桥梁墩台计算

合集下载

桥梁工程 第七章 桥梁墩台

桥梁工程 第七章  桥梁墩台

桥梁工程系
第7章 桥梁墩台
3.5 薄壁墩

钢筋混凝土薄壁墩:一种新型桥墩,截面型式
有板壁形、I形、箱形等,构造简单、轻巧、圬工 体积少。 连续刚构桥双肢薄壁墩:在墩位上有两个相互 平行的墩壁与主梁刚接的桥墩。可增加桥梁刚度, 减少主梁支点负弯矩。桥梁美观,无需设置支座, 方便施工。
桥梁工程系
第7章 桥梁墩台
桥梁工程系
第7章 桥梁墩台
应力重分布计算根据三项基本条件进行,即平截面假 定(截面应变按线性分布)、弹性体假定(应力、应 变关系符合胡克定律,但受拉区不参加工作)、力的 平衡条件。对于单向偏心受压的矩形截面,重分布以 后的最大压应力如图所示。

柱式桥墩一般可分为独柱、双柱和多柱等形式,
它可以根据桥宽的需要以及地物地貌条件任意组合。
桥梁工程系
第7章 桥梁墩台
桥梁工程系
第7章 桥梁墩台
桥梁工程系
3.4 柔性墩
第7章 桥梁墩台
柔性排架桩墩是由单排或双排的钢筋混凝土 桩与钢筋混凝土盖梁连接而成。其主要特点是通 过一些构造措施,将上部结构传来的水平力(制 动力、温度影响力等)传递到全桥的各个柔性墩 台,或相邻的刚性墩台上,以减少单个柔性墩所 受到的水平力,从而达到减小桩墩截面的目的。
桥梁工程系
第7章 桥梁墩台
设计与计算步骤:
1. 结构尺寸拟定;
2. 荷载计算;
3. 荷载最不利组合;
4. 进行强度、刚度(变形)、抗裂性、稳定
性检算等。
桥梁工程系
第7章 桥梁墩台
(一)墩身检算项目
1.截面强度(应力) ; 2.截面合力偏心距;
3.纵向及横向稳定性(墩身整体稳定性);
4.墩顶弹性水平位移。

桥梁墩台计算

桥梁墩台计算
第二节 桥梁墩台的计算
一、作用在桥梁墩台上的荷载及组合 永久荷载: 恒载、土重和侧向土压力、预应力(组合式桥墩)、混凝 土收缩及徐变的影响力、水的浮力; 荷 载 基本可变荷载: 汽车荷载、汽车冲击力、离心力、汽车荷载引起的 侧向土压力、人群荷载、挂车或履带车荷载及其引 起的土侧压力; 其它可变荷载: 其它可变荷载有风力、汽车制动力、流水压力、冰压 力、支座摩阻力;在超静定结构中尚需考虑温度变化 的影响力; 偶然荷载:船只或漂流物撞击力,施工荷载和地震力;
桥台 桥台的荷载组合方法和桥墩相似,也须针对验算项目及验算截面的位置 按公路桥涵设计规范进行可能的荷载组合。由于活载可以布置在桥跨结构上, 也可布置在台后,在确定荷载最不利组合时,下列几种加载情况可作参考
1)在桥跨结构上布置车辆荷载,温度下降,制动力(向桥孔方向),并考 虑台后土侧压力(考虑最大弯矩组合); 2)在台后破坏棱体上布置车辆荷载,温度下降,并考虑台后土侧压力(考虑 最大水平力与最大反向弯矩组合); 3)在桥跨结构上和台后破坏棱体上都布置车辆荷载(当桥台尺寸较大时, 还要考虑在桥跨结构上、台后破坏棱体上和桥台上同时都布置活载的情 况),温度下降,制动力(向桥孔方向),并考虑台后土侧压力(考虑最 大竖向力组合)。
高墩
验算截面的内力计算
按照各种组合,分别计算各验算截面的竖向力、水平力和弯矩, N、H
M
得到并按下式计算各种组合的竖向力设计值及相应偏心矩:
N j so sl N
e0
强度验算
M N
N j ARaj / m
1 (

