三角函数与数列高考题
函数、导数、三角函数、数列、极坐标与参数方程考试试卷

,若
A
、
B
都在曲线
C1
上,
求
1 12
+
1 22
的值.
17、已知函数 f x ax2 a 2 x lnx ,其中 a R .
(Ⅰ)当 a 1时,求曲线 y f x 的点 1, f 1 处的切线方程;
(Ⅱ)当 a 0 时,若 f x 在区间1,e 上的最小值为-2,求 a 的取值范围.
…………○…………外…………○…………装…………○…………订…………○…………线…………○………… 学校:___________姓名:___________班级:___________考号:___________
…………○…………内…………○…………装…………○…………订…………○…………线…………○…………
又 c 2a ,
∴ b2 2a2 ,故得 b 2a .
cosB a2 c2 b2 a2 (2a )2 ( 2a )2 3
∴
2ac
2 a (2a)
4.
故选 B. 【点睛】 本题考查余弦定理的应用,解题的关键是根据题意得到三角形中三边间的关系,并用统 一的参数表示,属于基础题. 6、【答案】A
若
S99
1 50
,则
k
__________.
12、在
ABC
中,角
A,B,C
的对边分别为
a,
b,
c
,若
b
cos
C
2a
c
sin
B
2
,
且 b 3 ,记 h 为 AC 边上的高,则 h 的取值范围为
三角函数数列大题

高中数学学校:___________姓名:___________班级:___________考号:___________一、解答题1.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知2cos 2cos 0c B b C ab +-=. (1)求b ;(2)若AD AB ⊥交BC 于点D ,6ACB π∠=,ABCS,求CD 边长.2.如图,某景区拟开辟一个平面示意图为五边形ABCDE 的观光步行道,BE 为电瓶车专用道,120BCD BAE CDE ∠=∠=∠=︒,11km DE =,5km BC CD ==.(1)求BE 的长;(2)若sin ABE ∠=ABCDE 的周长. 3.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,ccos b B =+. (1)求A ; (2)若31,cos 5a C ==,求ABC 的面积.4.在锐角△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知2sin a C . (1)求角A 的大小;(2)若2b =,a =△ABC 的面积.5.已知函数()sin 2cos 22sin cos .36f x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭(1)求函数()f x 的最小正周期及对称轴方程; (2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的纵坐标不变、横坐标伸长为原来的2倍,得到函数()y g x =的图象,求()y g x =在[0,2π]上的单调递减区间.6.已知函数()sin 22f x x x =,R x ∈. (1)求函数()f x 的最小正周期;(2)求函数()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调区间.7.已知函数()2sin 22sin 6x f x x π⎛⎫=++ ⎪⎝⎭.(1)求函数()f x 的最小正周期和单调递减区间;(2)若将()f x 的图象向左平移6π个单位,得到函数()g x 的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值; (3)在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若322A f ⎛⎫= ⎪⎝⎭,7b c +=,ABC ∆的面积为a 的长.8.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到应用.假定在水流稳定的情况下,简车上的每一个盛水筒都做匀速圆周运动.如图,将简车抽象为一个几何图形(圆),筒车半径为4m ,筒车转轮的中心O 到水面的距离为2m ,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M 对应的点P 从水中浮现(即P 0时的位置)时开始计算时间,且以水轮的圆心O 为坐标原点,过点O 的水平直线为x 轴建立平面直角坐标系xOy .设盛水筒M 从点P 0运动到点P 时所经过的时间为t (单位:s ),且此时点P 距离水面的高度为h (单位:m )(在水面下则h 为负数).(1)求点P 距离水面的高度为h 关于时间为t 的函数解析式; (2)求点P 第一次到达最高点需要的时间(单位:s ).9.记n S 是正项数列{}n a 的前n 项和,1n a +是4和n S 的等比中项. (1)求数列{}n a 的通项公式; (2)记11(1)(1)n n n b a a +=++,求数列{}n b 的前n 项和n T .10.已知等差数列{an }的前n 项和为Sn =n 2+r ,其中r 为常数. (1)求r 的值; (2)设()112n n b a =+,求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和Tn .11.某公司2021年年初花费25万元引进一种新的设备,设备投入后每年的收益均为21万元.