的知识,研究者假设干预方式对男女两种性别学生的效果可能不同。

换言之,研究者想知道不同干预方式对学习成绩的影响在男女学生中是否不同。

也就是说,干预方式和性别两个自变量之间是否存在交互作用(interaction effect)。

注:交互作用是指某一自变量对因变量的效应在另一个自变量的不同水平会不同。

在本例中,就是要比较①男性中干预方式对学习成绩的影响和②女性中干预方式对学习成绩的影响。

这两个效应就成为单独效应(simple main effects),也就是说,单独效应是指在一个自变量的某一水平,另一个自变量对因变量的影响。

因此,交互作用也可以看做是对单独效应间是否存在差异的检验。

在本研究中,共有三个效应:性别的主效应;干预方式的主效应;性别和干预方式的交互作用。

研究者选取30名男学生和30名女学生,并将其随机分配到三个干预组中,每个干预组中共有10名男学生和10名女学生。

部分数据如下:二、对问题的分析使用两因素多元方差分析法进行分析时,需要考虑10个假设。

SPSS操作—方差分析剖析

SPSS操作—方差分析剖析

224.6
220.4 212.3
实例-单因素方差分析
实例-单因素方差分析(结果输出)
ANOVA WEIGHT Sum of Squares 20538.70 652.159 21190.86 df 3 15 18 Mean Square 6846.233 43.477 F 157.467 Sig. .000
方差分析中的多重比较
• 目的:
– 如果方差分析判断总体均值间存在显著差异,接下来可通过多 重比较对每个水平的均值逐对进行比较,以判断具体是哪些水
平间存在显著差异。
• 常用方法备选:
– LSD法:t检验的变形,在变异和自由度的计算上利用了整个样本信息。
– Duncan 新复极差测验法
– Tukey 固定极差测验法 – Dunnett最小显著差数测验法 等
析中剔除
实例-单因素方差分析各处理重复数不等的方差分析
用四种饲料喂养19头猪比较,四种饲料是否不同。
饲料 A 133.8 B 151.2 C 193.4 D 225.8
125.3
143.1 128.9 135.7
149.0
162.7 143.8 153.5
185.3
182.8 188.5 198.6
• 如果进行先验对比检验,则应在Coefficients后依次输入系 数ci,并确保∑ci=0。应注意系数输入的顺序,它将分别与 控制变量的水平值相对应。 • 例如,当k=4时, 即有A、B、C、D 4个处理组,如果只将 B组和D组比较,则线性组合系数依次为0、-1、0、-1;如果 C组与其他3组的平均水平比较,则线性组合系数依次为-1、1、3、-1,余类推。线性组合系数要按照分类变量水平的顺 序依次填入Coefficients框中。

《SPSS数据分析教程》——方差分析

《SPSS数据分析教程》——方差分析

《SPSS数据分析教程》——方差分析方差分析(Analysis of Variance,缩写为ANOVA)是统计学中用来测量和分析两个或多个样本之间变量差异的统计方法。