(
eo m ) y
eo 2 ) rw
4、汽车荷载的制动力
汽车荷载的制动力是桥梁墩台承受的主要纵向水平力之一,当汽车荷载在 桥上制动或减速时,在车轮与桥面之间产生相互作用力,此时桥面受到方 向与车辆行进方向相同的力,即称制动力,制动力可按公路桥涵设计规范 中有关规定计算。在计算梁式桥墩台时,制动力可移至支座中心(铰或滚 轴中心)或滑动支座、橡胶支座、摆动支座的底座面上。 5、流水压力及冰压力

桥梁工程墩台类型和构造及设计计算[详细]

桥梁工程墩台类型和构造及设计计算[详细]

LOGO
空腹式桥台: 前墙、后墙、基础板 和撑墙等部分组成。 前墙承受拱圈传来的荷载,后墙支 承台后的土压力。在前后墙之间设 置撑墙3~4道,作为传力构件,并 对后墙起到扶壁,对基础板起到加 劲作用。
LOGO
组合式桥台
组合式桥台由台身和后座两 部分组成台身部分承受拱的竖直 压力,后座部分则通过后座底板 的摩阻力及台后的土侧压力来平 衡拱的水平推力。
LOGO
(三)钢筋混凝土薄壁式墩和空心墩 在一些高大的桥墩中,为了减少圬工体积,节约材料,减
轻自重,减少软弱地基的负荷,也可将墩身内部做成空腔体、 即所谓空心桥墩。这种桥墩在外形上与实体重力式桥墩并无大 的差别,只是自重较实体重力式的轻,因此,它介于重力式桥 墩和轻型桥墩之间。几种常见的空心桥墩如图所示。
当施工时为了拱架的多次周转,或者当缆索吊装设计的工作跨径受到限制 时为了能按桥台与某墩之间或者按某两个桥墩之间作为一个施工段进行分段 施工,在此情况下也要设置能承受部分恒载单向推力的制动墩。如图所示:
LOGO
a)
b)
图 6-1-6 拱桥轻型单向推力墩 (a为斜撑墩b为悬臂墩)
LOGO
(3)相邻两孔推力不相等的桥墩 变更相邻的矢跨比,调整拱座位置或拱上结构形式 而使两推力或推力对桥墩弯矩大致相等。
圬 工 薄 壁 轻 型 桥 台
薄壁轻型桥台
LOGO
(一)齿槛式桥台
结构特点: 基底面积较大,可以支承一
定的垂直压力; 底板下的齿槛可以增加磨擦
和抗滑的稳定性; 台背做成斜挡板,利用它背
面的原状土和前墙背面的新填土, 共同平衡拱的水平推力;
前墙与后墙板之间的撑墙可 以提高结构的刚度;
齿槛的宽度和深度一般不小 于50cm。这种桥台适用于软土地 基和路堤较低的中小跨径拱桥。

墩台体积计算范文

墩台体积计算范文

墩台体积计算范文首先,墩台体积计算主要涉及以下几个方面的内容:1.墩子尺寸:墩子通常是建筑物地面以下的一种结构,用于支撑建筑物或桥梁等。

墩子可以有不同的形状,如方形、圆形、多边形等,其尺寸包括墩子的高度、上底面和下底面的边长或直径等。

2.台阶尺寸:台阶是用于连接不同高度地面的结构,通常用于楼梯、台子等。

台阶可分为阶梯和踏步两部分,其尺寸包括台阶的高度、踏步的长度、宽度等。

3.计算公式:墩台体积计算通常使用体积的计算公式,例如,计算一个矩形墩体的体积可以使用公式V=A×H,其中V表示体积,A表示底面积,H表示高度。

下面以一个具体的例子来说明墩台体积计算的步骤:假设有一个方形墩子,其上底面边长为4m,下底面边长为5m,高度为6m。

现在需要计算该墩子的体积。

首先计算底面积:A=上底面边长×下底面边长=4m×5m=20m²然后使用体积计算公式计算体积:V=A×H=20m²×6m=120m³所以该方形墩子的体积为120m³。