若2021年为第1年,且该公司第()n n *∈N 年需要支付的设备维修和工人工资等费用总和n a (单位:万元)的情况如图所示.(1)求n a ;(2)引进这种设备后,第几年该公司开始获利?12.已知数列{an }的前n 项和为Sn ,且Sn =n -5an -85,n △N *. (1)证明:{an -1}是等比数列; (2)求数列{an }的通项公式.13.已知数列{}n a 满足12a =,132n n a a +=+.(1)证明{}1n a +是等比数列,并求{}n a 的通项公式;(2)若数列{}n b 满足()3log 1n nb a =+,n T 为数列1n n b a ⎧⎫⎨⎬+⎩⎭的前n 项和,求n T . 14.已知等比数列{}n a 的前n 项和为n S ,且51430a a S -==. (1)求数列{}n a 的通项公式n a ; (2)若______,求数列{}n b 的前n 项和n T .在△21log n n n b a a +=+,△()()2211log 1log 1n n n b a a +=+⋅+,△n n b n a =⋅这三个条件中任选一个补充在第(2)问中,并求解.注:如果选择多个条件分别解答,按第一个解答计分.15.某企业2021年第一季度的营业额为1.1亿,以后每个季度的营业额比上个季度增加0.05亿;该企业第一季度的利润为0.16亿,以后每季度比前一季度增长4%. (1)求2021年起前20季度营业额的总和;(2)请问哪一季度的利润首次超过该季度营业额的18%.16.在△q d =△4q d ⋅=△4q d +=这三个条件中选择一个补充在下面的问题中,并求解.设等差数列{}n a 的公差为d (*d N ∈),前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,___________,10100S =.(1)请写出你的选择,并求数列{}n a 和{}n b 的通项公式; (2)若数列{}n c 满足nn na cb =,求数列{}n c 的前n 项和n T . 17.如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1CC 上且13C E EC =.(1)证明:1A C ⊥平面BED ;(2)求异面直线BE 与1A C 所成角的大小; (3)求二面角1A DE B --的余弦值.18.已知E ,F 分别是正方形ABCD 边AD ,AB 的中点,EF 交AC 于P ,GC 垂直于ABCD 所在平面.(1)求证:EF ⊥平面GPC .(2)若4AB =,2GC =,求点B 到平面EFG 的距离.19.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,且侧棱P A △底面ABCD ,P A =2AD .E ,F ,H 分别是P A ,PD ,AB 的中点,G 为DF 的中点.(1)证明://GH 平面BEF ;(2)求PC 与平面BEF 所成角的正弦值.20.如图在三棱锥O ABC -中,OA OC ==2AB OB BC ===且OA OC ⊥.(1)求证:平面OAC ⊥平面ABC(2)若E 为OC 中点,求平面ABC 与平面EAB 所成锐二面角的余弦值.21.直四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,边长为2,侧棱13A A =,M N 、分别为1111A B A D 、的中点,E F 、分别是1111B C C D 、的中点.(1)求证:平面AMN //平面EFDB ; (2)求平面AMN 与平面EFDB 的距离.22.如图,在正四棱柱ABCD ﹣A 1B 1C 1D 1中,AB =1,AA 1=2,点E 为CC 1中点,点F 为BD 1中点.(1)求异面直线BD 1与CC 1的距离;(2)求直线BD 1与平面BDE 所成角的正弦值; (3)求点F 到平面BDE 的距离.23.以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.曲线1C 的极坐标方程为:1ρ=.在平面直角坐标系中,曲线2C 的参数方程为3cos 33sin x y θθ=⎧⎨=+⎩(θ为参数,02θπ≤<).(1)求曲线1C 和曲线2C 的直角坐标方程; (2)在极坐标系中,射线()03πθρ=>与曲线1C ,2C 分别交于A ,B 两点,求AB .24.已知直线 l的参数方程为1,x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系,曲线C 的极坐标方程为2223sin 4ρρθ+=.(1)求直线 l 的普通方程和曲线C 的直角坐标方程;(2)已知直线 l 与曲线C 相交于P ,Q 两点,点M 的直角坐标为(1,0)-,求||||MP MQ +.25.在直角坐标系xOy 中,直线l的参数方程为132x t y ⎧=+⎪⎪⎨⎪⎪⎩(t 为参数).以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4cos ρθ=.(1)写出C 的直角坐标方程;(2)设点Q 的坐标为()3,0,直线l 与C 交于A ,B ,求QA QB ⋅的值.26.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为()2213sin 4ρθ+=.在直角坐标系xOy 中,直线l 的方程为240x y +-=.(1)若点M 为曲线1C 上的动点,求点M 到直线l 的距离的最小值; (2)倾斜角为3π的曲线2C 过点()1,0P -,交曲线1C 于A ,B 两点,求11PA PB +. 