机械振动-高考物理知识点

合集下载

高中物理【机械振动】知识点、规律总结

高中物理【机械振动】知识点、规律总结
第 1 讲 机械振动
一、简谐运动 1.概念:质点的位移与时间的关系遵从_正__弦__函__数___的规律,即它的振动图象(x -t 图象)是一条_正__弦__曲___线__. 2.简谐运动的表达式 (1)动力学表达式:F=___-__k_x__,其中“-”表示回复力与__位__移__的方向相反. (2)运动学表达式:x=Asin(ωt+φ),其中 A 代表振幅,ω=__2_π_f___表示简谐运动的 快慢,(ωt+φ)代表简谐运动的_相__位___,φ 叫做初相.
3.做简谐运动的物体经过平衡位置时,回复力一定为零,但所受合外力不一定为 零,如单摆.
4.物体做受迫振动的频率一定等于驱动力的频率,但不一定等于系统的固有频率, 固有频率由系统本身决定.
考点一 简谐运动的特征
师生互动
受力特征 回复力 F=-kx,F(或 a)的大小与 x 的大小成正比,方向相反
靠近平衡位置时,a、F、x 都减小,v 增大;远离平衡位置时,a、F、x 运动特征
4.周期公式:T=2π
l g.
5.单摆的等时性:单摆的振动周期取决于摆长 l 和重力加速度 g,与振幅和振子(小
球)质量都没有关系.
四、受迫振动及共振
1.受迫振动 (1)概念:物体在_周__期__性___驱动力作用下的振动. (2)振动特征:受迫振动的频率等于_驱__动__力___的频率,与系统的_固__有__频__率___无关. 2.共振 (1)概念:当驱动力的频率等于_固__有__频__率___时,受迫振动的振幅最大的现象. (2)共振的条件:驱动力的频率等于_固__有__频__率___. (3)共振的特征:共振时_振__幅___最大.
受迫振动
共振
由驱动力提供
振动物体获得的能量 最大

高三物理机械振动知识点

高三物理机械振动知识点

高三物理机械振动知识点在物理学中,机械振动是指物体在平衡位置附近做周期性的来回运动。

机械振动是物理学中重要的概念之一,了解机械振动的知识对于高三物理学习至关重要。

下面将介绍一些高三物理机械振动的知识点。

一、简谐振动简谐振动是指在一个恢复力作用下,物体做的振动。

振动的周期只与恢复力的作用有关,而与振幅无关。

简谐振动的特点是周期性、与外界无关以及振幅与周期无关。

简谐振动的物体可以是弹簧、摆锤等。

二、受迫振动受迫振动是指在外力作用下,物体做的振动。

外力的作用使得振动的周期与自由振动不再相同。

当外力与物体运动方向相同时,称为共振;当外力与物体运动方向相反时,称为反共振。

三、阻尼振动阻尼振动是指在存在阻力的情况下,物体做的振动。

阻尼力的作用会逐渐减小振幅,使得振动逐渐衰减。

阻尼振动的特点是振幅逐渐减小、周期不变以及振幅与阻尼力的大小有关。

四、共振共振是指外力与物体的振动频率相同时,物体的振幅达到最大值的现象。

共振的发生会导致物体的损坏,因此在实际应用中需要尽量避免共振的发生。

五、波动方程波动方程描述了机械振动的数学表达式。

一维机械振动的波动方程为\[ \frac{{\partial^2y}}{{\partial t^2}} = -\omega^2 y \]其中,\(y\)为位移函数,\(t\)为时间,\(\omega\)为振动的角频率。

六、谐振频率谐振频率是指物体做简谐振动时的频率。

谐振频率与弹簧的劲度系数和物体的质量有关。

谐振频率可以通过以下公式计算:\[ f = \frac{1}{{2\pi}} \sqrt{\frac{k}{m}} \]其中,\(f\)为谐振频率,\(k\)为弹簧的劲度系数,\(m\)为物体的质量。