类似地,如果需要计算墩台的体积1.确定墩子和台阶的尺寸,包括墩子高度、上底面和下底面的边长或直径,以及台阶的高度、踏步的长度、宽度等。

2.计算墩子的底面积,根据墩子的形状使用相应的公式进行计算。

3.计算墩子的体积,使用体积计算公式进行计算。

4.如果存在多层台阶,需要将每个台阶的体积分别计算,并求和得到整个墩台的体积。

需要注意的是,这只是一个简单的例子,实际工程中可能会涉及更复杂的墩台形状和结构,需要根据实际情况进行具体的计算。

总结起来,墩台体积计算是建筑工程或土木工程中重要的计算内容,需要根据墩子和台阶的尺寸,使用相应的公式进行计算。

正确的墩台体积计算可以为后续的设计和施工提供准确的数据支持。

桥梁分部分项工程计算公式

桥梁分部分项工程计算公式

桥梁分部分项工程计算公式桥梁工程是土木工程中的重要组成部分,它承担着连接两地的重要作用。

在桥梁工程中,分部分项工程计算公式是非常重要的,它可以帮助工程师准确地计算各个部分的工程量,为工程的设计和施工提供重要参考。

本文将介绍桥梁分部分项工程计算公式的相关知识。

一、桥梁分部分项工程计算公式的概念。

桥梁分部分项工程计算公式是指根据工程设计要求,按照一定的计算方法和公式,计算桥梁工程各个部分的工程量。

这些工程量包括桥梁的各个构件的数量、长度、面积、体积等,是工程设计和施工的重要依据。

二、桥梁分部分项工程计算公式的应用。

1. 桥梁梁体计算公式。

桥梁梁体是桥梁的承载结构,其计算公式包括梁体的截面尺寸、钢筋数量和混凝土用量等。

梁体的计算公式可以根据桥梁的跨度、荷载等参数进行计算,以确保梁体的承载能力和稳定性。

2. 桥梁墩台计算公式。

桥梁的墩台是支撑桥梁梁体的重要构件,其计算公式包括墩台的数量、尺寸、混凝土用量等。

墩台的计算公式可以根据桥梁的跨度、荷载等参数进行计算,以确保墩台的承载能力和稳定性。

3. 桥梁桥面计算公式。

桥面是桥梁的行车部分,其计算公式包括桥面的长度、宽度、厚度、沥青用量等。

桥面的计算公式可以根据桥梁的跨度、荷载等参数进行计算,以确保桥面的承载能力和耐久性。

4. 桥梁栏杆计算公式。

桥梁的栏杆是保障行车安全的重要构件,其计算公式包括栏杆的长度、高度、钢筋用量等。

栏杆的计算公式可以根据桥梁的跨度、荷载等参数进行计算,以确保栏杆的稳固性和安全性。

5. 桥梁伸缩装置计算公式。

桥梁的伸缩装置是保障桥梁结构变形的重要部分,其计算公式包括伸缩装置的数量、尺寸、材料用量等。

伸缩装置的计算公式可以根据桥梁的跨度、荷载等参数进行计算,以确保伸缩装置的灵活性和可靠性。

三、桥梁分部分项工程计算公式的意义。

桥梁分部分项工程计算公式是桥梁工程设计和施工的重要依据,它的应用具有以下几点意义:1. 精确计算工程量。

桥梁分部分项工程计算公式可以帮助工程师精确计算各个部分的工程量,包括数量、长度、面积、体积等,为工程设计和施工提供准确的数据支持。

桥梁墩台的计算

桥梁墩台的计算
·作用在上部结构的车道荷载,对于钢筋混凝土柱式墩台应计入冲击力,对于重力式 墩台则不计冲击力;
