多组资料均数的比较—方差分析

合集下载

统计-完全随机设计资料的方差分析(多个样本均数间的两两比较)

统计-完全随机设计资料的方差分析(多个样本均数间的两两比较)

单因素多个均数比较的方差分析(完全随机设计资料的方差分析)方差分析的基本思想是:将全部观察值的总变异按影响实验结果的诸因素分解为若干部分变异,构造出反映各部分变异作用的统计量,之后构造假设检验统计量F,实现对总体均数的判断。

方差分析的应用条件:各样本相互独立,且均来自总体方差具有齐性的正态分布。

完全随机设计是一种将研究对象随机地分配到处理因素各水平组的单因素设计方法。

其研究目的是推断处理因素不同水平下的试验结果的差异有否统计学意义,即该处理因素是否对试验结果有本质影响。

下面以一个实例来说明完全随机设计方差分析的基本思想和假设检验步骤。

例:为研究烫伤后不同时期切痂对肝脏ATP(u/L)含量的影响,将30只大鼠随机分3组,每组10只,分别接受不同的处理,试根据下表资料说明大鼠烫伤后不同时期切痂对其肝脏的ATP(u/L)含量是否有影响?大鼠烫伤后不同时期切痂肝脏ATP含量(u/L)烫伤对照组24h切痂组96h切痂组合计7.76 11.14 10.857.71 11.60 8.588.43 11.42 7.198.47 13.85 9.3610.30 13.53 9.596.67 14.16 8.8111.73 6.94 8.225.78 13.01 9.956.61 14.18 11.266.97 17.728.68合计(∑X)80.43 127.55 92.49 300.47(∑∑X ij)例数(n)10 10 10 30(N)均数(X)8.04 12.76 9.25 10.02平方和(∑X2)676.32 1696.96 868.93 3242.21(∑∑X ij2)1.建立检验假设,确定检验水准:H0:u1=u2=u3,3个总体均数全相等,即3组大鼠肝脏的ATP含量值无差别;H1:u1,u2,u3,3个总体均数不相等.即3组大鼠肝脏的ATP含量值有差别;a=0.052.计算检验统计量并列出方差分析表:①.计算离均数差平方和SS:首先计算每一组的合计、均数、平方和,再计算综合计数(∑X ij2),由表得:∑∑X ij=300.47 ∑X ij2=3242.21 N=30总的离均数差平方和SS总=∑X ij2 - (∑X ij)2n= 3242.21-300.47230=232.8026SS组间=∑ (∑X ij)2n i-(∑X ij)2n=80.43210+127.55210+92.49210-300.47230=119.8314SS组内=SS总-SS组间= 232.8026-119.8314=112.9712 ②.计算均方MS:MS组间= SS组间k-1(k为组数) =119.83143-1= 59.916MS组内= SS组内N-k(N为总例数) =112.971230-3= 4.184③.求F值F = MS组间MS组内=59.9164.184= 14.32将上述计算结果列成方差分析表,如下:变异来源平方和SS 自由度v 均方MS F值总变异232.8026 29组间变异119.8314 2 59.916 14.32 组内变异(误差) 112.9712 27 4.184(注:自由度:v总= N-1 = 30-1= 29;v组间= k-1 = 3-1 = 2; v组内=N -k = 30-3= 27)利用SPSS作方差分析时,会得到类似于以下的方差分析表:DescriptivesTest of Homogeneity of VariancesANOVA3.查表确定P值,并作出统计推断:V组间= 2,v组内=27, 得界限值Fα(2,27)为F0.05(2,27)= 3.35, 则F= 14.32> F0.05(2,27),则P<0.05,按0.05水准,拒绝H0,可以认为3个总体均数不全相同,即3组大鼠肝脏的ATP含量值有差别。

医用统计学-多个样本均数比较的方差分析练习题

医用统计学-多个样本均数比较的方差分析练习题

医用统计学-多个样本均数比较的方差分析练习题一、是非题1.方差分析是研究两个或多个总体均数的差别有无统计意义的统计方法。

()2.样本均数的差别做统计检验,若可做方差分析,则也可以做t检验。

()3.4个均数做差别的假设检验,可以分别做两两比较的6次t检验以进一步详细分析。

()4、完全随机设计方差分析中的组内均方就是误差均方。

()5、方差分析中的误差均方的总体平均数理论上不会大于处理组间均方。

()二、最佳选择题1、完全随机设计资料的方差分析中,必然有()。

A、SS组间> SS组内B、MS组间> MS组内C、MS总= MS组间+ MS组内D、SS总=SS组间+ SS组内E、ν组间> ν组内2、在完全随机设计资料的方差分析中,有()。

