高中数列知识点、常用方法及典型题型总结

合集下载

高三数列知识点与题型总结文科

高三数列知识点与题型总结文科

数列考点总结第一部分求数列的通项公式一、数列的相关概念与表示方法见辅导书 二、求数列的通项公式四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式;等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法;求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列;求数列通项的基本方法是:累加法和累乘法; 一、累加法1.适用于:1()n n a a f n +=+----------这是广义的等差数列累加法是最基本的二个方法之一;若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式; 例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式;练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.答案:12+-n n练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.答案:裂项求和n a n 12-=评注:已知a a =1,)(1n f a a n n =-+,其中fn 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项na .①若fn 是关于n 的一次函数,累加后可转化为等差数列求和; ②若fn 是关于n 的二次函数,累加后可分组求和;③若fn 是关于n 的指数函数,累加后可转化为等比数列求和; ④若fn 是关于n 的分式函数,累加后可裂项求和;例3.已知数列}{n a 中,0>n a 且)(21n n n a n a S +=,求数列}{n a 的通项公式.练习3已知数列{}n a 满足112,12nn n a a a a +==+,求数列{}n a 的通项公式;二、累乘法 1、适用于:1()n na f n a +=累乘法是最基本的二个方法之二;若1()n n a f n a +=,则31212(1)(2)()n na aa f f f n a a a +===,,,两边分别相乘得,1111()nn k a a f k a +==⋅∏例4已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式;例5.设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n n=1,2,3,…,则它的通项公式是n a =________. 三、待定系数法适用于1()n n a qa f n +=+基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数; 1.形如(,1≠+=+c d ca a n n ,其中a a =1型1若c=1时,数列{n a }为等差数列; 2若d=0时,数列{na }为等比数列;3若01≠≠且d c 时,数列{na }为线性递推数列,其通项可通过待定系数法构造辅助数列来求.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c cd λ所以有:)1(11-+=-+-c d a c c d a n n 因此数列⎭⎬⎫⎩⎨⎧-+1c d a n 构成以11-+c da 为首项,以c 为公比的等比数列,所以11)1(1-⋅-+=-+n n c c d a c d a 即:1)1(11--⋅-+=-c d c c d a a n n . 规律:将递推关系dca a n n +=+1化为)1(11-+=-++c da c c d a n n ,构造成公比为c 的等比数列}1{-+c d a n 从而求得通项公式)1(1111-++-=-+c da c c d a n n逐项相减法阶差法:有时我们从递推关系dca a n n +=+1中把n 换成n-1有dca a n n +=-1,两式相减有)(11-+-=-n n n n a a c a a 从而化为公比为c 的等比数列}{1n n a a -+,进而求得通项公式.)(121a a c a a n n n -=-+,再利用类型1即可求得通项公式.我们看到此方法比较复杂.例6、已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a的通项公式;2.形如:nn n q a p a +⋅=+1其中q 是常数,且n ≠0,1①若p=1时,即:nn n q a a +=+1,累加即可.②若1≠p 时,即:n n n q a p a +⋅=+1,求通项方法有以下三种方向:i.两边同除以1+n p .目的是把所求数列构造成等差数列即:nnn n n qp p q a p a )(111⋅+=++,令n n n p a b =,则n n n q p p b b )(11⋅=-+,然后类型1,累加求通项.ii.两边同除以1+n q .目的是把所求数列构造成等差数列;即:qq a q p q a n n n n 111+⋅=++,令n nn q a b =,则可化为q b q p b n n 11+⋅=+.然后转化为类型5来解,iii.待定系数法:目的是把所求数列构造成等差数列设)(11n n n n p a p q a ⋅+=⋅+++λλ.通过比较系数,求出λ,转化为等比数列求通项.注意:应用待定系数法时,要求p ≠q,否则待定系数法会失效; 例7、已知数列{}n a 满足1112431n n n a a a -+=+⋅=,,求数列{}n a的通项公式;练习3.2009陕西卷文已知数列{}n a 满足,*11212,,2n n n a a a a a n N ++=∈’+2==.