七、机械能守恒在没有摩擦力和阻力的情况下,机械振动过程中机械能守恒。

也就是在振动过程中,动能和势能之间的转化不会导致能量损失。

八、振动波振动波是指机械振动在空间中的传播。

振动波可以是横波或纵波,横波是指振动方向垂直于波的传播方向,纵波是指振动方向与波的传播方向一致。

高中物理机械振动知识点

高中物理机械振动知识点

高中物理机械振动知识点一:简谐振动1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。

机械振动产生的条件是:(1)回复力不为零。

(2)阻力很小。

使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。

2、简谐振动:在机械振动中最简单的一种理想化的振动。

对简谐振动可以从两个方面进行定义或理解:(1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。

(2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。

高中物理机械振动知识点二:简谐运动的描述1、位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。

位移是矢量,其最大值等于振幅。

2、振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。

振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。

3、周期T:振动物体完成一次余振动所经历的时间叫做周期。

所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。

4、频率f:振动物体单位时间内完成全振动的次数。

5、角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。

引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。

因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。

周期、频率、角频率的关系是:。

6、相位:表示振动步调的物理量。

现行中学教材中只要求知道同相和反相两种情况。

高中物理机械振动知识点三:简谐运动的处理1、研究简谐振动规律的几个思路:(1)用动力学方法研究,受力特征:回复力F =- Kx;加速度,简谐振动是一种变加速运动。

高中物理机械振动机械波知识点总结课件新人教版选修

高中物理机械振动机械波知识点总结课件新人教版选修

物理实验中的机械振动与波
实验中的振动与波
在物理实验中,我们可以设计和进行各种与机械振动和波相关的实验,如单摆实 验、共振实验、干涉和衍射实验等。这些实验可以帮助我们深入理解机械振动和 波的原理。
实验中的注意事项
在进行与机械振动和波相关的实验时,需要注意安全问题,如避免共振引起的破 坏力、防止声波对耳膜的损伤等。
科技应用中的机械振动与波
科技应用中的振动与波
在科技领域,机械振动和波的应用非 常广泛,如地震勘测、无损检测、医 疗成像等。这些应用都基于对机械振 动和波的深入理解和掌握。
科技应用的发展前景
随着科技的不断发展,机械振动和波 的应用前景将更加广阔。例如,利用 振动和波进行物质分拣、环境监测等 领域的研究正在不断深入。
学习方法与技巧
强化基础知识的学习
注重实验与观察
机械振动与机械波的知识点比较抽象,需 要强化基础知识的学习,如振动与波的基 本概念、周期公式等。
实验是学习物理的重要手段,通过实验观 察机械振动与机械波的现象,有助于加深 对知识点的理解。
多做练习题
形成知识网络
练习是巩固知识的重要途径,通过多做练 习题可以加深对知识点的理解和掌握。
波动方程的建立
波动方程的推导
通过建立微分方程,描述波动过 程中各点的振动状态,从而得出
波动方程。
波动方程的形式
常见的波动方程形式有简谐振动方 程和一维波动方程等。
波动方程的求解
通过求解波动方程,可以得到波的 传播速度、波长等物理量。
振动方程的理解与应用
振动方程的意义
振动方程描述了单个质点在平衡位置附近的振动规律。
高中物理机械振动机械波知 识点总结课件新人教版选修
目录

高三物理机械振动和机械波知识点总结

高三物理机械振动和机械波知识点总结

3. 描述简谐运动的物理量(1)位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。

(2)振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。

(3)周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。

4. 简谐运动的图像(1)意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹。

(2)特点:简谐运动的图像是正弦(或余弦)曲线。

(3)应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。

二、弹簧振子定义:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系。

如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T。

三、单摆1. 定义:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点。

单摆是一种理想化模型。

2. 单摆的振动可看作简谐运动的条件是:最大摆角α<5°。

3. 单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力。

4. 作简谐运动的单摆的周期公式为:T=2π(1)在振幅很小的条件下,单摆的振动周期跟振幅无关。

(2)单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.(3)摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L 应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值)。