A、MS组内> MS误差B、MS组内< MS误差C、MS组内= MS误差D、MS组间= MS误差E、MS组内< MS组间3、当组数等于2时,对于同一资料,方差分析结果与t检验结果()。

A、完全等价且F= t开根号B、方差分析结果更准确C、t 检验结果更准确D、完全等价且t= F开根号E、理论上不一致4、方差分析结果,F处理>F0.05(ν1. ν2),则统计推论是()。

A、各总体均数不全相等B、各总体均数都不相等C、各样本均数都不相等D、各样本均数间差别都有显著性E、各总体方差不全相等5、完全随机设计方差分析的实例中有()。

A、组间SS不会小于组内SSB、组间MS不会小于组内MSC、F值不会小于1D、F值不会是负数E、F值不会是正数6、完全随机设计方差分析中的组间均方是()的统计量。

A、表示抽样误差大小B、表示某处理因素的效应作用大小C、表示某处理因素的效应和随机误差两者综合的结果D、表示N个数据的离散程度E、表示随机因素的效应大小7、配对设计资料,若满足正态性和方差齐性。

要对两样本均数的差别作比较,可选择()。

A、随机区组设计的方差分析B、u检验C、成组t检验D、χ2检验E、秩和检验8、方差分析可用于_______关系的分析。

6 多样本均数比较_方差分析

6 多样本均数比较_方差分析

(3) 区组间变异:由不同区组作用和随机误差产生的变异, 记为SS区组. (4) 误差变异:完全由随机误差产生变异,记为SS误差。 对总离均差平方和及其自由度的分解,有:
SS总 SS处理 SS区组 SS误差
总 处理 区组 误差
45
表 随机区组设计资料的方差分析表
变异来源 总变异 处理间 区组间 误 自由度
31
常用的多重比较的方法:
LSD DUNNETT (‘a1’) DUNCAN BON SNK REGWQ
LSD –t 检验 (最小显著差法)
Dunnett- t 检验 Duncan检验 (新复极差法) Bonferroni法 SNK法
REGWQ法
32
SAS示例
6.1 某医生为了研究一种降血脂新药的临床疗效,
16
若组间变异明显大于组内变异, 则不能认为组间变 异仅反映随机误差的大小, 处理因素也在起作用。根 据计算出的检验统计量F值, 查界值表得到相应的P 值, 按所取检验水准α作出统计推断结论。 检验统计量F值服从F分布。
F<Fα,(ν组间, ν组内),则P > α, 不拒绝H0, 还不能认 为各样本所来自的总体均数不同;
34
SAS示例
35
SAS示例
36
SAS示例
37
SAS示例
38
SAS示例
39
SAS示例
40
ANOVA过程
过程格式
Proc
anova 选项; Class 变量表; Model 依变量=效应表/选项; Means 效应表/选项; Run;
41
三 二因素随机区组试验资料的 方差分析