·人群荷载; ·作用在上部结构和墩身上的纵、横向风力; ·车道荷载制动力; ·作用在墩身上的流水压力; ·作用在墩身上的冰压力; ·上部结构因温度变化对桥墩产生的附加力; ·支座摩阻力。 作用于桥墩上的偶然作用为: ·地震作用; ·作用在墩身上的船只或漂浮物的撞击作用。 上述各种作用的计算方法可参见第一章相关内容和《桥规》(JTG D60)有关条文。 重力式桥墩的作用效应组合主要与墩身所要验算的内容有关,例如,墩身截面的强度和 偏心的验算,整个桥墩的纵向及横向稳定性验算等。应根据可能出现的各种作用情况进行最 不利的作用效应组合。其次,拱桥重力式桥墩与梁桥的除了有共同点之外,也还存在一些差 异。例如拱桥不设活动支座因而没有支座摩阻力;但它要计及各种作用在拱座处产生的水平 推力和弯矩。下面将按梁桥和拱桥分别列出它们可能的作用效应组合。 (1) 梁桥重力式桥墩 1)第一种组合。按在桥墩各截面上可能产生的最大竖向力的情况进行组合。它是用来 验算墩身强度和基底最大应力。因此,除了有关的永久作用外,应在相邻两跨满布可变作用 的一种或几种(图 12.32a)。
∆ ——墩顶计算水平位移值(cm)。
(3)基础底面土的承载力和偏心距的验算
1)基底土的承载力验算。基底土的承载力一般按顺桥
方向和横桥方向分别进行验算。当偏心荷载的合力作用在基
底截面的核心半径以内时,应验算偏心向的基底应力。当设
ex N
置在基岩上的桥墩基底的合力偏心距超出核心半径ρ时,其
基底的一边将会出现拉应力,由于不考虑基底承受拉应力,
的活载布置计算的,故产生的拱脚弯矩很小,可以忽略不计;
M t , M t′ ——温度变化引起的拱脚弯矩;

桥墩台计算规定

桥墩台计算规定

桥墩按偏心受压构件考虑进行计算,先必须确定桥墩的计算长度,按《桥规》表5.3.1取值。

桥墩外力应考虑纵向水平力及其弯矩、横向风力(高墩)、地震力(纵横向、7级设防)、竖直力及其弯矩。

纵向水平力包括制动力引起的水平力、温度引起的水平力、收缩徐变引起的水平力、地震力引起的水平力、支座摩阻力。

一般情况下(无地震力),纵向水平力对桥墩截面影响较大,横向水平力影响较小。

水平制动力、温度力,收缩徐变力均按支座和桥墩合成刚度在各墩台分配,然后组合后与摩阻力组合比较,取最不利情况为桥墩水平力。

一般情况下取支座产生的摩阻力为最不利情况,此时计算出的配筋较为保守,偏于安全。

(关于摩阻力组合的问题,新规范没有进行明确规定,桥梁通新版对摩阻力进行判断组合或者强制组合,当按判断组合进行计算的时候,取制动力、温度力、收缩徐变力进行组合与摩阻力进行比较,取较小者进行配筋,当按强行组合进行计算的时候,取摩阻力为水平力。

)桥墩截面按偏心受压构件必须验算正截面强度,按《桥规》5.3.5~5.3.9条公式进行计算。

同时必须按轴心受压构件进行稳定性验算。

当计算桩柱式桥墩时,柱顶受板式橡胶支座弹性约束。

桩柱可换算为两端铰接的轴心受压等截面直杆,计算可参考《连续桥面简支梁墩台计算实例》第一节第九款。

关于墩台下部构造验算时的荷载组合问题,新版《地基规范》总则里面对荷载组合进行了明确规定,摘录如下,仅供参考:1.0.5条基础结构按承载能力极限状态设计时,结构重要性系数γ0,不低于主体结构的采用值,且不小于1.0;偶然组合时取1.0。

1.0.6条基础结构进行强度验算时,作用效应按承载能力极限状态两种组合进行(JTGD60-20044.1.6条)裂缝宽度验算时,作用效应按正常使用极限状态的短期效应组合采用。

1.0.7条地基(包括桩基)承载力验算时,传至基础或承台底面的作用效应主要按正常使用极限状态的短期效应组合采用,但应计入汽车冲击系数,且可变作用的频遇值系数均取1.0。