27.在直角坐标系xOy 中,直线l 的参数方程为4,5315x t y t⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4sin 0ρθ-=. (1)求曲线C 的直角坐标方程和直线l 的普通方程; (2)设曲线C 与直线l 交于A ,B 两点,求AB .28.在平面直角坐标系xOy 中,直线l 的参数方程为241x t y t =+⎧⎨=-⎩(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为222124sin 3cos ρθθ=+.(1)求直线l 和曲线C 的直角坐标方程;(2)若点P 为曲线C 上任意一点,求点P 到直线l 的距离的最大值.29.在平面直角坐标系xOy 中,直线l的参数方程为1,x t y =+⎧⎪⎨=⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为()2213sin 4ρθ+=.(1)求直线l 的一般式方程和曲线C 的标准方程;(2)若直线l 与曲线C 交于A ,B 两点,点()1,0P ,求PA PB ⋅的值. 30.直线l 过点()2,0A ,倾斜角为4π. (1)以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系.过O 作l 的垂线,垂足为B ,求点B 的极坐标()0,02ρθπ≥≤<;(2)直线l 与曲线22:2x t C y t⎧=⎨=⎩(t 为参数)交于M 、N 两点,求MN .31.在平面直角坐标系xOy 中,倾斜角为α(α为常数)的直线l 过点()2,4M --,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 2cos ρθθ=.(1)写出直线l 的一个参数方程和曲线C 的直角坐标方程; (2)当3πα=时,直线l 与曲线C 能否交于两点?若能,记两交点为A ,B ,求出11MA MB+的值;若不能,说明理由. 32.若a ,b ,c △R +,且满足a +b +c =2. (1)求abc 的最大值; (2)证明:11192a b c ++≥.33.已知函数()21f x x x =+--. (1)求max ()f x 及当()(0)f x f ≥时的解集;(2)若关于x 的不等式()12f x m ≥-有解,求正数m 的取值范围.34.已知函数()()223f x x a x a =-+-+.(1)当2a =时,求不等式()6f x ≥的解集 (2)若()6f x ≥恒成立,求实数a 的取值范围.35.已知0m >,函数()2f x x x m =++-的最小值为3,()25g x x m =+. (1)求m 的值;(2)求不等式()()f x g x ≤的解集. 36.已知函数()112f x x x =-+-的值域为M . (1)求M ;(2)证明:当,a b M ∈时,214a b ab -≤-. 37.已知,,a b c 均为正数,且满足 1.abc =证明: (1)3ab bc ca ++;(2)333a b c ab bc ac ++++.38.设a ,b ,c 均为正数,且a b +=1. (1)求12a b+的最小值;(2)≤39.已知函数()||2||(0,0)f x x a x b a b =+-->>. (1)当1a b ==时,解不等式()0f x >;(2)若函数()()||g x f x x b =+-的最大值为2,求14a b+的最小值.40.如图,在四棱锥P-ABCD 中,平面PAD ⊥ 平面ABCD ,PA ⊥PD ,PA=PD,AB ⊥,(I )求证:PD ⊥平面PAB;(II )求直线PB 与平面PCD 所成角的正弦值;(II I )在棱PA 上是否存在点M ,使得BMll 平面PCD?若存在,求AMAP的值;若不存在,说明理由。
数列和三角函数综合题

以下是一个综合题,涉及到数列和三角函数的应用:
题目:已知数列 {an} 的通项公式为 an = 2n + 1,其中 n 为正整数。
求证:当 n 为正整数时,三角函数 sin(π/2 - an) = cos(πn/2)。
解答:
根据已知数列 {an} 的通项公式 an = 2n + 1,我们可以将三角函数中的角度表示进行替换,即将 an 替换为 2n + 1。
首先,我们将左边的三角函数进行展开:
sin(π/2 - an) = sin(π/2 - (2n + 1))
根据三角函数的差化积公式,我们可以将 sin(π/2 - (2n + 1)) 转化为 cos((2n + 1) - π/2):
sin(π/2 - (2n + 1)) = cos((2n + 1) - π/2)
进一步化简右边的式子:
cos((2n + 1) - π/2) = cos(2n + 1 - π/2)
我们知道,cos(π/2 - θ) = sinθ,将上式进行变换得到:
cos(2n + 1 - π/2) = sin(π/2 - (2n + 1))
最后,我们得到:
sin(π/2 - (2n + 1)) = cos(2n + 1 - π/2) = sin (π/2 - (2n + 1))
由此可证,当 n 为正整数时,三角函数 sin(π/2 - an) = cos(πn/2) 成立。
这道题结合了数列的通项公式和三角函数的差化积公式,考查了学生对数列和三角函数概念的理解,并要求学生进行符号替换和化简推导。
最新三角函数、数列、导数试题及详解