2. 双因素及多因素试验方差分析

第三章多组均数间比较的方差分析详解演示文稿

第三章多组均数间比较的方差分析详解演示文稿

第三章多组均数间比较的方差分析详解演示文稿一、引言方差分析是统计学中一种重要的分析方法,用于比较两个或多个样本均数之间的差异。

在实际应用中,我们常常需要比较多组数据的均数,这时就需要运用多组均数间比较的方差分析方法。

本文将详细介绍多组均数间比较的方差分析方法及其应用。

二、方差分析的基本原理方差分析的基本原理是通过比较因素(例如不同的处理组)对应的样本均数的差异来判断这些因素是否具有统计学上的显著性差异。

方差分析的核心概念是组内变异和组间变异。

组内变异是指同一处理组内观测值之间的差异,反映了同一处理组内个体间的差异。

组间变异是指不同处理组之间的观测值之间的差异,反映了不同处理组之间的差异。

方差分析的目标是确定组间变异相对于组内变异的大小,以便评估处理组间的差异是否具有统计学上的显著性。

三、多组均数间比较的方差分析步骤多组均数间比较的方差分析步骤如下:1.明确研究目的:确定需要比较的多个处理组以及需要比较的指标。

2.样本数据收集:收集每个处理组的样本数据。

3.建立假设:建立零假设(处理组均数之间没有显著差异)和备择假设(处理组均数之间存在显著差异)。

4.计算总变异度:计算总平方和(总变异度),表示总的数据变异情况。

5.计算组间变异度:计算组间平方和(组间变异度),表示不同处理组之间的差异情况。

6.计算组内变异度:计算组内平方和(组内变异度),表示同一处理组内个体间的差异情况。

7.计算F值:计算F值,用于检验处理组均数之间的差异是否具有统计学上的显著性。

8.判断显著性:根据计算得到的F值和相应的显著性水平,判断处理组均数之间的差异是否显著。

9.进行多重比较:如果处理组均数之间的差异显著,进一步进行多重比较。

四、方差分析的应用方差分析广泛应用于各个领域,例如医学、生物学、经济学等。

在医学领域,方差分析可以用于比较不同药物对疾病治疗效果的影响;在生物学领域,方差分析可以用于比较不同肥料对植物生长的影响;在经济学领域,方差分析可以用于比较不同市场策略对销售额的影响等。

统计学系列讲座第5讲多组样本均数比较的方差分析

统计学系列讲座第5讲多组样本均数比较的方差分析


随机单位组设计资料的方差分析(randomized block des ign)
第6期
安胜利 . 统计学系列讲座
第5讲
多组样本均数比较的方差分析
95
又称随机区组设计、 配伍组设计 。 这 种 设 计 相 当 于 配 对 设计的扩大。具体做法是将受试对象按性质( 如性别、 体质 量、 年龄及病情等对试验结果有影响的非实验因素) 相同或 相 近者组成 b 个单位组 , 每个单位组中有 k 个 受 试 对 象 , 分 别随机地分配到 k 个处理组。这种设计使得各处理组内受试 对象数量相同 , 生物学特点也较为均衡。由于减少了误差 , 试 验效率提高了。 例 2 为研究注射不同剂量雌激素对大白鼠子宫质量的 影响 , 取 4 窝不同种系的大白鼠 ( b=4 ) , 每窝 3 只 , 随机地分配 到 3 个 组 内 ( k=3 ) 接 受 不 同 剂 量 的 雌 激 素 的 注 射 , 然 后 测 定 其子宫质量 , 见表 5 , 问注射不同剂量的雌激素对大白鼠子宫 质量是否不同 ? 表5
分析: 本例多处数据标准差是均数的 2 倍以上, 基本上 可以认为此资料不服从正态分布 , 而且 各 指 标 内 不 同 组 间 标 准差相差悬殊 , 也不满足方差齐性条件 , 所以不宜用 t 检验和 方差分析。这两个条件具体可通过正态性检验和方差齐性检 验证实 ( 此略 ) 。另外 , 本资料分为 3 组 , 而原作者反复用 t 检 验进行各两组间的比较也是错误的, t 检验不能用于分析多 组资料间的两两比较。此例可考虑用无前提条件要求的非参 数检验( 将在以后的讲座中介绍) , 如果有统计学意义, 接着 用非参数检验中相应的两两比较方法。
SS SS 处 理 SS 单 位
CEA CA19- 9 (μ g/L) (103U/L) 术前 58 34.0± 79.0 209.0± 739.0 术后 30 2.0± 1.2* 11.0± 10.9* 转移复发 19 88.0± 107.0 212.0± 529.0 与术前组比较 : *P<0.05,**P<0.01 n