方差分析检验的是不同实验条件下样品的均值是否存在显著性差异,以此来判断实验条件对样品响应是否有影响。

简而言之,方差分析能够判断不同处理条件下样本变量的总体均值是否有显著差异,以便检验实验条件是否有效。

方差分析实际上是将实验条件分成实验组和非实验组,然后对试验组与非实验组的结果进行比较,看看实验处理是否有显著的结果。

另一种情况是将不同的实验条件分成若干组,然后将不同组之间的结果进行比较,看看不同的实验条件是否有显著的差别。

SPSS采取一步法方差分析,在用户指定自变量和因变量后,可以自动给出方差分析的结果,包括方差分析表,均值表,均方差表,以及F检验的统计量和显著性水平等。

另外,它还可以提供多元变量分析(MVA)结果,包括每个变量的贡献率,方差膨胀因子,皮尔逊相关系数,单变量分析等。

为了使用SPSS进行方差分析,首先要指定变量和实验条件。

然后,点击菜单栏“分析”,选择“双因素方差分析”。

SPSS操作—方差分析剖析

SPSS操作—方差分析剖析

SPSS操作—方差分析剖析方差分析(ANOVA)是一种统计方法,用于比较两个或更多个组之间差异的显著性。

它是一种多组比较的方法,通过评估组间差异和组内差异来确定差异的显著性。

方差分析可分为单因素方差分析和多因素方差分析,根据实验设计和研究目的选择相应的方差分析方法。

本文将对方差分析进行详细剖析。

一、单因素方差分析单因素方差分析适用于只有一个自变量(因素)的设计。

它通过比较不同组的均值来评估组间差异的显著性。

通常,首先需要检查方差齐性的假设,即各组的方差是否相等。

可以使用Levene's test来检验方差齐性。

如果方差齐性假设得到满足,则可以进行单因素方差分析。

单因素方差分析可以得到组间方差(因组间差异引起)和组内方差(因随机误差引起)。

方差分析通过计算F值来评估组间方差和组内方差的比值,从而确定差异的显著性。

如果组间方差显著大于组内方差,则可以推断不同组之间存在显著差异。

在SPSS中进行单因素方差分析的步骤如下:1.打开数据文件并选择要进行方差分析的变量。

2.转到“分析”-“一元方差分析”选项。

3.将要进行方差分析的变量添加到“因子”框中。

4.可选择“选项”按钮进行一些设置,例如描述性统计量和效应大小指标。

5.单击“确定”按钮运行分析。

二、多因素方差分析多因素方差分析适用于有两个或更多个自变量(因素)的设计。

它可以同时评估多个因素对因变量的影响,并检验交互作用的显著性。

多因素方差分析可以得出组间差异的源头,包括因素A、因素B、A与B的交互作用以及随机误差。

在SPSS中进行多因素方差分析的步骤如下:1.打开数据文件并选择要进行方差分析的变量。

2.转到“分析”-“一元方差分析”选项。

3.将各个因素添加到“因子1”、“因子2”等框中。

4.单击“多因素”按钮可以进行设置,例如指定交互作用、是否需要进行修正等。

5.单击“确定”按钮运行分析。

总结:方差分析是一种重要的统计方法,可以用于比较组间差异的显著性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