三角函数、数列导数测试题及详解一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是 符合题目要求的. 1.已知点A (-1,1),点B (2,y ),向量a=(l ,2),若//AB a ,则实数y 的值为 A .5B .6C .7D .82.已知等比数列123456{},40,20,n a a a a a a a ++=++=中则前9项之和等于 A .50B .70C .80D .903.2(sin cos )1y x x =+-是A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数 4.在右图的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+z 的值为 A .1 B .2 C .3 D .4 5.已知各项均不为零的数列{}n a ,定义向量*1(,),(,1),n n n n c a a b n n n N +==+∈,下列命题中真命题是A .若*,//n n n N c b ∀∈总有成立,则数列{}n a 是等差数列 B .若*,//n n n N c b ∀∈总有成立,则数列{}n a 是等比数列 C .若*,n n n N c b ∀∈⊥总有成立,则数列{}n a 是等差数列 D .若*,n n n N c b ∀∈⊥总有成立,则数列{}n a 是等比数列6.若sin2x 、sinx 分别是sin θ与cos θ的等差中项和等比中项,则cos2x 的值为A .18+ B .18C .18± D .14-7.如图是函数sin()y x ωϕ=+的图象的一部分,A ,B 是图象上的一个最高点和一个最低点,O 为坐标原点,则OA OB ⋅的值为 A .12π B .2119π+C .2119π-D .2113π-8.已知函数()cos ((0,2))f x x x π=∈有两个不同的零点x 1,x 2,且方程()f x m =有两个不同的实根x 3,x 4.若把这四个数按从小到大排列构成等差数列,则实数m 的值为A .12B .12-C.2D.—29.设函数f (x ) =e x (sinx —cosx ),若0≤x ≤2012π,则函数f (x )的各极大值之和为A .1006(1)1e e e πππ--B .20122(1)1e e e πππ-- C .10062(1)1e e e πππ-- D .2012(1)1e e eπππ-- 10.设函数011()(),21xf x x A x =++为坐标原点,A 为函数()y f x =图象上横坐标为*()n n N ∈ 的点,向量11,(1,0),nn k k n n k a A A i a i θ-===∑向量设为向量与向量的夹角,满足15tan 3nkk θ=<∑的最大整数n 是 A .2 B .3 C .4 D .5二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卡对应题号的位置上,题两空的题,其答案按先后次序填写,填错位置,书写不清,模棱两可均不得分. 11.设1(sin cos )sin 2,()3f f ααα+=则的值为 . 12.已知曲线1*()()n f x xn N +=∈与直线1x =交于点P ,若设曲线y=f (x )在点P 处的切线与x 轴交点的横坐标为201212012220122011,log log log n x x x x +++则的值为____.13.已知22sin sin ,cos cos ,33x y x y -=--=且x ,y 为锐角,则tan (x -y )= . 14.如图放置的正方形ABCD ,AB =1.A ,D 分别在x 轴、y 轴的正半轴(含原点)上滑动,则OC OB ⋅的最大值是____.15.由下面四个图形中的点数分别给出了四个数列的前四项,将每个图形的层数增加可得到这四个数列的后继项,按图中多边形的边数依次称 这些数列为“三角形数列”、“四边形数列”…,将构图边数增加到n 可 得到“n 边形数列”,记它的第r 项为P (n ,r ),则(1)使得P (3,r )>36的最 小r 的取值是 ;(2)试推导P (n ,r )关于,n 、r 的解析式是____.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知2(2sin ,),(1,cos 1)OA a x a OB x x ==-+,O 为坐标原点,0,a ≠设(),.f x OA OB b b a =⋅+>(I )若0a >,写出函数()y f x =的单调速增区间; (Ⅱ)若函数y=f (x )的定义域为[,2ππ],值域为[2,5],求实数a 与b 的值,17.(本小题满分12分)如图,某测量人员,为了测量西江北岸不能到达的两点A ,B 之间的距离,她在西江南岸找到一个点C ,从C 点可以观察到点A ,B ;找到一个点D,从D 点可以观察到点A ,C ;到一个点E ,从E 点可以观察到点B ,C ;并测量得到数据:∠ACD=90°,∠ADC= 60°,∠ACB =15°,∠BCE =105°,∠CEB =45°,DC=CE =1(百米). (I )求△CDE 的面积; (Ⅱ)求A ,B 之间的距离.18.(本小题满分12分)国家助学贷款是由财政贴息的信用贷款,旨在帮助高校家庭经济困难学生支付在校学习期间所需的学费、住宿费及生活费.每一年度申请总额不超过6000元.某大学2010届毕业生李顺在本科期间共申请了24000元助学贷款,并承诺在毕业后3年内(按36个月计)全部还清.签约的单位提供的工资标准为第一年内每月1500元,第13个月开始,每月工资比前一个月增加5%直到4000元.