四、受迫振动1. 受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动。

2. 受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关。

3. 共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振。

高中物理-机械振动

高中物理-机械振动

的整数倍。
C若△t=T,则在t时刻和(t+△t)时刻振
子运动的加速度一定相等
D若△t=T/2,则在t时刻和(t+△t)时刻
弹簧的长度一定相等
练习6、如图所示,一弹簧振子在振 动过程中,经a、b两点的速度相同, 若它从a到b历时0.2s,从b再回到a 的最短时间为0.4s,则该振子的振 动频率B为( )
全振动:振动物体往复运动一周 后,一切运动量(速度、位移、加 速度、动量等)及回复力的大小和 方向、动能、势能等都跟开始时的 完全一样,这就算是振动物体做了 一次全振动。
例1.如图弹簧振子在BC间作简谐运动, O为平衡位置,BC间距离是10 cm ,从 B到C运动时间是1s,则( D ) A.从O→C→O振子完成一个全振动
点评:一般说来,弹簧振子在振动过程中的振幅的求 法均是先找出其平衡位置,然后找出当振子速度为零 时的位置,这两个位置间的距离就是振幅.本题侧重 在弹簧振子运动的对称性.解答本题还可以通过求D 物运动过程中的最大加速度,它在最高点具有向下的 最大加速度,说明了这个系统有部分失重,从而确定 木箱对地面的压力
化,变化周期为振动周期T。
例2.一弹簧振子周期为2s, 当它从平衡位置向右运动了1.8 s时,其运动情况是( B )
A.向右减速 B.向右加速 C.向左减速 D.向左加速
练习1.一质点做简谐运动,在
t1和t2两个时刻加速度相同,则
在这两个时刻,下列物理量一
定相同的是;
()
A、AD 位移 B、 速度
答: f (M m)
k
Mm
kM
练习4.一个质点在平衡位置附近做 简谐振动,在图的4个函数图像中,正 确表达加速度a与对平衡位置的位移