连续桥面简支梁桥墩台计算实例

连续桥面简支梁桥墩台计算实例

连续桥面简支梁桥墩台计算实例在进行连续桥面简支梁桥墩台计算之前,我们首先需要了解一些基本概念和计算方法。

连续桥面简支梁是指桥面梁连接在连续的墩台上,而桥墩台则是支撑桥面梁和承载荷载的结构。

在进行计算时,我们需要确定桥墩台的受力情况、计算荷载和使用适当的计算公式。

1.桥墩台的受力情况:在连续桥面简支梁中,桥墩台通常由墩台柱和墩台底座构成。

墩台柱主要受力于竖直和水平方向的荷载,而墩台底座主要受力于竖直方向的荷载。

为了保证桥墩台的稳定性和安全性,我们需要计算墩台柱和墩台底座的最大受力。

2.计算荷载:在进行连续桥面简支梁桥墩台计算时,我们需要考虑桥面梁、桥面铺装、人行道、护栏和侧线荷载等。

其中,桥面梁是承载车辆荷载的主要结构,所以需要特别注意桥面梁的荷载计算。

3.计算公式:-墩台柱受力计算公式:墩台柱竖直方向最大受力计算公式为Fv=P+W,其中P为上部结构竖直方向荷载,W为桥梁自重。

-墩台柱水平方向最大受力计算公式为Fh=H,其中H为水平方向荷载。

-墩台底座受力计算公式:墩台底座竖直方向最大受力计算公式为Fv=P+W+Wd,其中Wd为侧向荷载。

下面,我们以一个实例进行连续桥面简支梁桥墩台的计算。

假设我们要计算一座连续桥面简支梁的桥墩台,该桥的总长为40m,主跨长为20m,两个墩台之间的距离为10m。

墩台柱的材料是混凝土,墩台底座的材料是钢。

首先,我们需要确定桥墩台的受力情况。

在这个例子中,墩台柱主要受力于竖直和水平方向的荷载,而墩台底座主要受力于竖直方向的荷载。

接下来,我们需要计算荷载。

根据规范,我们可以计算出桥面梁、桥面铺装、人行道、护栏和侧线荷载等的荷载值。

最后,我们可以使用计算公式计算墩台柱和墩台底座的最大受力。

假设竖直方向的荷载为1000kN,桥梁自重为500kN,侧向荷载为200kN,水平方向荷载为300kN。

根据墩台柱受力计算公式,墩台柱竖直方向最大受力Fv=P+W=1000kN+500kN=1500kN。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12.2 桥梁墩台的计算
12.2.1 重力式桥墩
1.作用(荷载)及其组合
在第一章总论里,已经对公路桥涵设计所用的作用(荷载)及其组合作了详细介绍,本 节仅结合桥墩计算所应考虑的内容予以阐述。
桥墩计算中考虑的永久作用为: ·上部结构的恒重对墩帽或拱座产生的支承反力,包括上部构造混凝土收缩及徐变作用; ·桥墩自重,包括在基础襟边上的土重; ·预加力,例如对装配式预应力空心桥墩所施加的预加力; ·基础变位作用,对于奠基于非岩石地基上的超静定结构,应当考虑由于地基压密等引 起的支座长期变位的影响,并根据最终位移量按弹性理论计算构件截面的附加内力; ·水的浮力,基础底面位于透水性地基上的桥梁墩台,当验算稳定时,应考虑设计水位 的浮力;当验算地基应力时,可仅考虑低水位的浮力,或不考虑水的浮力。基础嵌入不透水 性地基的桥梁墩台不考虑水的浮力。作用在桩基承台底面的浮力,应考虑全部底面积。对桩 嵌入不透水地基并灌注混凝土封闭者,不应考虑桩的浮力,在计算承台底面浮力时应扣除桩 的截面面积。当不能确定地基是否透水时,应以透水或不透水两种情况与其他作用组合,取 其最不利者。 桥墩计算中考虑的可变作用为:
以上所述的各种作用效应组合是对重力式桥墩而言的,对于其它型式的桥墩,则要根据 它们的构造和受力特点进行具体分析,然后参照上述的一般原则,进行个别的作用效应组合。 这里要提出注意的是:
○1 不论对于哪一种型式的桥墩,在计算中对于各种荷载组合都要满足《桥规》中所规定 的强度安全系数和结构稳定系数。
○2 桥规中还规定,在可变作用中,有些荷载不应同时考虑(见第一章表 1.15),例如在 计入汽车制动力时,就不应同时计入流水压力、冰压力和支座摩阻力等。
N ——作用于基础底面合力的竖向分力; a、b——横桥方向及顺桥方向基础底面积的边长;
图 12.35 基底应力重分布
[σ ]——地基土壤的容许承载力,按荷载及使用情况计入容许承载力的提高系数;
cx ——顺桥方向验算时,基底受压面积在顺桥方向的长度,即 cx
=
3⎜⎛ b ⎝2
− ex
⎟⎞ ; ⎠