李顺同学计划前12个月每个月还款额为500元,第13个月开始,每月还款额比前一月多x 元.(I )若李顺恰好在第36个月(即毕业后三年)还清贷款,求x 的值;(II )当x=50时,李顺同学将在第几个月还清最后一笔贷款?他还清贷款的那一个月的工资余额是多少?(参考数据:1.0518 =2.406,1.0519=2.526,1.0520 =2.653,1.0521=2.786) 19.(本小题满分12分)已知函数()sin .f x x x =+ (I )当[0,],()x f x π∈时求的值域;(II )设2()()1,()1[0,)g x f x g x ax '=-≥++∞若在恒成立,求实数a 的取值范围.20.(本小题满分13分)已知211()(1),()10(1),{}2,()()()0,n n n n n f x x g x x a a a a g a f a +=-=-=-+=数列满足9(2)(1).10n n b n a =+- (I )求证:数列{a n ,-1)是等比数列;(Ⅱ)当n 取何值时,b n 取最大值,并求出最大值;(Ⅲ)若1*1m m m m t t m N b b ++<∈对任意恒成立,求实数t 的取值范围.21.(本小题满分14分)设曲线C :()ln ( 2.71828),()()f x x ex e f x f x '=-=表示导函数.(I )求函数f (x )的极值;(Ⅱ)数列{a n }满足111,2(3)n na e a f e a +'==+.求证:数列{a n }中不存在成等差数列的三项;(Ⅲ)对于曲线C 上的不同两点A (x 1,y 1),B (x 2,y 2),x 1<x 2,求证:存在唯一的012(,)x x x ∈,使直线AB 的斜率等于0().f x '参考答案一、选择题: 1.【考点分析】本题主要考查平面向量的运算和向量平行充要条件的基本运用.【参考答案】 C【解题思路】AB →=(3,y -1),∵AB →∥a ,∴31=y -12,∴y =7.2. 【考点分析】本题主要考查等比数列的基本运算性质.【参考答案】 B .【解题思路】3321654)(q a a a a a a ++=++,∴213=q ,3654987)(q a a a a a a ++=++=10,即9s =70.3.【考点分析】本题考查三角函数的性质和同角三角函数的基本关系式的运用,考查基本运算能力. 【参考答案】D【解题思路】2(sin cos )12sin cos sin 2y x x x x x =+-==,所以函数2(sin cos )1y x x =+-是最小正周期为π的奇函数。
三角函数与数列(高考题)

三角函数与数列(高考题)1.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=. (1)证明:sin A sin B=sin C;(2)若b2+c2-a2=bc,求tan B.2.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c. (1)求C; (2)若c=,△ABC的面积为,求△ABC的周长.3.在△ABC中,a2+c2=b2+ac.(1)求∠B的大小; (2)求cos A+cos C的最大值.4.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin 2B=b sin A. (1)求B; (2)若cos A=,求sin C的值.5.设f(x)=2sin(π-x)sin x-(sin x-cos x)2.(1)求f(x)的单调递增区间;(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g的值.6.设f(x)=sin x cos x-cos2.(1)求f(x)的单调区间;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f=0,a=1,求△ABC面积的最大值.7.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.8.已知向量=,=(sinx,cos2x),x∈R,设函数f(x)=·.(1) 求f(x)的最小正周期. (2) 求f(x) 在上的最大值和最小值.9.已知ΔABC的角A,B,C所对的边分别是a,b,c,设向量,,.(1)若//,求证:ΔABC为等腰三角形;(2)若⊥,边长c= 2,角C=,求ΔABC的面积.10.已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(1)求数列{b n}的通项公式;(2)令c n=.求数列{c n}的前n项和T n.11.设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(1)求通项公式a n;(2)求数列{|a n-n-2|}的前n项和.12.已知数列的前项和为,且对一切正整数都成立。
高三文科数学三角函数数列与导数试卷