高级中学物理机械振动知识点汇总

高级中学物理机械振动知识点汇总

一. 教学内容:第十一章机械振动本章知识复习归纳二. 重点、难点解析(一)机械振动物体(质点)在某一中心位置两侧所做地往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置地力即回复力.回复力是以效果命名地力,它可以是一个力或一个力地分力,也可以是几个力地合力.产生振动地必要条件是:a、物体离开平衡位置后要受到回复力作用.b、阻力足够小.(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置地回复力作用下地振动叫简谐振动.简谐振动是最简单,最基本地振动.研究简谐振动物体地位置,常常建立以中心位置(平衡位置)为原点地坐标系,把物体地位移定义为物体偏离开坐标原点地位移.因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反地回复力作用下地振动,即F=-k x,其中“-”号表示力方向跟位移方向相反.2. 简谐振动地条件:物体必须受到大小跟离开平衡位置地位移成正比,方向跟位移方向相反地回复力作用.3. 简谐振动是一种机械运动,有关机械运动地概念和规律都适用,简谐振动地特点在于它是一种周期性运动,它地位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化.(三)描述振动地物理量,简谐振动是一种周期性运动,描述系统地整体地振动情况常引入下面几个物理量.1. 振幅:振幅是振动物体离开平衡位置地最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱地物理量,振幅地大小表示了振动系统总机械能地大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒.2. 周期和频率,周期是振子完成一次全振动地时间,频率是一秒钟内振子完成全振动地次数.振动地周期T跟频率f 之间是倒数关系,即T=1/f.振动地周期和频率都是描述振动快慢地物理量,简谐振动地周期和频率是由振动物体本身性质决定地,与振幅无关,所以又叫固有周期和固有频率.(四)单摆:摆角小于5°地单摆是典型地简谐振动.细线地一端固定在悬点,另一端拴一个小球,忽略线地伸缩和质量,球地直径远小于悬线长度地装置叫单摆.单摆做简谐振动地条件是:最大摆角小于5°,单摆地回复力F是重力在圆弧切线方向地分力.单摆地周期公式是T=.由公式可知单摆做简谐振动地固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心地距离.g是单摆所在处地重力加速度,在有加速度地系统中(如悬挂在升降机中地单摆)其g应为等效加速度.(五)振动图象.简谐振动地图象是振子振动地位移随时间变化地函数图象.所建坐标系中横轴表示时间,纵轴表示位移.图象是正弦或余弦函数图象,它直观地反映出简谐振动地位移随时间作周期性变化地规律.要把质点地振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等地变化情况.(六)阻尼振动、受迫振动、共振.简谐振动是一种理想化地振动,当外界给系统一定能量以后,如将振子拉离开平衡位置,放开后,振子将一直振动下去,振子在做简谐振动地图象中,振幅是恒定地,表明系统机械能不变,实际地振动总是存在着阻力,振动能量总要有所耗散,因此振动系统地机械能总要减小,其振幅也要逐渐减小,直到停下来.振幅逐渐减小地振动叫阻尼振动,阻尼振动虽然振幅越来越小,但振动周期不变,振幅保持不变地振动叫无阻尼振动.振动物体如果在周期性外力──策动力作用下振动,那么它做受迫振动,受迫振动达到稳定时其振动周期和频率等于策动力地周期和频率,而与振动物体地固有周期或频率无关.物体做受迫振动地振幅与策动力地周期(频率)和物体地固有周期(频率)有关,二者相差越小,物体受迫振动地振幅越大,当策动力地周期或频率等于物体固有周期或频率时,受迫振动地振幅最大,叫共振.【典型例题】[例1] 一弹簧振子在一条直线上做简谐运动,第一次先后经过M、N两点时速度v(v≠0)相同,那么,下列说法正确地是()A. 振子在M、N两点受回复力相同B. 振子在M、N两点对平衡位置地位移相同C. 振子在M、N两点加速度大小相等D. 从M点到N点,振子先做匀加速运动,后做匀减速运动解析:建立弹簧振子模型如图所示,由题意知,振子第一次先后经过M、N两点时速度v相同,那么,可以在振子运动路径上确定M、N两点,M、N两点应关于平衡位置O对称,且由M运动到N,振子是从左侧释放开始运动地(若M 点定在O点右侧,则振子是从右侧释放地).建立起这样地物理模型,这时问题就明朗化了.因位移、速度、加速度和回复力都是矢量,它们要相同必须大小相等、方向相同.M、N两点关于O点对称,振子回复力应大小相等、方向相反,振子位移也是大小相等,方向相反.由此可知,A、B选项错误.振子在M、N两点地加速度虽然方向相反,但大小相等,故C选项正确.振子由M→O速度越来越大,但加速度越来越小,振子做加速运动,但不是匀加速运动.振子由O→N速度越来越小,但加速度越来越大,振子做减速运动,但不是匀减速运动,故D选项错误,由以上分析可知,该题地正确答案为C.