河流水质数学模型

合集下载

常用河流水质数学模型与适用条件1

常用河流水质数学模型与适用条件1

地表水环境简化(P96)
河流简化:矩形平直河流,矩形弯曲河流和非矩形河流。
河流断面宽深比≥20,可视为矩形河流; 大中河流预测河段弯曲系数较大(>1.3)视为弯曲河流,否则简化为 平直河流; 大中河流水深变化很大且评价等级较高(如一级)视为非矩形河流, 其他简化为矩形河流; 小河一般可简化为矩形平直河流。 河流水文、水质有急剧变化河段,在急剧变化之处分段,分别简化。
K1:耗氧系数,单位 1/d; K2:复氧系数,单位 1/d;
4.6 地表水环境影响预测
拟预测水质参数的筛选 水体自净的基本原理
√ 地表水环境影响预测的时期和阶段 √ 地表水环境和污染源的简化
地表水环境影响预测的方法 水质数学模式的类型与选用原则 常用河流水质数学模型与适用条件 水质模型参数的确定方法
第四章 地表水环境影响评价
4.1 基本概念 4.2 相关水环境标准 4.3 地表水环境影响评价工作程序 4.4 地表水环境影响评价等级及范围 4.5 地表水环境现状调查与评价 4.6 地表水环境影响预测 4.7 地表水环境影响评价
4.6 地表水环境影响预测
√ *拟预测水质参数的筛选
水体自净的基本原理 地表水环境影响预测的时期和阶段 地表水环境和污染源的简化 地表水环境影响预测的方法 水质数学模式的类型与选用原则 *常用河流水质数学模型与适用条件 水质模型参数的确定方法
例题3:一河段的K 断面处有一岸边污水排放口稳定地向河流排
放污水,其污水特征为:Qp=19440m3/d,BOD5(p)=81.4mg/L, 河水Qh=6.0m3/s,BOD5(h)=6.16mg/L,u=0.1m/s,K1=0.3/d,如 果忽略污染物质在混合过程段内的降解和沿程河流水量的变化,

S-P水环境模型

S-P水环境模型
1.河流稀释混合模式
水质完全混合数学表达式:
式中:Qp—污水排放量,m3/s;cP—污染物排放浓度,mg/L;
DP—污水中溶解氧亏量,mg/L;Qh—上游来水流量,m3/s;
ch—上游来水污染物浓度,mg/L;Dh—上游来水中溶解氧亏量,mg/L;
2.S-P模型
S-P模型的基本方程为:
DO=DOf-D
式中:c—河流的BOD沿程浓度,mg/L;co—计算初始断面的BOD浓度,mg/L;
k1—河流的BOD衰减(耗氧)速度常数,1/d;x—河流的沿程距离,m;
u—河流断面平均流速,m/s;D—河流的亏氧量,mg/L;
DO—计算初始断面的亏氧量,mg/L;DO—河流的溶解氧g/L;k2—河流的复氧速度常数,1/d;
T—河水的温度,℃。
3.S-P模型的临界点
根据S-P模型绘制的溶解氧沿程变化曲线称为氧垂曲线,如图所示。氧垂曲线的最低点C称为临界氧亏点,临界氧亏点的亏氧量称为最大亏氧量Dc。沿河水流动方向,最大亏氧量Dc和临界氧亏点距污水排放口的距离xc:

河流一维稳态水质模型公式

河流一维稳态水质模型公式

河流一维稳态水质模型公式
(原创实用版)
目录
1.河流一维稳态水质模型的概念
2.河流一维稳态水质模型的公式
3.公式的应用和意义
正文
一、河流一维稳态水质模型的概念
河流一维稳态水质模型是一种描述河流水质变化的数学模型,其中“一维”表示河流在水平方向上是均匀的,而“稳态”则表示河流的水质在时间上是稳定的,即不随时间变化。

这种模型通常用于研究河流污染物的输移和变化规律,为水环境保护和污染治理提供理论依据。

二、河流一维稳态水质模型的公式
河流一维稳态水质模型的公式主要包括以下几个部分:
1.污染物的输移方程:这一部分描述了污染物在河流中的输移过程,通常采用对流扩散方程来表示。