多组均数间比较的方差分析

多组均数间比较的方差分析

多组均数间比较的方差分析方差分析是一种统计方法,用于比较三个或更多组均数之间的差异,并确定这些差异是否显著。

这种分析可以帮助我们确定是否存在着不同组之间的显著差异,以及这些差异是否由于实验组之间的差异而产生。

在这篇文章中,我们将介绍多组均数的方差分析,并提供一个详细的步骤来进行此分析。

首先,让我们了解一下方差分析所使用的假设。

在多组均数间比较的方差分析中,有三个假设需要满足。

首先,我们假设所有组的样本是独立的。

其次,我们假设每个组中的样本是来自一个正态分布总体。

最后,我们假设所有组的方差是相等的,即群组间方差和组内方差相等。

下面是进行多组均数间比较的方差分析的详细步骤。

步骤1:计算均数和总体均数首先,计算每个组的均数,然后计算所有数据的总体均数。

步骤2:计算组间和组内平方和计算组间平方和(SSB)和组内平方和(SSW)。

组间平方和是每个组均数与总体均数之间的差异的平方和,而组内平方和是每个组内个体与组均数之间的差异的平方和。

步骤3:计算平均平方(SSM)和平均平方误差(SSE)计算组间平均平方(SSM),通过将组间平方和除以组间自由度来获得。

计算组内平均平方误差(SSE),通过将组内平方和除以组内自由度来获得。

步骤4:计算F值计算F值,通过将平均平方(SSM)除以平均平方误差(SSE)来获得。

步骤5:查找临界值和P值在进行方差分析之前,我们需要确定临界值和P值以进行假设检验。

通过查找方差分析表格,我们可以找到与给定自由度相关的临界值。

然后,比较计算得到的F值与临界值,以确定差异是否显著。

同时,我们还可以计算P值来验证这种差异是否显著。

步骤6:进行假设检验根据计算得到的F值和临界值进行假设检验。

如果计算得到的F值大于临界值,我们可以得出结论,即这些组之间的差异是显著的。

步骤7:进行事后比较如果方差分析表明组之间存在显著差异,我们可以进行事后比较来确定哪些组之间的显著差异最大。

事后比较可以使用多种方法,例如Tukey的HSD方法或Scheffe方法。

多组均数间比较的方差分析

多组均数间比较的方差分析方差分析是统计学中一种常用的分析方法,用于比较不同组之间的均值差异是否显著。

在多组均数间比较的方差分析中,我们可以比较多个组别的均值之间是否存在显著差异。

本文将介绍多组均数间比较的方差分析的基本原理、假设检验和实施步骤,并举例说明其应用。

多组均数间比较的方差分析基本原理如下:假设我们有k个不同组别的样本,在每个组别中有n个观测值,我们希望比较k个组别的均值是否存在显著差异。

方差分析的思想是将总的方差分解为组内变异和组间变异两部分,然后通过比较组间变异与组内变异来判断均值是否存在显著差异。

在多组均数间比较的方差分析中,我们需要对假设进行检验。

假设检验的原假设为各组均值相等,备择假设为至少有一对组别的均值不相等。

我们可以使用方差分析表来计算组间变异、组内变异和总变异的平方和,进而计算均方和(组间均方和和组内均方和)。

通过计算均方和的比值,我们可以得到F统计量,进而对原假设进行假设检验。

实施多组均数间比较的方差分析可以按照以下步骤进行。

1.收集数据:收集不同组别的样本数据,确保每个组别的样本数量一致。

2.建立假设:提出原假设和备择假设。

原假设为各组均值相等,备择假设为至少有一对组别的均值不相等。

3.方差分析表计算:根据数据计算方差分析表中的各项数值,包括总平方和、组间平方和、组内平方和、总自由度、组间自由度、组内自由度、组间均方和和组内均方和。

4.计算F统计量:通过计算组间均方和与组内均方和的比值,得到F统计量。

5.假设检验:根据计算得到的F统计量和显著性水平,判断是否拒绝原假设。

6.结果解释:根据假设检验的结果,解释各组别均值之间的差异情况。

以下是一个用于说明多组均数间比较的方差分析的示例。

假设我们研究了三个不同地区的气温(A地区、B地区和C地区),每个地区测量了10个样本观测值。

我们希望比较这三个地区的气温均值是否存在显著差异。

针对这个例子,我们首先提出原假设H0:A地区、B地区和C地区的气温均值相等,备择假设H1:至少有一对地区的气温均值不相等。

第三章多组均数间比较的方差分析

第三章多组均数间比较的方差分析在统计学中,方差分析是一种用来比较两个或更多组之间均数差异的方法之一、它可以用于分析实验设计或观察研究中的多组数据,并确定这些组之间的差异是否显著。