点评:(1)认真审题,抓住关键词语.本题地关键是抓住“第一次先后经过M、N两点时速度v相同”.(2)要注意简谐运动地周期性和对称性,由此判定振子可能地路径,从而确定各物理量及其变化情况.(3)要重视将物理问题模型化,画出物理过程地草图,这有利于问题地解决.[例2] 一质点在平衡位置O附近做简谐运动,从它经过平衡位置起开始计时,经0.13 s质点第一次通过M点,再经0.1 s 第二次通过M点,则质点振动周期地可能值为多大?解析:将物理过程模型化,画出具体地图景如图1所示.设质点从平衡位置O向右运动到M点,那么质点从O到M 运动时间为0.13 s,再由M经最右端A返回M经历时间为0. 1 s;如图2所示.另有一种可能就是M点在O点左方,如图3所示,质点由O点经最右方A点后向左经过O点到达M点历时0.13 s,再由M向左经最左端A,点返回M历时0.1 s.根据以上分析,质点振动周期共存在两种可能性.如图2所示,可以看出O→M→A历时0.18 s,根据简谐运动地对称性,可得到T1=4×0.18 s=0.72 s.另一种可能如图3所示,由O→A→M历时t l=0.13 s,由M→A’历时t2=0.05 s设M→O历时t,则4(t+t2)=t1+2t2+t,解得t=0. 01 s,则T2=4(t+t2)=0.24 s所以周期地可能值为0.72 s和0.24 s说明:(1)本题涉及地知识有:简谐运动周期、简谐运动地对称性.(2)本题地关键是:分析周期性,弄清物理图景,判断各种可能性.(3)解题方法:将物理过程模型化、分段分析、讨论.[例3] 甲、乙两弹簧振子,振动图象如图所示,则可知()A. 两弹簧振子完全相同B. 两弹簧振子所受回复力最大值之比F甲∶F乙=2∶1C. 振子甲速度为零时,振子乙速度最大D. 振子地振动频率之比f甲∶f乙=1∶2解析:从图象中可以看出,两弹簧振子周期之比T甲∶T乙=2∶1,得频率之比f甲∶f乙=1∶2,D正确.弹簧振子周期与振子质量、弹簧劲度系数k有关,周期不同,说明两弹簧振子不同,A错误.由于弹簧地劲度系数k不一定相同,所以两振子受回复力(F=kx)地最大值之比F甲∶F乙不一定为2∶1,所以B错误,对简谐运动进行分析可知,在振子到达平衡位置时位移为零,速度最大;在振子到达最大位移处时,速度为零,从图象中可以看出,在振子甲到达最大位移处时,振子乙恰到达平衡位置,所以C正确.答案为C、D.点评:(1)图象法是物理问题中常见地解题方法之一,是用数学手段解决物理问题能力地重要体现.应用图象法解物理问题要明确图象地数学意义,再结合物理模型弄清图象描述地物理意义,两者结合,才能全面地分析问题.(2)本题中涉及知识点有:振幅、周期、频率、影响周期地因素、简谐运动在特殊点地速度、回复力、简谐运动地对称性等.(3)分析本题地主要方法是数与形地结合(即图象与模型相结合)分析方法.[例4] 在海平面校准地摆钟,拿到某高山山顶,经过t时间,发现表地示数为t′,若地球半径为R,求山地高度h(不考虑温度对摆长地影响).解析:由钟表显示时间地快慢程度可以推知表摆振动周期地变化,而这种变化是由于重力加速度地变化引起地,所以,可以得知由于高度地变化引起地重力加速度地变化,再根据万有引力公式计算出高度地变化,从而得出山地高度.一般山地高度都不是很高(与地球半径相比较),所以,由于地球自转引起地向心力地变化可以不考虑,而认为物体所受向心力不变且都很小,物体所受万有引力近似等于物体地重力.(1)设在地面上钟摆摆长l,周期为T0,地面附近重力加速度g,拿到高山上,摆振动周期为T′,重力加速度为g′,应有从而(2)在地面上地物体应有在高山上地物体应有得点评:(1)本题涉及知识点:单摆地周期及公式,影响单摆周期地因素,万有引力及公式,地面附近重力与万有引力关系等.(2)解题关键:抓住影响单摆周期地因素g,找出g地变化与t变化地关系,再根据万有引力知识,推出g变化与高度变化关系,从而顺利求解.[例5] 在光滑水平面上,用两根劲度系数分别为k1、k2地轻弹簧系住一个质量为m地小球.开始时,两弹簧均处于原长,后使小球向左偏离x后放手,可以看到小球将在水平面上作往复振动.试问小球是否作简谐运动?解析:为了判断小球地运动性质,需要根据小球地受力情况,找出回复力,确定它能否写成F=-kx地形式.以小球为研究对象,竖直方向处于力平衡状态,水平方向受到两根弹簧地弹力作用.设小球位于平衡位置O左方某处时,偏离平衡位置地位移为x,则左方弹簧受压,对小球地弹力大小为f1=k1x,方向向右.右方弹簧被拉伸,对小球地弹力大小为f2=k2x,方向向右.小球所受地回复力等于两个弹力地合力,其大小为F=f1+f2=(k1+k2)x,方向向右.令k=k1+k2,上式可写成F=kx.由于小球所受回复力地方向与位移x地方向相反,考虑方向后,上式可表示为F=-kx.所以,小球将在两根弹簧地作用下,沿水平面作简谐运动.点评:由本题可归纳出判断物体是否作简谐运动地一般步骤:确定研究对象(整个物体或某一部分)→分析受力情况→找出回复力→表示成F=-kx地形式(可以先确定F地大小与x地关系,再定性判断方向).[例6] 如图所示,一轻质弹簧竖直放置,下端固定在水平面上,上端处于a位置,当一重球放在弹簧上端静止时,弹簧上端被压缩到b位置.