()I 令1n n n b a a +=-,证明:{}n b 是等比数列;Ⅱ求{}n a 的通项公式;答案:1{}n b 是以1为首项,12-为公比的等比数列;21*521()()332n n a n N -=--∈;总结:四种基本数列 1.形如)(1n f a a n n =-+型等差数列的广义形式,见累加法;2.形如)(1n f a a n n =+型等比数列的广义形式,见累乘法;3.形如)(1n f a a n n =++型1若da a n n =++1d 为常数,则数列{na }为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;2若fn 为n 的函数非常数时,可通过构造转化为)(1n f a a n n =-+型,通过累加来求出通项;或用逐差法两式相减得)1()(11--=--+n f n f a a n n ,,分奇偶项来分求通项.4.形如)(1n f a a n n =⋅+型1若pa a n n =⋅+1p 为常数,则数列{na }为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;2若fn 为n 的函数非常数时,可通过逐差法得)1(1-=⋅-n f a a n n ,两式相除后,分奇偶项来分求通项. 例8.数列{na }满足01=a ,na a n n 21=++,求数列{an}的通项公式.例9.已知数列满足}{n a )(,)21(,3*11N n a a a n n n ∈=⋅=+,求此数列的通项公式.第二部分数列求和一、公式法1.如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n 项和公式,注意等比数列公比q 的取值情况要分q =1或q ≠1.2.一些常见数列的前n 项和公式: 11+2+3+4+…+n =; 21+3+5+7+…+2n -1=n 2;32+4+6+8+…+2n=n2+n.二、非等差、等比数列求和的常用方法1.倒序相加法如果一个数列{a n},首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n项和即可用倒序相加法,等差数列的前n项和即是用此法推导的.2.分组转化求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和而后相加减.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,等比数列的前n项和就是用此法推导的.4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.小题能否全取1.2012·沈阳六校联考设数列{-1n}的前n项和为S n,则对任意正整数n,S n=2.等差数列{a n}的通项公式为a n=2n+1,其前n项的和为S n,则数列的前10项的和为A.120 B.70C.75 D.1003.数列a1+2,…,a k+2k,…,a10+20共有十项,且其和为240,则a1+…+a k+…+a10的值为A.31 B.120C.130 D.1854.若数列{a n}的通项公式为a n=2n+2n-1,则数列{a n}的前n项和为________.5.数列,,,…,,…的前n项和为________.例1等比数列{a n}中,a123,且a1,a2,a3中的任何两个数不在下表的同一列.1求数列{a n}2若数列{b n}满足:b n=a n+-1n ln a n,求数列{b n}的前2n项和S2n...例2 已知数列{a n}n2a6=8a3.1求a n;2求数列{na n}的前n项和T n.2.已知等比数列{a n}的前n项和为S n,且满足S n=3n+k.1求k的值及数列{a n}的通项公式;2若数列{b n}满足=4+ka n b n,求数列{b n}的前n项和T n.T n=.例3 已知数列{a n}n1n n1求数列{a n}的通项公式;2设b n=,求数列{b n}的前n项和T n.3.在等比数列{a n}中,a1>0,n∈N,且a3-a2=8,又a1、a5的等比中项为16.1求数列{a n}的通项公式;2设b n=log4a n,数列{b n}的前n项和为S n,是否存在正整数k,使得+++…+<k对任意n∈N恒成立.若存在,求出正整数k的最小值;不存在,请说明理由.课后练习题1.已知数列{a n}的前n项和S n=n2-6n,则{|a n|}的前n项和T n=A.6n-n2B.n2-6n+182.若数列{a n}满足a1=2且a n+a n-1=2n+2n-1,S n为数列{a n}的前n项和,则log2S2012+2=________.3.已知递增的等比数列{a n}满足:a2+a3+a4=28,且a3+2是a2,a4的等差中项.1求数列{a n}的通项公式;2若b n=a n log a n,S n=b1+b2+…+b n,求S n.4.已知{a n}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.1求数列{a n}的通项;2求数列{2a n}的前n项和S n.S n=2n+1-2.2.设函数fx=x3,在等差数列{a n}中,a3=7,a1+a2+a3=12,记S n=f,令b n=a n S n,数列的前n项和为T n.1求{a n}的通项公式和S n;2求证:T n<.3.已知二次函数fx=x2-5x+10,当x∈n,n+1n∈N时,把fx在此区间内的整数值的个数表示为a n.1求a1和a2的值;2求n≥3时a n的表达式;3令b n=,求数列{b n}的前n项和S n n≥3.5-.。

