第15章 欧拉图与哈密顿图

合集下载

欧拉图与哈密顿图

欧拉图与哈密顿图
哈密顿回路。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
➢ 定义8.21
图G称为可2-着色(2-chromatic),
如果可用两种颜色给G的所有顶点着色, 使每个顶点着一种颜色,而同一边的两端点 必须着不同颜色。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
✓ 定理8.16
设图G是可2-着色的。如果G是哈密顿 图,那么着两种颜色的顶点数目相等;如 果G有哈密顿通路,那么着两种颜色的顶点 数目之差至多为一。
✓定理8.14
设图G为具有n个顶点的简单无向图,如果G的 每一对顶点的度数之和都不小于n – 1 ,那么G中有 一条哈密顿通路;如果G的每一对顶点的度数之和 不小于n,且n≥3,那么G为一哈密顿图。
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
✓ 定理8.15
当n为不小于3的奇数时,
Kn上恰有 n 1 条互相均无任何公共边的 2
离散数学导论
.
欧拉图与哈密顿图 1.1欧拉图与欧拉路径
➢ 定义8.19
图G称为欧拉图(Euler graph),
如果图G上有一条经过G的所有顶点、所有
边的闭路径。图G称为欧拉路径(Euler
walk),如果图G上有一条经过G 所有顶点、所有边的路径。
.
欧拉图与哈密顿图 1.1欧拉图与欧拉路径
✓ 定理8.11
.
欧拉图与哈密顿图 1.2 哈密顿图及哈密顿通路
➢ 定义8.20
无向图G称为哈密顿图(Hamilton graph),
如果G上有一条经过所有顶点的回路
(也称这一回路为哈密顿回路)。称无向图有哈密顿 通路(非哈密顿图),如果G上有一条经过所有顶点的

欧拉图与哈密顿图演示文稿

欧拉图与哈密顿图演示文稿
欧拉回路: 通过图中所有边一次并且仅一次行遍所有顶点 的回路。
欧拉图: 具有欧拉回路的图; 半欧拉图:具有欧拉通路而无欧拉回路的图。
第6页,共40页。
举例
欧拉图
半欧拉图
无欧拉通路
欧拉图
无欧拉通路
无欧拉通路
第7页,共40页。
无向欧拉图的判定定理
定理15.1 无向图G是欧拉图当且仅当G是连通图,且G中没有奇度顶点。 定理15.2 无向图G是半欧拉图当且仅当G是连通的,且G中恰有两个奇度 顶点。
(3)是半哈密顿图。 (4)既不是哈密顿图,也不是半哈密顿图。
第24页,共40页。
定理15.6
定理15.6 设无向图G=<V,E>是哈密顿图,对于任意V1V,且V1≠,均 有 p(G-V1)≤|V1| 其中,p(G-V1)为G-V1的连通分支数。
证明 设C为G中任意一条哈密顿回路, 易知,当V1中顶点在C上均不相邻时, p(C-V1)达到最大值|V1|, 而当V1中顶点在C上有彼此相邻的情况时, 均有p(C-V1)<|V1|,所以有 p(C-V1)≤|V1|。 而C是G的生成子图,所以,有p(G-V1)≤p(C-V1)≤|V1|。
设图为G3。G3=<V1,V2,E>,其中 V1={a,c,g,h,e},V2={b,d,i,j,f}, G3中存在哈密顿回路。 如 abcdgihjefa, 所以G3是哈密顿图。
第28页,共40页。
例15.3的说明
哈密顿通路是经过图中所有顶点的一条初级通路。 哈密顿回路是经过图中所有顶点的初级回路。 对于二部图还能得出下面结论:
第17页,共40页。
求欧拉图中欧拉回路的算法
Fleury算法,能不走桥就不走桥
(1) 任取v0∈V(G),令P0=v0。 (2) 设Pi=v0e1v1e2…eivi已经行遍,按下面方法来从