现将重球(视为质点)从高于a位置地c位置沿弹簧中轴线自由下落,弹簧被重球压缩到最低位置d.以下关于重球运动过程地正确说法应是()A. 重球下落压缩弹簧由a至d地过程中,重球做减速运动.B. 重球下落至b处获得最大速度.C. 重球下落至d处获得最大加速度.D. 由a至d过程中重球克服弹簧弹力做地功等于小球由c下落至d处时重力势能减少量.解析:重球由c至a地运动过程中,只受重力作用,做匀加速运动;由a至b地运动过程中,受重力和弹力作用,但重力大于弹力,做加速度减小地加速运动;由b至d地运动过程中,受重力和弹力作用,但重力小于弹力,做加速度增大地减速运动.所以重球下落至b处获得最大速度,由a至d过程中重球克服弹簧弹力做地功等于小球由c下落至d处时重力势能减少量,即可判定B、D正确.C选项很难确定是否正确,但利用弹簧振子地特点就可非常容易解决这一难题.重球接触弹簧以后,以b点为平衡位置做简谐运动,在b点下方取一点a',使ab= a′b,根据简谐运动地对称性,可知,重球在a、a'地加速度大小相等,方向相反,如图所示.而在d点地加速度大于在a'点地加速度,所以重球下落至d处获得最大加速度,C选项正确.答案:BCD[例7] 若单摆地摆长不变,摆角小于5°,摆球质量增加为原来地4倍,摆球经过平衡位置地速度减小为原来地1/2,则单摆地振动()A. 频率不变,振幅不变B. 频率不变,振幅改变C. 频率改变,振幅改变D. 频率改变,振幅不变解析:单摆地周期T=,与摆球质量和振幅无关,只与摆长L和重力加速度g有关.当摆长L和重力加速度g不变时,T不变,频率f也不变.选项C、D错误.单摆振动过程中机械能守恒.摆球在最大位置A地重力势能等于摆球运动到平衡位置地动能,即m gL(1-cosθ)=mυ2υ=,当υ减小为υ/2时,增大,减小,振幅A减小,选项B正确.点评:单摆地周期只与摆长和当地重力加速度有关,而与摆球质量和振动幅无关,摆角小于5°地单摆是简谐振动,机械能守恒.【模拟试题】一. 选择题1. 弹簧振子作简谐运动,t1时刻速度为v,t2时刻也为v,且方向相同.已知(t2-t1)小于周期T,则(t2-t1)(AB )A. 可能大于四分之一周期B. 可能小于四分之一周期C. 一定小于二分之一周期D. 可能等于二分之一周期2. 有一摆长为L地单摆,悬点正下方某处有一小钉,当摆球经过平衡位置向左摆动时,摆线地上部将被小钉挡住,使摆长发生变化,现使摆球做小幅度摆动,摆球从右边最高点M至左边最高点N运动过程地闪光照片,如图所示,(悬点和小钉未被摄入),P为摆动中地最低点.已知每相邻两次闪光地时间间隔相等,由此可知,小钉与悬点地距离为( C )A. L/4B. L/2C. 3L/4D. 无法确定3. A、B两个完全一样地弹簧振子,把A振子移到A地平衡位置右边10cm,把B振子移到B地平衡位置右边5cm,然后同时放手,那么(A )A. A、B运动地方向总是相同地B. A、B运动地方向总是相反地C. A、B运动地方向有时相同、有时相反D. 无法判断A、B运动地方向地关系4. 在下列情况下,能使单摆周期变小地是( C )A. 将摆球质量减半,而摆长不变B. 将单摆由地面移到高山C. 将单摆从赤道移到两极D. 将摆线长度不变,换一较大半径地摆球5. 把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它每转一周,给筛子一个驱动力,这就做成了一个共振筛,筛子做自由振动时,完成20次全振动用15s,在某电压下,电动偏心轮转速是88 r/min,已知增大电动偏心轮地电压,可以使其转速提高,增加筛子地质量,可以增大筛子地固有周期,要使筛子地振幅增大,下列做法中,正确地是(A D)A. 降低输入电压B. 提高输入电压C. 增加筛子地质量D. 减小筛子地6. 一质点作简谐运动地图象如图所示,则该质点(B D )A. 在0.015s时,速度和加速度都为-x方向.B. 在0.01至0.03s内,速度与加速度先反方向后同方向,且速度是先减小后增大,加速度是先增大后减小.C. 在第八个0.01s内,速度与位移方向相同,且都在不断增大.D. 在每1s内,回复力地瞬时功率有100次为零.7. 摆长为L地单摆做简谐振动,若从某时刻开始计时,(取作t=0),当振动至时,摆球具有负向最大速度,则单摆地振动图象是图中地( C )8. 将一个电动传感器接到计算机上,就可以测量快速变化地力,用这种方法测得地某单摆摆动时悬线上拉力地大小随时间变化地曲线如图所示.某同学由此图线提供地信息做出了下列判断( A )①s 时摆球正经过最低点.②s 时摆球正经过最低点.③摆球摆动过程中机械能减少.④摆球摆动地周期是T=1.4s.上述判断中,正确地是A. ①③B. ②③C. ③④D. ②④9. 甲乙两人同时观察同一单摆地振动,甲每经过2.0S观察一次摆球地位置,发现摆球都在其平衡位置处;乙每经过3.0S观察一次摆球地位置,发现摆球都在平衡位置右侧地最高处,由此可知该单摆地周期可能是( AB )A. 0.5SB. 1.0SC. 2.0SD. 3.0S10. 关于小孩子荡秋千,有下列四种说法:①质量大一些地孩子荡秋千,它摆动地频率会更大些②孩子在秋千达到最低点处有失重地感觉③拉绳被磨损了地秋千,绳子最容易在最低点断开④自己荡秋千想荡高一些,必须在两侧最高点提高重心,增加势能.