(完整版)高三总复习数列知识点及题型归纳总结

(完整版)高三总复习数列知识点及题型归纳总结

一、数列的概念(1) 数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。

记作a n ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作 a n ; 数列的一般形式:a 1, a 2, a 3,……,a n ,……,简记作a n 。

例:判断下列各组元素能否构成数列 (1) a, -3, -1, 1, b, 5, 7, 9; (2) 2010年各省参加高考的考生人数。

(2) 通项公式的定义:如果数列 叫这个数列的通项公式。

例如:①:1 , 2 , 3 , 4, 511111 _ _ _ _ , ? ? ?2 3 4 5a n = n ( n 7, n N ),1 a n =(n N)。

n说明:1 n 2k 1② 同一个数列的通项公式的形式不一定唯一。

例如,a n = ( 1)n =(k Z);1,n 2k③ 不是每个数列都有通项公式。

例如, 1 , 1.4 , 1.41 , 1.414 ,…… (3) 数列的函数特征与图象表示: 序号:1 2 3 4 5 6 项:456 7 8 9上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。

从函数观点看,数列实质上是定义域为正整数集N (或它的有限子集)的函数 f(n)当自变量n 从1开始依次取值时对应的一系列函数值f(1),f(2), f(3),……,f(n),……•通常用a n 来代替f n ,其图象是一群孤立点。

例:画出数列a n 2n 1的图像•(4) 数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关 系分:单调数列(递增数列、递减数列) 、常数列和摆动数列。

例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1) 1 , 2, 3, 4, 5, 6,… (2)10, 9, 8, 7, 6, 5, …(3) 1,0, 1,0, 1,0, … (4)a, a, a, a, a,…例:已知数列{a n }的前n 项和s n 2n 2 3,求数列{a n }的通项公式高三总复习 数列{a n }的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就②:数列①的通项公式是 数列②的通项公式是①a n 表示数列,a n 表示数列中的第n 项,a n = n 表示数列的通项公式;(5)数列{ a n }的前n 项和S n 与通项a n 的关系:a nS 1(n 1)S n A n > 2)练习:1 •根据数列前4项,写出它的通项公式:(1) 1, 3, 5, 7……;22 132 1 42 1 52 1(2)234 5 (3)1 1 1 1---1*2*3*44*5(4) 9, 99, 999, 9999 …(5) 7, 77, 777, 7777,(6)8, 88, 888, 8888 2 •数列a n 中,已知a n(1)与出a i, , a 2, a 3, a n 1, a n 2 ;2(2) 79 2是否是数列中的项?若是,是第几项?33• (2003京春理14,文15)在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表 观察表中数据的特点,用适当的数填入表中空白(_____ )内。