本文将重点介绍第三章多组均数间的方差分析。

方差分析有两种类型:单因素方差分析和多因素方差分析。

单因素方差分析主要用于比较一个因素(自变量)在不同组之间的均数差异,而多因素方差分析则用于比较多个因素对组间均数的影响。

在多组均数间的方差分析中,我们首先要确定所要比较的多个组是否具有显著的差异,这可以通过计算组间差异的方差来实现。

如果组间差异显著,则说明这些组有明显的均数差异,可以进一步进行事后的比较。

进行多组均数间的方差分析时,首先需要建立一个原假设和备择假设。

原假设通常是假定多个组之间没有均数差异,而备择假设则认为至少有一组与其他组有显著的均数差异。

在进行方差分析之前,还需要进行一些前提检验,如正态性检验和方差齐性检验,以确保数据符合进行方差分析的假设。

接下来,可以使用各种统计软件进行方差分析的计算。

常见的方差分析方法包括单因素方差分析、双因素方差分析和重复测量方差分析等。

这些方法的具体计算过程和统计指标略有不同,但都可以提供组间差异的显著性水平。

在进行多组均数间的方差分析时,还需要注意事后比较的问题。

如果方差分析结果显示组之间有显著差异,那么需要进一步比较各个组之间的均数差异。

常用的事后比较方法包括Tukey HSD法、Duncan法和Bonferroni法等。

这些方法可以提供详细的组间均数差异情况,帮助研究者更好地理解结果。

总之,多组均数间的方差分析是一种常用的统计方法,可以用于比较多个组之间的均数差异。

通过进行方差分析,我们可以确定这些组之间是否存在显著差异,并进行事后的比较分析。

研究者在进行多组均数间分析时,需要注意数据的前提检验以及使用合适的方法和指标进行分析。

多组均数比较论文:多组均数比较中方差分析的应用条件探讨

多组均数比较论文:多组均数比较中方差分析的应用条件探讨摘要:方差分析是多组均数比较中广泛采用的一种分析方法。

本文就方差分析的应用条件做一番探讨。

关键词:多组均数比较;方差分析;应用条件多组均数比较在实际数据处理中是大量存在的一类问题,过去由于受计算工具的限制,很多人采用两两t检验比较的方法来代替多个均数比较,这在统计学上是不能接受的,因为这样做的结果致使统计结论的可信度下降,远达不到常规的95%。

现在,人们在作多个均数比较时广泛采用方差分析方法。

本文对方差分析的应用条件做一番探讨。

一、方差分析的基本思想与实例如果一群观察值可以按一个标准或几个标准进行分类,那么方差分析的基本思想就是把全体数据关于总均数的离差平方和(总变异)分解成两个或几个部分,每一个部分表示离差平方和(变异)的一种来源,对各部分的方差进行比较(检验),从而确认或否认某些方差(变异)来源的重要性。

方差分析如何进行多组均数比较,如何理解它的基本思想?笔者从一个实例作分析。

例:考察催化剂对某药的得率的影响。

现用4种不同的催化剂独立地在相同条件下进行试验,每种催化剂各做5次试验,得到该药的得率如下表。

试问不同的催化剂是否对该药的得率有显著影响?(α=0.05)某药在4种不同催化剂下的得率(%)为:这个例子是典型的单因素多水平的试验数据,本例中的4种不同的催化剂各有5个观察值构成了4组数据,它们的平均得率分别是88.2、83、94、80,其中最小的是80,最大的是94,表明这4种催化剂的得率之间可能存在差异,但各组内的5个数据也各不相同,这是样品不均匀性与随机误差等造成的,既然同一催化剂下的得率可以不同,那么4个均数间的差别是否也可能是样品不均匀性与随机误差等造成的呢?也就是说如何比较4个均数间的差别是否有统计学意义呢?解决这个问题的思路通常是算一算样品的不均匀性与随机误差等会产生多大的“差别”,我们将这种“差别”简称为“组内差别”,按常规的统计学处理数值型数据的办法,总是假定各组试验数据服从正态分布,另外为了方便估算“组内差别”我们还得假设各组具有同一方差σ2,这样才可以对“组内差别”做出联合估计;再算一算这4个组样本均数间又有多大的“差别”,然后将这两种“差别”进行比较,如果组间“差别”明显大于组内“差别”,那么就可以认为组间确实存在明显的“差别”。