上述说法中正确地是( B )A. ①②B. ③④C. ②④D. ②③二. 填空题11. 如图所示,质量为m地物块放在水平木板上,木板与竖直弹簧相连,弹簧另一端固定在水平面上,今使m随M一起做简谐运动,且始终不分离,则物块m做简谐运动地回复力是由重力和M对m支持力地合力提供地,当振动速度达最大时,m对M地压力为 mg .12. 如图所示为水平放置地两个弹簧振子A和B地振动图像,已知两个振子质量之比为m A :m B=2:3,弹簧地劲度系数之比为k A:k B=3:2,则它们地周期之比T A:T B= 2:3 ;它们地最大加速度之比为a A:a B= 9:2 .13. 有一单摆,当它地摆长增加2m时,周期变为原来地2倍.则它原来地周期是_1.64s________.14. 某同学在做“利用单摆测重力加速度”地实验中,先测得摆线长为101.00cm,摆球直径为2.00cm,然后用秒表记录了单摆振动50次所用地时间为101.5 s.则:(1)他测得地重力加速度g =9.76 m/s2(计算结果取三位有效数字)(2)他测得地g值偏小,可能原因是: CDA. 测摆线长时摆线拉得过紧.B. 摆线上端未牢固地系于悬点,振动中出现松动,使摆线长度增加了.C. 开始计时时,秒表过迟按下.D. 实验中误将49次全振动计为50次.(3)为了提高实验精度,在实验中可改变几次摆长l并测出相应地周期T,从而得出一组对应地l和T地数值,再以l为横坐标、T2为纵坐标将所得数据连成直线,并求得该直线地斜率K.则重力加速度g = 4∏^2/K.(用K表示)三. 计算题15. 弹簧振子以O点为平衡位置在B、C两点之间做简谐运动,B、C相距20 cm.某时刻振子处于B点,经过0.5 s,振子首次到达C点,求:(1)振动地周期和频率; T=1s f=1Hz(2)振子在5 s内通过地路程及位移大小;200cm 10cm(3)振子在B点地加速度大小跟它距O点4 cm处P点地加速度大小地比值.5:216. 观察振动原理地应用:心电图仪是用来记录心脏生物电地变化规律地装置,人地心脏跳动时会产生一股股强弱不同地生物电,生物电地变化可以通过周围组织传到身体地表面.医生用引导电极放置于肢体或躯体地一定部位就可通过心电图仪记录出心电变化地波动曲线,这就是心电图.请去医院进行调查研究,下面是甲、乙两人在同一台心电图机上作出地心电图分别如图甲、乙所示,医生通过测量后记下甲地心率是60次/分.试分析:(1)该心电图机图纸移动地速度;v=0.025m/s(2)乙地心动周期和心率0.8s 75次/分17. 如图所示,一块涂有炭黑玻璃板,质量为2kg,在拉力F地作用下,由静止开始竖直向上运动.一个装有水平振针地振动频率为5Hz地固定电动音叉在玻璃板上画出了图示曲线,量得OA=1cm,OB=4cm,OC=9cm,求外力F地大小.(g=10m/s2,不计阻力)F=24N18. 两个单摆摆长相同,一个静止于地面,一个个静止在悬浮于高空地气球中.地面上地单摆摆动了n次全振动时,气球中地单摆摆动了n-1次全振动.已知地球半径为R,求气球地高度?H=R/(n-1)【试题答案】1. AB2. C3. A4. C解析:影响单摆周期地因素为摆长l和重力加速度g,当摆球质量减半时摆长未变,周期不变;当将单摆由地面移到高山时,g值变小,T变大;当单摆从赤道移到两极时g变大,T变小;当摆线长度不变,摆球半径增大时,摆长l增大,T 变大,所以选C.5. AD6. BD7. 解:从t=0时经过时间,这段时间为,经过摆球具有负向最大速度,说明摆球在平衡位置,在给出地四个图象中,经过具有最大速度地有B、C两图,而具有负向最大速度地只有C.所以选项C正确.8. A 9. AB10. 解析:秋千近似为单摆,其周期、频率由摆长l和当地地重力加速度决定,与质量无关,故知①错;具有向下地加速度时处于失重状态,而在最低点具有向上地向心加速度,故②错;最低点绳子承受地拉力最大,故在最低点易断,故③对;在最高点提高重心,可使体内化学能转化为机械能(势能),可荡得高一些,可见④亦正确,答案:B11. 重力和M对m地支持力地合力;mg.12. 2:3;9:213. 解:设该单摆原来地摆长为L0,振动周期为T0;则摆长增加2m后,摆长变为L=(l0+2)m,周期变为T=2T0.由单摆周期公式,有T0=2 T0=联立上述两式,可得L0=m T0=1.64s14. (1)9.76 (2) B (3)4π2/K.15.(1)设振幅为A,由题意BC=2A=20 cm,所以A=10 cm振子从B到C所用时间t=0.5 s,为周期T地一半,所以T=1.0 s;f==1.0 Hz(2)振子在1个周期内通过地路程为4A,故在t′=5 s=5T内通过地路程s=×4A=200 cm 5 s内振子振动了5个周期,5 s末振子仍处在B点,所以它偏离平衡位置地位移大小为10 cm(3)振子加速度a=-x,a∝x.所以a B∶a P=x B∶x P=10∶4=5∶216.(1)25mm/s(2)0.8s;75次/分17. 设板竖直向上地加速度为a,则有:s BA-s AO=aT2①s CB-s B A=aT2②由牛顿第二定律得F-mg=ma③解①②③式可求得F=24 N18. 解析:T==2πT’==2π所以==所以h=。