高中数学数列题型总结

高中数学数列题型总结

高中数学数列题型总结高中数学数列题型总结数列是高中数学中重要的一个概念,涉及到的题型也非常多样化。

在高中数学的学习中,掌握数列的相关知识和解题方法是非常重要的。

下面将对高中数学中常见的数列题型进行总结。

一、数列的概念与性质1. 数列的定义:数列是按照一定规律排列的一组数。

2. 数列的通项公式:数列中的每一项可以通过一个公式来表示。

3. 等差数列:数列中任意两项之差都是一个常数。

4. 等比数列:数列中任意两项之比都是一个常数,且这个常数不等于0。

5. 递推公式:数列中每一项都可以通过前一项来推得的公式。

6. 通项公式的求解:根据已知的数列性质,可以通过递推公式或其他方法求得数列的通项公式。

7. 数列的和:求一个数列的前n项和,可以通过直接相加或其他方法得到。

二、等差数列1. 等差数列的性质:等差数列的前n项和、通项公式等。

2. 等差数列的应用:通过等差数列可以解决一些实际问题,如等差数列求和、等差数列求项数等。

3. 等差数列的变形与推广:等差数列的变形包括错位相减法、差分法等。

三、等比数列1. 等比数列的性质:等比数列的前n项和、通项公式等。

2. 等比数列的应用:通过等比数列可以解决一些实际问题,如等比数列求和、等比数列求项数等。

3. 等比数列的变形与推广:等比数列的变形包括指数函数、对数函数等。

四、数列的求和与项数1. 数列的前n项和:数列前n项的和可以通过直接相加或其他方法求得。

2. 数列中某个数值:已知数列的前n项和,可以通过逆向求和的方法得到某个项的值。

3. 数列的项数:已知数列的前n项和,可以通过逆向求和的方法得到项数的范围。

五、数列的综合应用1. 数列的应用于数学问题:数列的概念和性质可以应用到其他数学问题中,如排列组合、概率等。

2. 数列的应用于实际问题:数列的概念和性质可以应用到实际问题中,如金融、物理等领域。

六、数列的证明与推广1. 数列的性质证明:对于已知的数列性质可以进行证明。

高中数列知识点归纳总结及例题

高中数列知识点归纳总结及例题

高中数列知识点归纳总结及例题数列是高中数学中的一个重要概念,它在许多数学问题中都起着至关重要的作用。

通过学习数列的定义、性质和求解方法,可以帮助我们更好地理解和应用数学知识。

本文将对高中数列知识点进行归纳总结,并附上相关例题供读者练习。

1. 数列的定义与性质数列是按照一定顺序排列的一组数。

其中,每一个数称为数列的项,位置称为项数,用字母a表示数列的通项。

数列的性质包括等差数列和等比数列两种常见情况:1.1 等差数列等差数列是指数列中相邻两项之差都相等的数列。

设数列为{an},公差为d,则有如下性质:(1)通项公式:an = a1 + (n-1)d(2)前n项和公式:Sn = (a1 + an) * n / 2(3)项数公式:n = (an - a1) / d + 1例题1:已知等差数列{an}的首项是3,公差是4,求第10项的值。

解析:根据等差数列的通项公式,代入a1 = 3,d = 4,n = 10,求得a10 = 3 + (10-1) * 4 = 39。

1.2 等比数列等比数列是指数列中相邻两项之比都相等的数列。

设数列为{an},公比为q,则有如下性质:(1)通项公式:an = a1 * q^(n-1)(2)前n项和公式:Sn = a1 * (q^n - 1) / (q - 1)(3)项数公式:n = logq(an / a1) + 1例题2:已知等比数列{an}的首项是2,公比是3,求第5项的值。

解析:根据等比数列的通项公式,代入a1 = 2,q = 3,n = 5,求得a5 = 2 * 3^(5-1) = 162。

2. 数列的求和数列的求和是数学中常见的问题之一,通过找到数列的规律和应用对应的公式,可以快速求解数列的和。

下面分别介绍等差数列和等比数列的求和公式。

2.1 等差数列的求和对于等差数列{an},前n项和的计算公式为Sn = (a1 + an) * n / 2。

其中,a1为首项,an为末项,n为项数。

数列 知识点总结及数列求和,通项公式的方法归纳(附例题)

数列 知识点总结及数列求和,通项公式的方法归纳(附例题)

⎩⎨⎧无穷数列有穷数列按项数 2221,21(1)2nn a a n a a n a n=⎧⎪=+=⎪⎨=-+⎪⎪=-⋅⎩n n n n n常数列:递增数列:按单调性递减数列:摆动数列:数 列数列的考查主要涉及数列的基本公式、基本性质、通项公式,递推公式、数列求和、数列极限、简单的数列不等式证明等.1.数列的有关概念:(1) 数列:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. (2) 从函数的观点看,数列可以看做是一个定义域为正整数集N +(或它的有限子集)的函数。

当自变量从小到大依次取值时对应的一列函数值。

由于自变量的值是离散的,所以数列的值是一群孤立的点。

(3) 通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.如: 221n a n =-。

(4) 递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,121n n a a -=+,其中121n n a a -=+是数列{}n a 的递推公式.再如: 121,2,a a ==12(2)n n n a a a n --=+>。