离散数学课件15欧拉图与哈密顿图

离散数学课件15欧拉图与哈密顿图
证明 若G是平凡图,结论显然成立。
下面设G为非平凡图,设G是m条边的n阶无 向图,
并设G的顶点集V={v1,v2,…,vn}。 必要性。因为G为欧拉图,所以G中存在欧 拉回路,
设C为G中任意一条欧拉回路,vi,vj∈V, v2i0,2v0/7j/都23 在C上,
定理15.1的证明
充分性。由于G为非平凡的连通图可知,G中边数 m≥1。
2020/7/23
半欧拉图的判定定理
定理15.2 无向图G是半欧拉图当且仅当G是连通的 ,且G中恰有两个奇度顶点。
证明 充分性。设G的两个奇度顶点分别为u0和v0, 对G加新边(u0,v0),得G =G∪(u0,v0), 则G 是连通且无奇度顶点的图, 由定理15.1可知,G 为欧拉图, 因而存在欧拉回路C ,而C=C -(u0,v0)为G中一 条欧拉通路, 所以G为半欧拉图。
并2行从020/7遍/C23 上G 的i中某的顶欧点拉vr回开路始C行遍i,,i=每1遇,2,到…v,s*j,i,最就后
半欧拉图的判定定理
定理15.2 无向图G是半欧拉图当且仅当G是连通的 ,且G中恰有两个奇度顶点。
证明 必要性。设G是m条边的n阶无向图,因为G为 半欧拉图, 因而G中存在欧拉通路(但不存在欧拉回路), 设Г=vi0ej1vi1…vim-1ejmvim为G中一条欧拉通路, vi0≠vim。 v∈V(G),若v不在Г的端点出现,显然d(v)为偶 数, 若v在端点出现过,则d(v)为奇数,
欧拉对物理力学、天文学、弹道学、航海学、建筑学、音 乐都有研究!有许多公式、定理、解法、函数、方程、常数等 是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标 准教程。19世纪伟大的数学家高斯曾说过“研究欧拉的著作永 远是了解数学的好方法”。欧拉还是数学符号发明者,他创设 的许多数学符号,例如π,i,e,sin,cos,tg,Σ,f (x)等等, 至今202沿0/7/2用3 。

欧拉图与哈密顿图

欧拉图与哈密顿图

例15.3 在图15.6中给出的三个图都是 二部图。它们中的那些是哈密顿图?哪些 是半哈密顿图?为什么? 解 在(1)中,易知互补顶点子集 V1={a,f},V2={b,c,d,e}。设此二部图为G1, 则G1=<V1,V2,E>. p(G1-V1)=4>|V1|=2,由 定理15.6及其推论可知,G1不是哈密顿 图,也不是半哈密顿图。
是在G'中存在u到v的路径Г2,显然Г1 与Г2边不重,这说明u,v处于Г1∪Г2 形成的简单回路上。
三、求欧拉图中欧拉回路的算法
设G为欧拉图,一般来说G中存 在若干条欧拉回路,下面介绍两种求 欧拉回路的算法。
1.Fleury算法,能不走桥就不走桥: (1)任取v0∈V(G),令P0=v0. (2)设Pi=v0e1v1e2…eivi已经行遍, 按下面方法来从E(G)-{e1,e2,…,ei}中选 取ei+1: (a)ei+1与vi相关联; (b)除非无别的边可供行遍, 否则ei+1不应该为Gi=G-{e1,e2,…,ei}中的 桥。 (3)当(2)不能再进行时,算法停止。
p(C-V1)达到最大值|V1|,而当V1中顶点在C 上有彼此相邻的情况时,均有p(C-V1)<|V1|, 所以有p(C-V1)≤|V1|.而C是G的生成子图, 所以,有p(G-V1)≤p(C-V1)≤|V1|. 本定理的条件是哈密顿图的必要条件, 但不是充分条件。可以验证彼得松图(图 14.3中(1)所示)满足定理中的条件,但 它不是哈密顿图。当然,若一个图不满足 定理中的条件,它一定不是哈密顿图。
2.逐步插入回路法 设G为n阶无向欧拉图,V(G)={v1,v2,…,vn}, 求G中欧拉回路的逐步插入回路法的算法如下: 开始 i←0,v*=v1,v=v1,P0=v1, G0=G. 1.在Gi中任取一条与V关联的边 e=(v,v'),将e及v’加入到Pi中得到Pi+1. 2.若v '=v*,转3,否则i←i+1,v=v' , 转1.