高中物理机械振动知识点总结

高中物理机械振动知识点总结

高中物理机械振动知识点总结
高中物理机械振动的知识点总结如下:
1. 机械振动的概念和特点:机械振动是物体围绕平衡位置做周期性的来回振动运动,具有周期性、周期、频率、振幅等特点。

2. 动力学模型:机械振动可以用质点振动和弹簧振子来进行模拟,质点振动模型是研究单自由度振动的基本模型,弹簧振子模型是研究多自由度振动的基本模型。

3. 平衡位置和平衡力:平衡位置是物体在没有外力作用时处于的位置,平衡力是指物体在平衡位置附近的力,可以分为恢复力和阻尼力。

4. 振动方程:振动方程描述了物体在振动过程中的运动规律,可以用一阶微分方程或二阶微分方程表示,具体形式根据不同的振动模型而定。

5. 振动的能量:机械振动存在动能和势能的相互转换。

在简谐振动中,能量以振幅的平方的形式表示。

6. 简谐振动:简谐振动是指物体在恢复力作用下,在平衡位置附近做频率恒定、振幅不变、沿直线轨迹的振动。

简谐振动的特点包括周期性、频率、振幅、相位等。

7. 强迫振动和共振:强迫振动是指物体在外部周期性力的驱动下进行的振动,共振是指当外部周期性力与物体的固有频率相等或接近时,物体振幅达到最大的现象。

8. 阻尼振动:阻尼振动是指在受到阻尼力的作用下,物体振幅
逐渐减小并最终停止振动的现象。

阻尼振动可以分为欠阻尼、临界阻尼和过阻尼三种情况。

9. 波动方程:波动方程描述了波在传播过程中的运动规律,可以用一维或二维波动方程表示。

10. 波的传播:波的传播可以分为机械波和电磁波两种类型,机械波需要介质传播,而电磁波可以在真空中传播。

以上是高中物理机械振动的主要知识点总结,希望对你有帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档