2.数列的表示方法:(1) 列举法:如1,3,5,7,9,… (2)图象法:用(n, a n )孤立点表示。

(3) 解析法:用通项公式表示。

(4)递推法:用递推公式表示。

3.数列的分类:按有界性M M M >Mn n n n +⎧≤∈⎪⎨⎪⎩有界数列:存在正数,总有项a 使得a ,n N 无界数列:对于任何正数,总有项a 使得a4.数列{a n }及前n 项和之间的关系:123n n S a a a a =++++ 11,(1),(2)n n n S n a S S n -=⎧=⎨-≥⎩等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差. 2.通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差.可变形为d m n a a m n )(-+= ⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列; ⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列. 5.常用性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}p a n +、{}n pa (p 是常数)都是等差数列;在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd 。

高中数学数列知识点总结

高中数学数列知识点总结

高中数学数列知识点总结一、数列的概念数列是由一系列按照一定规律排列的数构成的序列。

其中,数列中的每一个数称为该数列的项,而数列的顺序不同,项的值也可能不同。

二、数列的表示方法数列常用的表示方法有两种: 1. 列举法:将数列的各项按照一定顺序列举出来,使用逗号将它们分隔开。

例如:1, 2, 3, 4, 5, … 2. 通项公式法:通过一个固定的公式,可以计算数列中任意位置的项。

例如:an = 2n+1,其中an表示数列中的第n项。

三、等差数列等差数列是指数列中的每一项与它的前一项之差都相等的数列。

常用的表示方法是an = a1 + (n-1)d,其中a1表示首项,d表示公差,n表示项数。

等差数列的常用性质有: - 公差d的求法:d = a2 - a1 = a3 - a2 = … - 第n项的求法:an = a1 + (n-1)d - 前n项和的求法:Sn = n/2*(a1 + an) - 通项公式的推导:根据前两项之差和前两项之和的关系,可以推导出等差数列的通项公式。

四、等比数列等比数列是指数列中的每一项与它的前一项之比都相等的数列。

常用的表示方法是an = a1 * r^(n-1),其中a1表示首项,r表示公比,n表示项数。

等比数列的常用性质有: - 公比r的求法:r = a2 / a1 = a3 / a2 = … - 第n项的求法:an = a1 * r^(n-1) - 前n项和的求法:Sn = (a1 * (1-r^n)) / (1-r) - 通项公式的推导:根据前两项之比和前两项之积的关系,可以推导出等比数列的通项公式。

五、数列求和公式的推导数列求和公式是指在一定条件下,通过一定的数学推导可以得到数列前n项和的公式。

常见的数列求和公式有等差数列求和公式和等比数列求和公式。

1. 等差数列求和公式设有等差数列a1, a2, a3, …, an,且首项为a1,末项为an,项数为n,公差为d,则等差数列的前n项和为Sn = n/2*(a1 + an)。