c y ——横桥方向验算时,基底受压面积在横桥方向的长度,即 c y
2. 重力式桥墩验算
对于梁桥和拱桥的重力式桥墩的计算,虽然在荷载 a 组合的内容上稍有不同,但是就某个截面而言,这些外力
都可以合成为竖向的和水平方向的合力(分别用 ΣN 和 ΣH 表示)以及绕该截面 x—x 轴和 y—y 轴的弯矩(分别
用 ΣM x 和 ΣM y 表示),如图 12.35 所示。因此,它们的验 b
的要求。
荷载情况 墩台仅受恒载作用
表 12.2 墩台基础合力偏心距的限值
地基条件
合力偏心距
非岩石地基
桥墩 e0≤0.1ρ 桥台 e0≤0.75ρ
(II)、(IV)恒载 + 车道荷载、人群荷载、
非岩石地基
冲击力、离心力的一种或几种 + 制动力、
石质较差的岩石地基
摩阻力、温度作用、流水、流冰、风力的
一种或几种组合;恒载 + 车道荷载、人
图 12.34 墩身底截面强度验算
1)内力计算。作用于每个截面上的外力应按顺桥方向和横桥方向分别进行作用效应组
合,以求得相应的竖向力 ΣN 、水平力 ΣH 和弯矩 ΣM 。
2)截面强度的验算。对于轴心受压和偏心受压的桥墩,可按《桥规》(JTJ022-85)第
3.0.2 条中有关公式进行验算。如果不满足要求时,就应修改墩身截面尺寸,重新验算。
作用,在一孔或跨径较大的一孔满布可变作用的一种或几种,如汽车制动力、纵向风力、温
度作用等,并计及由此对桥墩产生不平衡水平推力、竖向力和弯矩(图 12.33)。
对于单向推力墩则只考虑相邻两孔中跨径较大一孔的永久荷载作用力。
图 12.33 中的符号意义如下:
G ——桥墩自重;
Q ——水的浮力(仅在验算稳定时考虑);
H Fbk
=
Fbk 2
;Hale Waihona Puke Ht,H t′ ——温度变化引起在拱脚处的水平推力(图示方向为温度上升,降温时则方
向相反);
Hr, H r′ ——拱圈材料收缩引起的拱脚水平拉力;
M gk , M g′k ——结构自重引起的拱脚弯矩;
M Qk ——由车道荷载及人群荷载引起的拱脚弯矩,由于它是按 HQk 达到最大值时
·作用在上部结构的车道荷载,对于钢筋混凝土柱式墩台应计入冲击力,对于重力式 墩台则不计冲击力;
·人群荷载; ·作用在上部结构和墩身上的纵、横向风力; ·车道荷载制动力; ·作用在墩身上的流水压力; ·作用在墩身上的冰压力; ·上部结构因温度变化对桥墩产生的附加力; ·支座摩阻力。 作用于桥墩上的偶然作用为: ·地震作用; ·作用在墩身上的船只或漂浮物的撞击作用。 上述各种作用的计算方法可参见第一章相关内容和《桥规》(JTG D60)有关条文。 重力式桥墩的作用效应组合主要与墩身所要验算的内容有关,例如,墩身截面的强度和 偏心的验算,整个桥墩的纵向及横向稳定性验算等。应根据可能出现的各种作用情况进行最 不利的作用效应组合。其次,拱桥重力式桥墩与梁桥的除了有共同点之外,也还存在一些差 异。例如拱桥不设活动支座因而没有支座摩阻力;但它要计及各种作用在拱座处产生的水平 推力和弯矩。下面将按梁桥和拱桥分别列出它们可能的作用效应组合。 (1) 梁桥重力式桥墩 1)第一种组合。按在桥墩各截面上可能产生的最大竖向力的情况进行组合。它是用来 验算墩身强度和基底最大应力。因此,除了有关的永久作用外,应在相邻两跨满布可变作用 的一种或几种(图 12.32a)。
时,以及在裸拱情况下卸落拱架时,都应按照该阶段的作用效应组合进行这项验算。
(2)墩顶水平位移的验算
墩顶过大的水平位移会影响桥跨结构的正常使用,对于高度超过 20m 的重力式桥墩应
验算墩顶水平方向的弹性位移。桥规规定墩顶端水平位移的容许极限值为:
∆ ≤ 0.5 l
(12.3)
式中:
l——相邻墩台间最小跨径长度,以 m 计,跨径小于 25m 时仍以 25m 计;
群荷载、冲击力、离心力的一种或几种 + 制动力、摩阻力、温度作用、流水压力、
竖密岩石地基
流冰压力、风压力的一种或几种+偶然作
用中的船只或漂流物的撞击力;
岩石,密实的碎石土,密实的
(VI)恒载+地震力
砾、粗、中砂,老粘性土,
[σ0]≥300kPa 的一般粘性土 中密的碎石土,中密的砾、粗、
中砂,200kPa≤[σ0] <300 kPa 的一般粘性土
的活载布置计算的,故产生的拱脚弯矩很小,可以忽略不计;
M t , M t′ ——温度变化引起的拱脚弯矩;
M
r