统计学—多个样本均数比较的方差分析练习题

多个样本均数比较的方差分析练习题一、最佳选择题1. 完全随机设计资料的方差分析中,必然有( )A.SSm 间>SSm内B.MS 组间<MS组内C.MS=MS 组间+MS组内D.SS=SSm 间+SS 内E.V 组间>V组内2. 随机区组设计资料的方差分析中,对其各变异关系表达正确的是( )A.SSg =SS组间+SS组内B.MSg=MS 组间+MS组内C.SSg=SS 处理+SS区组+SS识差D.MS=MS 灶理+MSK组+MS退差E.SS=SS 处理+SS区组+MS误差3. 当组数等于2时,对于同一资料,方差分析结果与t 检验结果 ( )A. 完全等价且F=√iB. 方差分析结果更准确C.t 检验结果更准确D. 完全等价且t=√FE. 理论上不一致4.方差分析结果,F处理>Foos,(cy2》,则统计推论是( )A. 各总体均数不全相等B. 各总体均数都不相等C. 各样本均数都不相等D. 各样本均数间差别都有统计学意义E. 各总体方差不全相等5. 完全随机设计方差分析中的组间均方是( )的统计量A. 表示抽样误差大小B. 表示某处理因素的效应作用大小C. 表示某处理因素的效应和随机误差两者综合影响的结果D. 表示N 个数据的离散程度E. 表示随机因素的效应大小6. 配对设计资料,若满足正态性和方差齐性。

要对两样本均数的差别作比较,可选择( )A. 随机区组设计的方差分析B.u 检验C. 成组t 检验D.x²检验E. 秩和检验第四章多个样本均数比较的方差分析7.k 个组方差齐性检验有统计学意义,可认为()A.o}、σ2、…o²不全相等B.μ₁、μ₂、…μ₄不全相等C.S₁、S₂、…S₄不全相等D.X, 、X₂、…x 不全相等E.o} 、o2 、…σ²全不相等二、简答题1. 方差分析的基本思想和应用条件是什么?2. 完全随机设计方差分析变异分解中“MS=MS 画+MSm内”成立吗?为什么?3. 随机区组设计的方差分析与完全随机设计方差分析在设计和变异分解上有什么不同?4. 如何确定应用于实验的拉丁方?5. 为什么在方差分析的结果为拒绝H₀、接受H, 之后,对多个样本均数的两两比较要用多重比较的方法?三、计算分析题1. 研究动物被随机分成3个组来比较对3种不同刺激的反应时间(秒),问动物在3种不同刺激下的反应时间是否有差别?刺激I 16 14 14 13 13 12 12 17 17 17 19 14 15 20刺激Ⅱ 6 7 7 8 4 8 9 6 8 6 4 9 55刺激Ⅲ8 10 9 10 6 7 10 9 11 11 9 10 9 52. 为研究某药物的抑癌作用,使一批小白鼠致癌后,按完全随机设计的方法随机分为4 组,A、B、C 三个实验组和一个对照组,分别接受不同的处理,A、B、C3 个实验组,分别注射0.5ml、1.0ml和1.5ml30% 的注射液,对照组不用药。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MS组内
SS组内
F值
MS组间 MS组内
表4-1大鼠烫伤后不同时间切痂对
肝脏ATP含量的测量结果
• 对照组 24小时组 96小时组
• 7.76
11.14
10.85
• 7.71
11.60
8.58
• 8.43
11.42
7.19

.
• 6.97
. 17.72
. 8.69 合计
• n 10
10
10 30
• x 8.04
第四章、多组资料均数的比 较—方差分析
方差分析的用途: 用于对比研究中,组间(比较组k2)的 样本均数间差别有无统计学意义,从而推 论各样本均数的总体水平是否相同。
例讲义4-2:研究目的: 了解烫伤后不同时期切痂对肝脏的
ATP含量的影响

处理因素

随机 甲组(n=10) 烫伤(对照)
• 30大鼠 乙组(n=10) 烫伤(24小时切痂)
变异 原 因
方差估计量
组间变异 不同处理因素 +随机误差
MS组间
组内变异 随机误差
MS误差
• (随机误差=个体变异+未知因素)
变异估计量(离均差平方和)及分解:
总离均差平方和
k ni
SS总 =
(xij x)2
组间离均差i平1 方j1和
k
SS组间 = ni (xi x)2 i 1
组内离均差平方和
ij
n
k
k ( x)2
SS组间 ni (xi x)
i1
i1
j 1
ni
C
SS组内 SS总 SS组间
校正数C: C (X )2 / N
表4-2 完全随机分组设计数据的 方差分析计算
• 变异 SS
•总
SS总
• 处理 SS组间
• 组内 SS组内
• (误差)
ν N-1
k-1
N-k
MS
MS组间
SS组间
• 结论:在=0.05水平,p<0.05,拒绝H0,三组ATP 含量差异有统计意义,不同时间切痂对肝脏ATP 含量不同.
第三节、随机单位组设计的方差分析