欧拉图和哈密而顿图

欧拉图和哈密而顿图

17
15.欧拉图与哈密顿图 欧拉图与哈密顿图
15.2 哈密顿图
证明: 证明: 是图的一条哈密尔顿回路, 设 C是图的一条哈密尔顿回路, 则对于 的任一 是图的一条哈密尔顿回路 则对于V的任一 非空真子集S可知 可知: 非空真子集 可知: w(C-S) ≤|S| w(C-S)表示 删去 顶点集后得到的图的连通分 表示C删去 表示 删去S顶点集后得到的图的连通分 图的个数。由于G是由 和一些不在C中的边构 是由C和一些不在 图的个数。由于 是由 和一些不在 中的边构 成的, 的生成子图, 成的,C-S是G-S的生成子图,所以 是 的生成子图 w(G-S) ≤ w(C-S) ≤|S|
11
15.欧拉图与哈密顿图 欧拉图与哈密顿图
15.1 欧拉图
定理15.5 G是非平凡的欧拉图当且仅当 是连通 是非平凡的欧拉图当且仅当G是连通 定理 是非平凡的欧拉图当且仅当 的且为若干个边不重的圈的并。 的且为若干个边不重的圈的并。
12
15.欧拉图与哈密顿图 欧拉图与哈密顿图
15.1 欧拉图
Fleury算法: 算法: 算法 1) 任取 0∈V(G),令P0=v0; 任取v , 2) 设 Pi=v0e1v1e2…eivi 已经行遍 , 按下面方法 来从E(G)-{e1,e2…ei}中选取 i+1: 中选取e 来从 中选取
4
15.欧拉图与哈密顿图 欧拉图与哈密顿图
15.1 欧拉图 现从G’中取二个顶点 中取二个顶点v 现从 中取二个顶点 i和vj,且vi和vj没有直接联 之间加一根联线变为图G, 现在v 线,现在 i和vj之间加一根联线变为图 ,则变 为奇数点,则从v 一定存在一条欧拉通路 通路。 为奇数点,则从 i到vj一定存在一条欧拉通路。

第十五章欧拉图与哈密顿图

第十五章欧拉图与哈密顿图

具有哈密顿回路的图称为半哈密顿图。平 凡图是哈密顿图。
图中所示的三个无向图都有哈密顿回路, 所以都是哈密顿图。有向图中,()具有哈 密顿回路,因而它是哈密顿图。()只有哈 密顿通路,但无哈密顿回路,因而它是半哈 密顿图,而()中既无哈密顿回路,也没有 哈密顿通路,因而不是哈密顿图,也不是半 哈密顿图。
∈(),若不在Г的端点出现,显然 ()为偶数,若在端点出现过,则()为 奇数,因为Г只有两个端点且不同,因而 中只有两个奇数顶点。另外,的连通 性是显然的。
充分性: 设的两个奇度顶点分别 为 和,对加新边(),
得' ∪(),则'是连通且无奇度 顶点 的图,由定理可知,‘为欧拉 图,因而存在欧拉回路',而' () 为中一条欧拉通路,所以为半欧拉图。