129
126
135
142
B
9
117
115
111
123
131
B
10
118
114
116
123
133
C
11
131
119
118
135
129
C
12
129
128
121
148
132
C
13
123
123
120
143
136
C
14
123
121
116
145
126
C
15
125
124
118
142
130
• 重复测量(repeated measure)是指对同一受试对 象的同一观察指标在不同时间点上进行多次测量, 用于分析该观察指标在不同时间上的变化规律。
1、建立检验假设,确定检验水准 1、建立检验假设、确定检验水准
对于处理因素K
H0:两组...的总体均数相同 H1:两组...的总体均数不同 对于时间因素I
H0:不同时间...的总体均数相同 H1:不同时间...的总体均数不全相同 对于交互作用KI
H0:处理和时间无交互效应 H1:处理和时间有交互效应 均取α=0.05
• 应用:在临床试验和流行病学研究中比较常见。
• 主要特点:同一受试对象在不同时点的观察值之 间彼此不独立,往往存在某种程度上的相关性。
变异分解
SS总=SS受试对象间+SS受试对象内 =(SS处理+SS个体间误差)+(SS时间+SS处理与时间交互+SS个
体内误差)
ν总= ν受试对象间+ ν受试对象内 =(ν处理+ν个体间)+(ν时间+ν处理与时间交互+ν个体内)
一、重复测量设计
例 12-3 将手术要求基本相同的 15 名 患者随机分 3 组,在手术过程中分别采用 A, B,C 三种麻醉诱导方法,在T0 (诱导前)、 T1、T2 、T3 ,T4 五个时相测量患者的收缩压, 数据记录见表 12-16。试进行方差分析。
表12-16 不同麻醉诱导时相患者的收缩压(mmHg)
BA
4.80 2.512
C
-3.72 2.512
CA
8.52* 2.512
B
3.72 2.512
Based on observed means. The error term is Mean Square(Error) =
15.775.
*. The mean difference is significant at the .05 level.
软件操作步骤:1、变量设置
2.数据录入
3、方差分析: analyze—general linear
model—repeated measures
Within-subject factor-受试者内因素, 用于定义重复测量变量及重复次数
将t0-t4选入右侧 (受试对象内变量 栏)
再将组别受试对象 间变量栏)
三组数据总体的趋势分析:输出了各次重复测量值 之间随测量时间的变化趋势,采用了线性、二次方 曲线、三次方曲线、四次方曲线进行拟合。4项均
有统计学意义
若进行各组的趋势分析,先分割文 件:split files:组别
A组五个时相收缩压的时间趋势检验结果
B组五个时相收缩压的时间趋势检验结果
C组五个时相收缩压的时间趋势检验结果
Sig. .080 .005 .080 .164 .005 .164
95% Confidence Interval
Lower Bound
Upper Bound
-10.27
.67
-13.99
-3.05
-.67
10.27
-9.19
1.75
3.05
13.99
-1.75
9.19
二、时间趋势比较
• 在contrasts对话框,选择polynomial(多项 式)
• 但不服从球形假设时,如果校正的一元分析结果 与多元分析结论不一致,应该看多元分析结果
不满足球对称性时,看多元分析结果:四个多元方差分析的 统计量:pillai’s Trace 最为稳健,当4个结论不一致时,
推荐他为最终结论。
一元分析结果:
受试对象内(时间、交互效应)的效应检验
对各次重复测量结果进行线性(linear)、二次方曲线 (qudaratic)、三次方( cubic )等拟和,本例,时相因素 的各组均数成线性趋势,交互效应的各组均数也呈线性趋势。
三、时间点多重比较
• 有些研究关心同一个处理重复测量数据点的 两两差别。但重复检验次数太多。
Post-Hoc两两比较
Options对话框
先输出了重复测量的变量名
因变量的描述性统计
球对称检验:p=0.178,不拒绝H0,满足球对
称性
Mauchly’s test of sphericity
• 如果满足球对称,则看下面的一元分析结果 (tests of within-subjects effects)中 sphericity assumed所在行的统计量及p值。
• (3)各组5个时相收缩压均数的两两比较 (比较3*10=30次)
一、组间差别多重比较
Measure:MEASURE_ 1
Multiple Comparisons
(I) (J) 组组 别别
Mean Differen ce (I-J)
Std. Erro r
LSD
AB
-4.80 2.512
ห้องสมุดไป่ตู้
C
-8.52* 2.512
组间比较
组间两两比较(LSD法)
组间两两比较(SNK法)
课本第四节
重复测量数据的多重比较
• 重复测量数据的多重比较很复杂,对不同研 究有不同的要求。
• 例12-3多重比较可能包括以下3种:
• (1)A、B、C三种麻醉诱导方法存在差别, 进行组间两两比较,3次(AB、AC、BC)
• (2)各组5个不同时相收缩压均数变化曲 线是否有固定趋势(4次正交多项式变换), 3*4=12次
• 如果不满足,则看上面的多元分析结果 (multivariate tests)或一元分析结果中的校正 值。
• 在tests of within-subjects effects中,spss提 供三种校正方法,分别为greenhouse-geisser、 huynh-feldt,lower-bound.
诱导 患者
方法 序号
T0
麻醉诱导时相
T1
T2
T3
T4
A
1
120
108
112
120
117
A
2
118
109
115
126
123
A
3
119
112
119
124
118
A
4
121
112
119
126
120
A
5
127
121
127
133
126
B
6
121
120
118
131
137
B
7
122
121
119
129
133
B
8
128
相关文档
最新文档