高三文科数学三角函数数列与导数试卷(完卷时间:120分钟,满分:150分)命题及审题:周建梅一、选择题(每小题5分,共60分): 1.sin15cos75cos15sin105+等于( )A.0B.12D.12.在数列{a n }中,a 1=1,a n +1=a n 2-1(n ≥1),则a 1+a 2+a 3+a 4+a 5等于( )A .-1B .1C .0D .23.{a n }是等差数列,且a 1+a 4+a 7=45,a 2+a 5+a 8=39,则a 3+a 6+a 9的值是( )A .24B .27C .30D .33 4.函数y =Asin(ωx +φ) (A >0,ω>0,|φ|<2π=的图象如图所示,则y 的表达式为( ) A .y =2sin(611x 10π+) B .y =2sin(611x 10π-)C .y =2sin(2x +6π)D .y =2sin(2x -6π)5.函数y =f(x)的图象在点P (1,f(1))处的切线方程为y =-2x +10, 导函数为()f x ',则f(1)+(1)f '的值为 ( )A. -2B.2 C .6 D. 86.已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为( )A .180B .-180C .90D .-90 7.函数13)(23+-=x x x f 是减函数的区间为( )A .),2(+∞B .)2,(-∞C .)0,(-∞D .(0,2)8.由公差为d 的等差数列a 1、a 2、a 3…重新组成的数列a 1+a 4, a 2+a 5, a 3+a 6…是( )A .公差为d 的等差数列B .公差为2d 的等差数列C .公差为3d 的等差数列D .非等差数列 9. 曲线3231y x x =-+在点(1,-1)处的切线方程为(A .34y x =- B.32y x =-+ C.43y x =-+ 10.设函数f(x)在定义域内可导,y =f(x)的图象如图1可能为( )11.函数,93)(23-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( )A .2B .3C .4D .5A B C D12. 要得到)42sin(3π+=x y 的图象只需将y =3sin2x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位C .向左平移8π个单位D .向右平移8π个单位二、填空题(每小题4分,共16分):13.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为________. 14.首项是125,从第10项开始比1大,则该等差数列的公差d 的取值范围是__________. 15.若函数y =x 3+ax 2+bx +27在x =-1时有极大值,在x =3时有极小值,则a =____,b =____. 16.等差数列{}n a 中,30216131074=++++a a a a a ,则其前19项和19S =_________. 三、解答题(共74分): 17.(本小题共12分)(1)在等差数列}{n a 中,已知94=a ,69-=a ,求满足63=n S 的所有的n 的值。
三角函数与数列学考试卷

三角函数与数列学考试卷一选择题 1.=-)320cos(π( ) A .21 B .23 C .-21D .-232.已知△ABC 中,a =2,b =3,B =60°,那么角A 等于 ( )A.135°B.90°C.45°D.30°3已知△ABC 中,125tan -=A ,则cos A = ( ) A .1213 B.513 C. 513- D. 1213-4角α的终边过点(1,2)-,则cos α的值为 ( )C. ]D.5. 等差数列{a n }中如果a 6=6,a 9=9,那么a 3= ( ) A.3 B.32 C.916 D.46.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667B .668C .669D .6707等差数列{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=450,求a 2+a 8= ( ) A.45 B.75 C.180 D.300 8.在等比数列中,首项89,末项31,公比32,求项数 ( ) A.3 B.4 C.5 D.69.等比数列{a n }中,公比为2,前四项和等于1,则前8项和等于 ( ) A.15 B.17 C.19 D.2110.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为 ( ). A .81 B .120 C .168 D .19211.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2= ( ). A .-4B .-6C .-8D . -1012.设S n 是等差数列{a n }的前n 项和,若35a a =95,则59S S = ( ). A .1B .-1C .2D .2113.在等差数列{n a }中,72=a ,154=a ,则10S = ( ).A .100B .210C .380D .40014.若,lg x ),23lg(-x )23lg(+x 成等差数列,则2log x= ( )A .2B .21C .4D .不存在15.在数列{n a }中,21=a ,1231+-=+n a a n n ,*N n ∈,则4a = ( )A .25B .29C .31D .3316. 在等差数列{n a }中,12642=++a a a ,那么=++++7321a a a a ( )A .28B .29C .31D .32二填空题17.在ABC ∆中,若sin :sin :sin 5:7:8A B C =,则B ∠的大小是___ __.18.在ABC ∆中。
高考立体几何、数列、三角函数、不等式、平面向量综合经典试题练习(含答案)

cos
x
0
2
的部分图象如图所示,f
x0
f
0 ,
则正确的选项是( )
试卷第 2页,总 9页
A.