由定理立即可知,图()图 为欧拉图,本图既可以看成圈, ,,之并(为 清晰起见,将个圈画在()中),也 可看成圈与圈 之并(两个圈画在()中)。将() 分解成若干个边不重的圈的并不是() 图特有的性质,任何欧拉图都有这个性 质。
定理 是非平凡的欧拉图当且仅 当是连通的且为若干个边不重的圈的并。
证 读者用定理证明。
下面给出一些哈密顿图和半哈密顿图 的充分条件。
定理 设是阶无向简单图,若对
于中任意不相邻的顶点,均有
()()≥
()
则中存在哈密顿通路。
证: 首先证明是连通图。否则至少 有两个连通分支,设是阶数为 的两个连通分支,设∈(),∈(), 因为是简单图,所以 ()()
()()≤≤
这与()矛盾所以必为连通图。
可以证明,当算法停止时所得简单回路 …()为中一条欧拉回路。
例 图()是给定的欧拉图。某人用算法 求中的欧拉回路时, 走了简单回路 之 后(观看他的错误走法),无法行遍了,试 分析在哪步他犯了错误?

第十五章-欧拉图与哈密顿图

第十五章-欧拉图与哈密顿图

(4)半欧拉图
具有欧拉通路而无欧拉回
路的图.
3
2. 无向欧拉图的判定 定理15.1 无向图G是欧拉图当且仅当G连通且无 奇度结点。 证明:若G为平凡图结论显然成立。
下面设G为n阶m条边的无向图。 必要性 设C为G中一条欧拉回路。
(1)G连通显然。
(2)viV(G),vi在C上每出现一次获2度,所 以vi为偶度结点. 由vi的任意性,结论为真。 4
e5
e4 e2
e5
e4
e3
e3
e3
欧拉图
半欧拉图
不是欧拉图 不是半欧拉图
11
a(甲)
b (乙)
图G
例:两只蚂蚁比赛问题:两只 蚂蚁甲、乙分别处在图G 中 的结点a,b处,并设图中各边长 c 度相等。甲提出同乙比赛:
从它们所在结点出发,走过 图中所有边最后到达结点c处。 如果它们速度相同,问谁最 先到达目的地?
17
(2)若G恰有两个奇数度结点vi和vj,则G具有 欧拉通路,且邮局位于结点vi,则邮递员走遍所 有的街道一次到达结点vj ;从vj返回vi可选择其间 的一条最短路径。这样,最短邮路问题转化为求 vi到vj的欧拉通路和vj到vi的最短路径问题。
(3)若G中度数为奇数的结点多于2个,则回路 中必须增加更多的重复边。分两步:
19
例:在下图中确定一条从v1到v1的回路,3使其权值最小.
8
半欧拉图的判定
定理15.2 无向图G是半欧拉图当且仅当G连通 且恰有两个奇度结点。若有两个奇数度结点,则 它们是每条欧拉通路的端点。
证明:必要性
G的连通性是显然的。设G是m条边的n阶无向 图,因为G为半欧拉图,因而G中存在欧拉通路 (但不存在欧拉回路),设=vi0ej1vi1…vim为G 中一条欧拉通路, vi0vim。对任意的v,若v不在 的端点出现,d(v)必为偶数,若v在端点出现 过,则d(v)为奇数,因为只有两个端点不同, 因此G中只有两个奇度结点。

欧拉图和哈密尔顿图

欧拉图和哈密尔顿图
欧拉回路是指不重复地走过所有路 径的回路,而哈密尔顿环是指不重复地
走过所有的点,并且最后还能回到起点的回 路
哈密尔顿图
定义:通过图G的每个结点一次且仅一次的环称为哈密尔顿环。具 有哈密尔顿环的图称为哈密尔顿图。通过图G的每个结点一次且仅 一次的开路称为哈密尔顿路。具有哈密尔顿路的图称为半哈密尔 顿图。
f:说法语、日语和俄语;
g:说法语和德语.
c f
g
解 设7个人为7个结点, 将两个懂同一语言的人之间连一条边
(即他们能直接交谈), 这样就得到一个简单图G, 问题就转化为
G是否连通. 如图所示, 因为G的任意两个结点是连通的, 所以
G是连通图. 因此, 上述7个人中任意两个人能交谈.
解二
c