随机单位组设计
• 又称随机区组、配伍组设计
• (the randomized block design)
一、随机单位组设计的方法
• 设计: • 将性质大致相同的实验对象组成一
• 80.43
12.76 127.55
9.25 10.02 92.49 300.47
x x2
• 676.32 1696.96 868.93 3242.21
完全随机分组的方差分析计算步骤
• 1.数据准备(计算表4-1) • 2.建立假设 • H0: 1= 2= 3,即不同时期ATP含量
的总体均数相等 • H1: 各时期该指标均数不等或不全等 • =0.05 • 3.计算各离均差平方和(SS)
H1:各μ不等 ,
F
组间变异 组内变异
MS组间 MS组内
• 理论上,如果处理因素无作用,则 (组间变异=组内变异) , F =1 或波动在1左右。 如果F >>1,或 F>F,P<,说明处理因素有作用。
图4-1组间误差与组内误差示意图
干预前
干预后
A组
不切痂
ATP 含量
x 8.04
研究总 体对象
B组
二、数据结果的方差分析步骤
• 完全随机分组设计数据的变异分解
• 总变异分解为:

组间变异(不同处理+误差)

组内变异(误差)
完全随机分组设计数据的SS计算公式
55页公式4-1(总变异)、4-2(组间)、4-3(误)
• 变异来源 SS =离均差平方和
• 总变异
• 处理间
• 组内 • (误差)
kn
SS总 (xij x) X 2 C
.
96小时组 10.85 8.58 7.19 9.36 9.59 .

6.97
17.72
8.69
• n 10
10
10
• x 8.04
12.76
9.25
ATP
20
18
16

14

12
7
10
8
6
4
N=
10
1. 00
VAR00002
A组
17
10
2. 00
B组
第一节、方差分析的基本思想
将比较组数据变异(总变异)分解为: 总变异=组间变异+组内变异
4.列方差分析表
表4-2 方差分析表
• 变异来源 SS ν MS F P
• 组间
119.83 2 59.916 14.32 <0.05
• 组内
112.97 27 4.184
•总
232.8026 29
• 5.求P值和结论
• 本例 v组间=2, v误差=27 F0.05,2,27=3.35 • F=14.32>3.55 , P<0.05。

丙组(n =10) 烫伤(96小时切痂)

• 全部在 168小时处死, 测定三组大鼠肝脏的 ATP含量,问:不同处理因素(时间)的ATP含
量是否有差别?
例:大鼠烫伤后不同时间切痂对肝脏
ATP含量的测量结果

• 对照组

7.76

7.71

8.43

8.47
• 10.30

.
处理因素 24小时组
11.14 11.60 11.42 11.85 13.53
个单位组(区组),每个单位组内的 实验对象数=处理个数。共有b个单位 组。 • 单位组是配对设计的扩大。
例:研究三种剂量雌激素对大鼠子宫重 量的影响
• 处理因素:三种剂量(0.2、0.4、0.8(ug) • 研究指标:不同处理后的子宫重量 • 实验对象及例数:大鼠4个种系共12只 • 控制因素:处理前不同种系大鼠子宫重量 • 实验设计:随机区组设计 • 方法:1.将同种系的3只大鼠为一个单位组,
MS组间
SS组间
组间
SS组内 =
k
n
{
(xij xi )2}
MS组内
SS组内
组内
i1 j1
其中:
SS总 SS组间 SS组内
注:MS=S2
MS组间 SS组间 /组间
(方差)
ν组间=组数-1=K-1
MS组内 SS组内 /组内
ν组内=总例数-组数=N-K
方差分析:统计检验: 假设:H0:1= 2= 3=…. k
SS估计量的计算方法和公式:
1)计算总离均差平方和 C (X )2 / N
SS总 X 2 C 3242.21 3009.407 232.802
2)计算组间离均差平方和
SS组间
k
i1
(xi ni
)2
C
80.432
127.552 10
92.492
C
119.83
3)计算组内离均差平方和
SS组内 SS总 SS组间 232.802 119.831 112.97
24小时切痂 x 12.76
C组
96小时切痂 x 9.25
MS组间=MS组内
MS组间=MS组内 ?
第二节、完全随机设计的方差分析
• 一、完全随机分组设计(例:表4-1资料)

• N个
随机化分组
• (试验对象)

•Hale Waihona Puke 处理指标x 甲处理(n1) x 乙处理 (n2) x 丙处理(n3)
优点:设计简单,各组例数可等和不相等
相关文档
最新文档