6
,
x0
1
C.
3
,
x0
1
B.
6
,
x0
4 3
D.
3
,
x0
2 3
20.已知 | a | 1,| b | 2, a 与 b 的夹角为 600,若 a kb 与 b 垂直,则 k 的值为( )
B. 2 2
C. 3 2
D.1
22 . . 设 G 是 ABC 的 重 心 , 且
(56 sin A)GA (40 sin B)GB (35 sin C)GC 0 ,则角 B 的大小为
()
A.45° B.60° C.30° D.1 5°
23.在△ABC 中,a=2,b=2 ,B=45°,则 A 等于( )
CC1 c 则A1B
(A) a+b-c
(B) a–b+c
(C)-a+b+c.
(D)-a+b-c
18.函数 f x sin 2 x
3
sin
x
cos
x
在区间
4
,
2
上的最大值为(
)
(A) 3 2
(B)1 3
(C)1
(D) 1 3 2
19.已知函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数与数列(高考题)1.在△ABC中,角A,B,C所对的边分别是a,b,c,且+=.
(1)证明:sin A sin B=sin C;(2)若b2+c2-a2=bc,求tan B.
2.△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.
(1)求C; (2)若c=,△ABC的面积为,求△ABC的周长.
3.在△ABC中,a2+c2=b2+ac.
(1)求∠B的大小; (2)求cos A+cos C的最大值.
4.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a sin 2B=b sin A.
(1)求B; (2)若cos A=,求sin C的值.
5.设f(x)=2sin(π-x)sin x-(sin x-cos x)2.
(1)求f(x)的单调递增区间;
(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g的值.
6.设f(x)=sin x cos x-cos2.
(1)求f(x)的单调区间;
(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f=0,a=1,求△ABC面积的最大值.
7.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.
(1)求;(2)若AD=1,DC=,求BD和AC的长.
8.已知向量=,=(sinx,cos2x),x∈R,设函数f(x)=·.
(1) 求f(x)的最小正周期. (2) 求f(x) 在上的最大值和最小值.
9.已知ΔABC的角A,B,C所对的边分别是a,b,c,设向量,,
.
(1)若//,求证:ΔABC为等腰三角形;(2)若⊥,边长c= 2,角C=,求ΔABC的面积.
10.已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.
(1)求数列{b n}的通项公式;
(2)令c n=.求数列{c n}的前n项和T n.
11.设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.
(1)求通项公式a n;(2)求数列{|a n-n-2|}的前n项和.
12.已知数列的前项和为,且对一切正整数都成立。
(Ⅰ)求,的值;
(Ⅱ)设,数列的前项和为,当为何值时,最大?并求出的最大值。
13.已知点是函数的图象上一点. 等比数列的前项和为
. 数列的首项为,且前项和满.
(1) 求数列和的通项公式;
(2) 若数列的前项和为,问满足的最小正整数是多少?
14.如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.
(1)求证:DC⊥平面PAC;
(2)求证:平面PAB⊥平面PAC;
(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.
15.如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,
BC=2,AC=3.
(1)求证:BF⊥平面ACFD;
(2)求直线BD与平面ACFD所成角的余弦值.。