e
a

半哈密尔顿图
哈密尔顿图 哈密尔顿图
N
周游世界的游戏——的解
哈密顿图
哈密顿图
无哈密顿 通路
哈密顿图
存在哈密 顿通路
实例
在上图中, (1),(2) 是哈密顿图;
实例
已知有关人员a, b, c, d, e, f, g 的有关信息
a:说英语;
b:说英语或西班牙语;
c;说英语,意大利语和俄语;
a:说英语; b:说英语或西班牙语;


c;说英语,意大利 语和俄语;
b
g
d:说日语和西班牙语 e:说德语和意大利语; f:说法语、日语和俄语; g:说法语和德语.
西
d


f
如果题目改为:试问这7个人应如何安排座位, 才能使每个人都能与
他身边的人交谈?
解:用结点表示人,用边表示连接的两个人能说讲一种语言,够造
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

e5
v3
v2 e1 v1
e2
e3
e4
v4
e5
v3 e3 e4 v4
v2 v1 v5
e2 e3
e1 e5
v3 e4 v4 v6
v1
e6 v5 e7 e8 v6 e2 e3
e8 v5
e8 v6 v5 e2 v6
e7
G
v2 e1 v1 v5 v6 v3 e4 v4 v5 v2
G1
e2 v3 e4 v2 e1 v1 v5 e1
定理15.7
定理15.7 设G是n阶无向简单图,若对于G中任意不相邻的顶 点vi,vj,均有 d(vi)+d(vj)≥n-1 (15.1) 则G中存在哈密顿通路。 证明 首先证明G是连通图。 否则G至少有两个连通分支, 设G1,G2是阶数为n1,n2的两个连通分支, 设v1∈V(G1),v2∈V(G2),因为G是简单图,所以 dG(v1)+dG(v2)=dG1(v1)+dG2(v2)≤n1-1+n2-1≤n-2 这与(15.1)矛盾,所以G必为连通图。
例15.3的说明
哈密顿通路是经过图中所有顶点的一条初级通路。 哈密顿回路是经过图中所有顶点的初级回路。 对于二部图还能得出下面结论: 一般情况下,设二部图G=<V1,V2,E>,|V1|≤|V2|,且 |V1|≥2,|V2|≥2,由定理15.6及其推论可以得出下面结 论: (1) 若G是哈密顿图,则|V1|=|V2|。 (2) 若G是半哈密顿图,则|V2|=|V1|+1。 (3) 若|V2|≥|V1|+2,则G不是哈密顿图,也不是半哈密 顿图。
§15.2 哈密顿图
设图为G2,则G2=<V1,V2,E>,其中 V1={a,g,h,i,c},V2={b,e,f,j,k,d}, 易知,p(G2-V1)=|V2|=6>|V1|=5, 由定理15.6可知,G2不是哈密顿图, 但G2是半哈密顿图。 baegjckhfid为G2中一条哈密顿通路。 设图为G3。G3=<V1,V2,E>,其中 V1={a,c,g,h,e},V2={b,d,i,j,f}, G3中存在哈密顿回路。 如 abcdgihjefa, 所以G3是哈密顿图。
®
(a) 制造满足归纳假设的若干个小欧拉图.由连通及 无奇度定点可知,(G) ≥2,用扩大路径法可得G 中长度≥3的圈C1.删除C1上所有边(不破坏G中顶 点度数的奇偶性)得G ,则G 无奇度顶点,设它 有s ≥1个连通分支G1 ,G2 ,…,Gs ,它们的边数均 ≤k,因而它们都是小欧拉图. (b) 将C1上被删除的边还原,从C1上某点出发走出 G的一条欧拉回路C.