M

r
——拱圈材料收缩引起的拱脚弯矩;
FWL ——墩身纵向风力;
2)横桥向的作用及其组合。在横桥方向作用于桥墩上的外力有风力、流水压力、冰压 力、船只或漂浮物撞击力、或地震力等。但是对于公路桥梁,横桥方向的受力验算一般不控 制设计。
(II)、(IV)、(VI)为《公路桥涵设计通用规范》(JTJ021-89)中的荷载组合编号。
(4)桥墩的整体稳定性验算 在设计中,除了满足地基强度和合力偏心距不超过容许值以外,还须就以下两个方面 对桥墩整体稳定性进行验算。 1) 倾覆稳定性验算。抵抗倾覆的稳定系数可按下式验算(图 12.36)
∆ ——墩顶计算水平位移值(cm)。
(3)基础底面土的承载力和偏心距的验算
1)基底土的承载力验算。基底土的承载力一般按顺桥
方向和横桥方向分别进行验算。当偏心荷载的合力作用在基
底截面的核心半径以内时,应验算偏心向的基底应力。当设
ex N
置在基岩上的桥墩基底的合力偏心距超出核心半径ρ时,其
基底的一边将会出现拉应力,由于不考虑基底承受拉应力,
算内容和计算方法基本相同,均应满足《桥规》(JTJ022-85)
各项要求。下面将叙述重力式桥墩的一般计算程序。
(1)桥墩墩身强度验算
x
对于较矮的桥墩一般验算墩身的底截面和墩身的突
变处截面;对于较高的桥墩,由于危险截面不一定在墩身
ey
N My H
y
x ex
y 截面
c
N Mx H
底 部 , 这 时 应 沿 竖 向 每 隔 2~3 米 验 算 一 个 截 面 , 其 步 骤 如 下 :
a)
Mr Mt Mgk
Mt Mr Mk
G Mgk
Hgk
Hr HgkHt Hgk Ngk HgkHtHFbk HQk Hr
N gk NQk
FwL
N Fbk
HFbk
h
b) Fbk
HFbk l
(2)拱桥重力式桥墩
1) 顺桥方向的作用及其效应组
Q
合。对于普通桥墩应为相邻两孔的永久
图 12.33 不等跨拱桥桥墩受力
Ngk, N g′k ——相邻两孔拱脚处因结构自重产生的竖向反力;
NQk——与车道荷载及人群荷载产生的 HQk 最大值相对应的拱脚竖向反力,可按 支点反力影响线求得;
NFbk——由桥面处制动力 Fbk 引起的拱脚竖向反力,即 N Fbk
=
Fbk h ,其中 h 为桥 l
面至拱脚的高度, l 为拱的计算跨径(图 12.33b);
了有关的永久作用外,应在相邻两孔的一孔上(当为不等跨桥梁时则在跨径较大的一孔上)
布置可变作用的一种或几种,见图 12.32b.
3)第三种组合。按桥墩各截面在横桥方向上可能产生最大偏心和最大弯矩的情况进行
组合。它是用来验算在横桥方向上的 墩身强度、基底应力、偏心以及桥墩 的稳定性。属于这一组合的除了有关 的永久作用外,要注意将可变作用的 一种或几种偏置于桥面的一侧布置, 此外还应考虑偶然作用中的船只或漂 浮物的撞击力等,见图 12.32c.
相关文档
最新文档