高中数列题型总结

高中数列题型总结

高中数列题型总结高中数学中,数列是一个重要的概念。

数列题型主要包括等差数列、等比数列、递推数列等。

下面将对这些常见的数列题型进行总结。

一、等差数列1. 等差数列的概念:等差数列是指一个数列,其中相邻两项之间的差值是一个常数d。

数列的通项公式为an=a1+(n-1)d。

2. 等差数列的性质:- 若数列首项为a1,公差为d,则数列的第n项为an=a1+(n-1)d。

- 数列的前n项和Sn可以表示为Sn=(a1+an)n/2。

- 等差数列的性质还包括数列的前n项和与项数n的关系、等差数列的倒数第n项与第n项之和等。

3. 等差数列的题型:- 求等差数列的通项公式;- 求等差数列的前n项和;- 求等差数列中满足某些条件的项数;- 求等差数列中满足某些条件的项的和等。

二、等比数列1. 等比数列的概念:等比数列是指一个数列,其中相邻两项之间的比值是一个常数q。

数列的通项公式为an=a1*q^(n-1)。

2. 等比数列的性质:- 若数列首项为a1,公比为q,则数列的第n项为an=a1*q^(n-1)。

- 数列的前n项和Sn可以表示为Sn=a1*(1-q^n)/(1-q)。

- 等比数列的性质还包括数列的前n项和与项数n的关系、等比数列的倒数第n项与第n项之积等。

3. 等比数列的题型:- 求等比数列的通项公式;- 求等比数列的前n项和;- 求等比数列中满足某些条件的项数;- 求等比数列中满足某些条件的项的和等。

三、递推数列1. 递推数列的概念:递推数列是指一个数列,其中每一项都通过前一项来递推得到。

数列的通项公式一般无法表示。

2. 递推数列的性质:- 若数列的第n项为an,第n-1项为an-1,则数列的通项公式无法表示为an=f(an-1),其中f为一个函数。

- 递推数列的性质通常通过给定的递推规则来描述,如斐波那契数列等。

3. 递推数列的题型:- 求递推数列的前n项;- 求递推数列满足某些条件的项数;- 求递推数列满足某些条件的项等。

(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结

(完整版)数列题型及解题方法归纳总结数列是数学中一个重要的概念,也是数学中常见的题型之一。

数列题目通常会给出一定的条件和规律,要求我们找出数列的通项公式、前n项和等相关内容。

下面对数列题型及解题方法进行归纳总结。

一、数列的基本概念1. 数列的定义:数列是按照一定规律排列的一列数,用通项公式a_n表示。

2. 首项和公差:对于等差数列,首项是指数列的第一个数,公差是指相邻两项之间的差值。

通常用a1表示首项,d表示公差。

3. 首项和公比:对于等比数列,首项是指数列的第一个数,公比是指相邻两项之间的比值。

通常用a1表示首项,r表示公比。

二、等差数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公差,求第n项的值。

使用通项公式a_n = a1 + (n-1)d。

(2)已知相邻两项的值,求公差。

根据 a_(n+1) - a_n = d,解方程即可。

(3)已知首项和第n项的值,求公差。

根据 a_n = a1 + (n-1)d,解方程即可。

2. 找前n项和:(1)已知首项、公差和项数,求前n项和。

使用公式S_n= (n/2)(a1 + a_n)。

(2)已知首项、末项和项数,求公差。

由于S_n =(n/2)(a1 + a_n),可以列方程求解。

(3)已知首项、公差和前n项和,求项数。

可以列方程并解出项数。

3. 找满足条件的项数:(1)已知首项、公差和条件,求满足条件的项数。

可以列方程,并解出项数。

三、等比数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公比,求第n项的值。

使用通项公式a_n = a1 * r^(n-1)。

(2)已知相邻两项的值,求公比。

根据 a_n / a_(n-1) = r,解方程即可。

(3)已知首项和第n项的值,求公比。

根据 a_n = a1 * r^(n-1),解方程即可。

2. 找前n项和:(1)已知首项、公比和项数,求前n项和。

使用公式S_n = (a1 * (1 - r^n)) / (1 - r)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n −m
⑵在等比数列 {Байду номын сангаас n } 中, 等距离取出若干项也构成一个等比数列, 即 a n , a n + k , a n + 2 k , a n + 3k , L
(n, m ∈ N + )
⑷若 m + n = p + q(m, n, p, q ∈ N + ) ,则 a m ⋅ a n = a p ⋅ a q ;
⑴数列 {a n } 是等差数列,则数列 {a n + p}、 {pa n } ( p 是常数)都是等差数列; 为等差数列,公差为 kd .
⑵在等差数列 {a n } 中, 等距离取出若干项也构成一个等差数列, 即 a n , a n + k , a n + 2 k , a n + 3k , L
⑶ a n = a m + ( n − m )d ; a n = an + b ( a , b 是常数 ) ; S n = an 2 + bn ( a , b 是常数,