十二面体
哈密尔顿把该游戏以25英镑的价格买给了J.Jacques and Sons公司 (该公司如今以制造国际象棋设备而著 名) ,1859年获得专利权。但商业运作失败了。
该游戏促使人们思考点线连接的图的结构特征。这 就是图论历史上著名的哈密尔顿问题。
哈密尔顿(1805---1865),爱尔兰数学家。个人生活很 不幸,但兴趣广泛:诗歌、光学、天文学和数学无所 不能。他的主要贡献是在代数领域,发现了四元数(第 一个非交换代数),他认为数学是最美丽的花朵。
§15.2 哈密顿图
推论 设无向图G=<V,E>是半哈密顿图,对于任意的V1V且 V1≠,均有 p(G-V1)≤|V1|+1 证明 设P是G中起于u终于v的哈密顿通路, 令G =G∪(u,v)(在G的顶点u,v之间加新边), 易知G 为哈密顿图, 由定理15.6可知,p(G -V1)≤|V1|。 因此,p(G-V1) = p(G -V1-(u,v)) ≤ p(G -V1)+1 ≤ |V1|+1
®
实例
(1)
(2)
(3)
(4)
在上图中, (1),(2) 是哈密顿图; (3)是半哈密顿图; (4)既不是哈密顿图,也不是半哈密顿图,为什么?
与判断一个图是否为欧拉图不一样,到目前为止,人们还 没有找到哈密顿图简单的充分必要条件。
§15.2 哈密顿图
定理15.6 设无向图G=<V,E>是哈密顿图,对于任意V1V,且 V1≠,均有 p(G-V1)≤|V1| 其中,p(G-V1)为G-V1的连通分支数。 证明 设C为G中任意一条哈密顿回路, 易知,当V1中顶点在C上均不相邻时, p(C-V1)达到最大值|V1|, 而当V1中顶点在C上有彼此相邻的情况时, 均有p(C-V1)<|V1|,所以有 p(C-V1)≤|V1|。 而C是G的生成子图,所以,有p(G-V1)≤p(C-V1)≤|V1|。 说明 本定理的条件是哈密顿图的必要条件,但不是充分条件。 可以验证彼得松图满足定理中的条件,但不是哈密顿图。 若一个图不满足定理中的条件,它一定不是哈密顿图。
第十五章 欧拉图与哈密顿图
第十五章 欧拉图与哈密顿图
欧拉图
哈密顿图
最短路问题与货郎担问题 知 识 点:欧拉图、汉密尔顿图、Fleury算法、Dijkstra 算法、货郎担问题 。 教学要求:深刻理解和掌握欧拉图与汉密尔顿图的性质。
教学重点:欧拉图与汉密尔顿图的性质。
学时: 2
§15.1 欧拉图
两个与可行遍问题有关的问题
§15.2 哈密顿图
定义15.2 通过图(无向图或有向图)中所有顶点一 次且仅一次的通路称为哈密顿通路. 通过图(无向图或有向图)中所有顶点一 次且仅一次的回路称为哈密顿回路(哈密顿圈). 具有哈密顿回路的图称为哈密顿图 具有哈密顿通路但不具有哈密顿回路的图称为半哈 密顿图 规定平凡图是哈密顿图 环与平行边不影响哈密顿性.
从以上证明不难看出:欧拉图是若干个边不重 的圈之并,见下图.
PLAY
§15.1 欧拉图
定理15.2 无向图G是半欧拉图当且仅当G是连通的且 恰有两个奇度顶点 证 必要性简单. 充分性(利用定理15.1) 设u,v为G 中的两个奇度顶点,令 G =G(u,v) 则G 连通且无奇度顶点,由定理15.1知G 为欧拉图,因而 存在欧拉回路C,令 =C(u,v) 则 为 G 中欧拉通路.