2.污染物的降解方程:这一部分描述了污染物在河流中的降解过程,通常采用一阶动力学方程来表示。

3.污染物的来源和汇函数:这一部分描述了污染物的来源和汇过程,通常采用恒定源和线性汇函数来表示。

综合以上三个部分,可以得到河流一维稳态水质模型的完整公式体系。

三、公式的应用和意义
河流一维稳态水质模型的公式在实际应用中具有重要的意义。

通过这个公式,可以预测和模拟河流中的水质状况,为水环境保护和污染治理提
供科学依据。

长江水质评价和预测的数学模型

长江水质评价和预测的数学模型

长江水质评价和预测的数学模型长江水质评价和预测的数学模型摘要:长江是中国最长的河流,其水质对于保护生态环境和人类健康至关重要。

因此,对长江水质进行评价和预测具有重要的研究价值。

本文综述了现有关于长江水质评价和预测的数学模型,并探讨了这些模型的优劣以及未来的发展方向。

通过这些数学模型,我们可以更好地了解长江水质的变化趋势,为水资源管理者提供科学依据,保护和恢复长江的水质。

1. 引言长江是中国最大的河流,流经11个省市,对于中国的经济和生态起到了重要的作用。

然而,由于人类活动、城市化进程和工业化的快速发展,长江的水质受到了严重的污染。

因此,对长江水质进行评价和预测成为了重要的研究课题。

2. 长江水质评价模型2.1 污染指数模型污染指数模型是较早被采用的水质评价模型之一。

该模型通过对水样中各种污染物浓度的测定,并结合环境质量标准,计算出一个综合的污染指数值,从而评价水质好坏。

然而,该模型没有考虑到污染物之间的相互关系和水文地质条件的影响,因此在实际应用中有一定的局限性。

2.2 灰色关联度模型灰色关联度模型是一种能够综合各种因素的水质评价模型。

该模型通过建立灰色关联度函数,将不确定因素纳入考虑,并计算出与水质相关的关联度值。

然后,通过对各因素进行权重分配,得到最终的水质评价结果。

该模型相比于污染指数模型具有更强的综合能力。

3. 长江水质预测模型3.1 神经网络模型神经网络模型是一种通过模拟人脑的神经网络来进行水质预测的模型。

该模型通过对历史数据的学习和分析,建立相应的神经网络结构,并利用该结构对未来的水质进行预测。

神经网络模型具有较强的非线性拟合能力,能够较好地捕捉水质变化的规律。

3.2 支持向量机模型支持向量机模型是一种基于统计学习理论的水质预测模型。

该模型通过建立超平面,并考虑到各个样本点与超平面的距离,确定最佳的超平面划分水质数据。

支持向量机模型具有较强的泛化能力和鲁棒性,可以有效地对长江水质进行预测。

平面二维水流-水质有限体积法及黎曼近似解模型

平面二维水流-水质有限体积法及黎曼近似解模型

平面二维水流-水质有限体积法及黎曼近似解模型平面二维水流水质有限体积法及黎曼近似解模型引言:在水环境研究中,对于水流和水质模拟是非常重要的,这不仅可以帮助我们了解水体的流动特性,还可以预测和评估水质的变化和影响。