这个式子叫做数列 {a n } 的递推公式. 如数列 {a n } 中, a1 = 1, a n = 2a n + 1 , 其中 a n = 2a n + 1 是数列 {a n } 的递推公式. 4. 数 列 的 前 n 项 和 与 通 项 的 公 式 ① S n = a1 + a 2 + L + a n ;
a ≠ 0)
⑷若 m + n = p + q(m, n, p, q ∈ N + ) ,则 a m + a n = a p + a q ;
Sn 是等差数列; n S a ⑹当项数为 2n (n ∈ N + ) ,则 S 偶 − S奇 = nd , 偶 = n +1 ; S奇 an
⑸若等差数列 {a n } 的前 n 项和 S n ,则 当项数为 2n − 1( n ∈ N + ) ,则 S 奇 − S 偶 = a n ,
S偶 n − 1 = . S奇 n
⑺若等差数列 {a n } 的前 n 项和 S n ,则 S k 、 S 2 k − S k 、 S 3k − S 2 k 、 S 4 k − S 3k 是等差数列. 等比数列 1.等比数列的概念 如果一个数列从第二项起,每一项与它前一项的比等于同一个常数 q ( q ≠ 0 ) ,这个数列叫 做等比数列,常数 q 称为等比数列的公比. 2.通项公式与前 n 项和公式 ⑴通项公式: a n = a1q n −1 , a1 为首项, q 为公比 . ⑵前 n 项和公式:①当 q = 1 时, S n = na1 ②当 q ≠ 1 时, S n =
a n +1 = q ( n ∈ N + , q ≠ 0 是常数) ⇔ {a n } 是等比数列; an
2
⑵中项法: a n +1 = a n ⋅ a n+ 2 ( n ∈ N + )且 a n ≠ 0 ⇔ {a n } 是等比数列. 5.等比数列的常用性质 ⑴数列 {a n } 是等比数列,则数列 {pa n } 、 {pa n } ( q ≠ 0 是常数)都是等比数列; 为等比数列,公比为 q k . ⑶ an = am ⋅ q
a1 (1 − q n ) a1 − a n q = . 1− q 1− q
3.等比中项 如果 a, G, b 成等比数列,那么 G 叫做 a 与 b 的等比中项. 即: G 是 a 与 b 的等差中项 ⇔ a , A , b 成等差数列 ⇒ G 2 = a ⋅ b . 4.等比数列的判定方法 ⑴定义法:
n( a1 + a n ) 1 或 S n = na1 + n ( n − 1)d . 2 2
3.等差中项 如果 a , A, b 成等差数列,那么 A 叫做 a 与 b 的等差中项. 即: A 是 a 与 b 的等差中项 ⇔ 2 A = a + b ⇔ a , A , b 成等差数列. 4.等差数列的判定方法 ⑴定义法: a n +1 − a n = d ( n ∈ N + , d 是常数) ⇔ {a n } 是等差数列; ⑵中项法: 2a n +1 = a n + a n + 2 ( n ∈ N + ) ⇔ {a n } 是等差数列. 5.等差数列的常用性质
(或前几项)间的关系可以用一个式子来表示,即 a n = f ( a n −1 ) 或 a n = f ( a n −1 , a n − 2 ) ,那么

S (n = 1) an = 1 . S n − S n −1 ( n ≥ 2)
5. 数列的表示方法:解析法、图像法、列举法、递推法. 6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有 界数列,无界数列. ①递增数列:对于任何 n ∈ N + ,均有 a n +1 > a n . ②递减数列:对于任何 n ∈ N + ,均有 a n +1 < a n . ③摆动数列:例如: − 1,1, −1,1,−1, L. ④常数数列:例如:6,6,6,6,……. ⑤有界数列:存在正数 M 使 a n ≤ M , n ∈ N + . ⑥无界数列:对于任何正数 M ,总有项 a n 使得 a n > M . 等差数列 1.等差数列的概念 如果一个数列从第二项起,每一项与它前一项的差等于同一个常数 d ,这个数列叫做等差 数列,常数 d 称为等差数列的公差. 2.通项公式与前 n 项和公式 ⑴通项公式 a n = a1 + ( n − 1) d , a1 为首项, d 为公差. ⑵前 n 项和公式 S n =
数列
数列概念 1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. 2.通项公式:如果数列 {a n } 的第 n 项与序号之间可以用一个式子表示,那么这个公式叫做 这个数列的通项公式,即 a n = f ( n ) . 3.递推公式:如果已知数列 {a n } 的第一项 (或前几项) ,且任何一项 a n 与它的前一项 a n −1
2
⑸若等比数列 {a n } 的前 n 项和 S n ,则 S k 、 S 2 k − S k 、 S 3k − S 2 k 、 S 4 k − S 3k 是等比数列. 二、典型例题 A、求值类的计算题(多关于等差等比数列) 1)根据基本量求解(方程的思想) 1、已知 S n 为等差数列 {a n } 的前 n 项和, a 4 = 9, a9 = −6, S n = 63 ,求 n ;
相关文档
最新文档