一个要求行遍图的每条边恰好一次, 这就是欧拉回路问 题,对应的图称为欧拉图

一个要求行遍图的每个顶点恰好一次, 这就是哈密顿圈 问题,对应的图称为哈密顿图
C
A
D
B
哥尼斯堡七桥问题 周游世界问题
®
§15.1 欧拉图
定义15.1 通过图(无向图或有向图)中所有边一次且仅一 次行遍所有顶点的通路称为欧拉通路. 通过图(无向图或有向图)中所有边一次且仅一 次行遍所有顶点的回路称为欧拉回路. 具有欧拉回路的图称为欧拉图 具有欧拉通路而无欧拉回路的图称为半欧拉图 规定平凡图是欧拉图
例15.3 在下图中给出的三个图都是二部图。它们中的哪些是 哈密顿图?哪些是半哈密顿图?为什么? 易知互补顶点子集 V1={a,f} V2={b,c,d,e} 设此二部图为G1,则G1=<V1,V2,E>。 p(G1-V1)=4>|V1|=2, 由定理15.6及其推论可知,G1不是哈 密顿图,也不是半哈密顿图。
®
§15.1 欧拉图
定理15.3 有向图D是欧拉图 当且仅当 D是强连通的且
每个顶点的入度等于出度
定理15.4 有向图D是半欧拉图当且仅当 D是单向连通的且 恰有两个奇度顶点,其中一个顶点的入度比出度大1, 另一个顶点出度比入度大1,而其余顶点入度等于出度 定理15.5 G是非平凡的欧拉图当且仅当G是连通的且是 若干个边不重的圈的并
G2
v3 v4 v6 v5
G3
v2
e1 v1 v6 v4 v3
v1
v6
v4
G4
®
G5
G6
G7
W =v e v3 e v e ve W v e =v W8=v0e6v e W v0 =v e v e e v v e v e v v e W =v W =v W =v W =v e v W =v 5 6 5 7 6 8 1 5 3 0 3 4 0 57 7 6 8 0 1 6 50 5 3 7 6 8 4 1 4 5 3 3 2 3 2 4 1 4 1 1e 0 6 2 0 6 5 7 6 3 0 6 5 7 6 8 6 5 7 6 4 8 0 1 6 5 5 3 7 3 6 4 8 4 1 5 2v5 3 2
例15.4
例15.4 设G是n阶无向连通图。证明:若G中有割点或桥,则 G不是哈密顿图。 证明 (1)证明若G中有割点,则G不是哈密顿图。 设v为连通图G中一个割点,则V ={v}为G中的点割集, 而 p(G-V )≥2>1=|V | 由定理15.6可知G不是哈密顿图。 (2)证明若G中有桥,则G不是哈密顿图。 设G中有桥,e=(u,v)为其中的一个桥。 若u,v都是悬挂点,则G为K2,K2不是哈密顿图。 若u,v中至少有一个,比如u,d(u)≥2,由于e与u关联,e 为桥,所以G-u至少产生两个连通分支,于是u为G中割点 由(1)的讨论可知,G不是哈密顿图。
§15.2 哈密顿图
背景
1857年, 哈密尔顿发明了一个游戏(Icosian Game). 它是由一个木制的正十二面体构成,在它的每个棱角 处标有当时很有名的城市。游戏目的是“环球旅行”。 为了容易记住被旅游过的城市 ,在每个棱角上放上一 个钉子,再用一根线绕在那些旅游过的城市上(钉子), 由此可以获得旅程的直观表示。
彼德森图
K5
K3,3
®
§15.1 欧拉图
Fleury(弗罗莱)算法

⑴ 任取 v0∈V(G),令 P0 = v0 , i=0 ⑵ 设 Pi = v0e1v1e2…eivi , 如果 E(G)-{e1 , e2 , … ,ei}中没有与vi关联的边,则 计算停止。否则按下述条件从 E(G) - {e1 , e2 , … ,ei} 中任取一条边ei+1 (a) ei+1和vi相关联; (b) 除非没有别的边可选择,
相关文档
最新文档