在这篇文章中,我们将介绍平面二维水流水质有限体积法及黎曼近似解模型的原理和应用。

通过理论阐述和实例分析,我们希望能够全面而深入地了解这两种模型的优势、限制和适用范围。

第一部分:平面二维水流水质有限体积法1. 模型原理平面二维水流水质有限体积法是一种基于物质守恒定律和动量方程的数值模拟方法。

它将水流问题转化为有限体积内的水体加权平均值,并通过离散化和数值计算来解决。

2. 数学表述该方法的数学表述包括质量守恒方程和动量方程。

质量守恒方程描述了水体中物质的流动和浓度的变化,动量方程描述了液体的流动和流速的变化。

3. 优势和限制平面二维水流水质有限体积法具有灵活性高、计算量小、数值稳定性好等优势。

然而,由于该模型是基于近似解法的,它在处理流体不连续性和复杂边界条件时存在一定的局限性。

4. 应用实例平面二维水流水质有限体积法已被广泛应用于河流、湖泊、水库等水域的水流和水质模拟。

通过该模型,我们可以预测和评估污染物的扩散和迁移,以及水体中溶解氧、氨氮、藻类等水质指标的变化趋势。

第二部分:黎曼近似解模型1. 模型原理黎曼近似解模型是一种基于黎曼问题理论的模型,它将水流问题转化为求解一组非线性偏微分方程的问题。

在求解过程中,通过将问题分割成一个个宏观单元来近似求解。

2. 数学表述该模型的数学表述包括守恒方程和状态方程。

守恒方程描述了物质的流动和质量守恒,状态方程描述了物质的热力学性质和状态。

3. 优势和限制黎曼近似解模型具有精度高、计算速度快、边界条件处理灵活等优势。

然而,由于该模型需要求解多组偏微分方程,其计算量相对较大,不适用于大规模复杂水体的模拟。

4. 应用实例黎曼近似解模型在流体力学研究中有广泛应用,可用于模拟水流在管道、河道、溃口等场景中的流动情况。

流域水质模型与模拟课件

流域水质模型与模拟课件

K1L0 K1 K2
(e 1x
e2x )
2
u 2E
1
1
4EK2 u2
(2)忽略河流的弥散作用,则为
解析解
u
dL dx
K1 L
u
dC dx
K1L
K2
Cs
C
L
K1 x
L0e u
L0 e K1t
C
Cs
Cs C0
ek2t k1L0 k1 k2
e e k1t
k2t
氧垂曲线
溶解氧沿程变化曲线被称为氧垂曲线
案例分析——S-P模型
向一条河流稳定排放污水,污水排放量 Qp = 0.2 m3/s, BOD5 浓度为 30 mg/L,河流流量 Qh = 5.8 m3/s,河水平均 流速 v = 0.3 m/s,BOD5 本底浓度为 0.5 mg/L,BOD5降解 的速率常数 k1 = 0.2 d-1,纵向弥散系数 D = 10 m2/s,假定 下游无支流汇入,也无其他排污口,试求排放点下游5 km 处的 BOD5 浓度。
定义 把一个连续的一维空间划分成若干个子空间,每一个 子空间都作为一个完整混合反应器,将上一个反应器 的输出视为下一个反应器的输入
设 C1,C2,…,Ci 为相应河段的污染物浓度,每一个河 段的浓度表达式
C1
C10 1 KdV1
Q1
C2
C20 1 KdV2
Q2
Ci
Ci 0 1 KdVi
河流水质变化过程
河流水质变化过程
河流水质模型分类(按维数) 零维 一维 二维 三维
第三章 河流水质模型
零维水质模型
定义 污染物进入河流水体后,在污染物完全均匀混合断面 上,污染物的指标无论是溶解态的、颗粒态的还是总 浓度,其值均可按节点平衡原理来推求。对河流,零 维模型常见的表现形式为河流稀释模型。

河流水质数学模型专题讲解

河流水质数学模型专题讲解
④晚间光合作用停止时,由于水生植物(如藻 类)的呼吸作用而好氧。
⑤废水中其它还原性物质引起水体的好氧。
河水溶解氧供应的来源有: ①上游河水或有潮汐河段海水所带来的溶解氧。 ②排入河水中的废水所带来的溶解氧。 ③河水流动时,由大气中的氧向水中扩散、溶解。 ④水体中繁殖的光合自养型水生植物(如藻类), 白天通过光合作用放出氧气,溶于水中。
?
k1L0 k1?k2
(e?1x
?e?2x)
?1
?
u 2E
(1?
1?
4Ek1 u2
)
u
?2
?
(1? 2E
1?
4Ek2 u2
)
2.忽略弥散时:
?L ?
?
L e?k1x/u 0
??O? ?
Os
?
k1L0 k1 ? k2
(e?k1x/u
?
e?k2x/u
)?
D e?k2x/u 0
氧垂曲线
D0 Dc
溶解氧
饱和溶解氧浓度
S-P模型的基本假设是:①河流中的 BOD的衰减和溶 解氧的复氧都是一级反应;②反应速度是定常的; ③河流中的耗氧是由 BOD衰减引起的,而河流中的 溶解氧来源则是大气复氧。其基本方程是:
dL dt
?
? k1t
dD dt ? k1L ? k2D
a.斯特里特-菲尔普斯(Streeter-Phelps)BOD -DO模型
0
tc
t
b.托马斯( Thomas )BOD -DO模型
对一维稳态河流,在斯特里特 -菲尔普斯模型的基础
上增加一项因悬浮物的沉淀与上浮所引起的 BOD速率
变化 ,才有以下的基本方程组(忽略弥散):

第三章水质模型

第三章水质模型

水质模型
1.1 水质模型的主要问题和分类
一、 问题 (1)为了避免一条河流产生厌氧而使水质保持 在给定的条件,应当在何处建立污水处理厂? 多大规模、什么样的处理效率才能保证溶解 氧浓度不低于水质标准? (2)为了合理地利用某一区域的水资源,该区 域应当发展何种工业以及多大规模的工业才 能使该地区的水资源得以充分利用并保证水 资源不至于受污染。
C0 1 k1x
Q
u
2019/11/25
25
例题2:河流的零维模型
• 有一条比较浅而窄的河流,有一段长1km的河段,稳 定排放含酚废水1.0m3/s;含酚浓度为200mg/L,上游 河水流量为9m3/s,河水含酚浓度为0,河流的平均流 速为40km/d,酚的衰减速率常数k=2 1/d,求河段出 口处的河水含酚浓度为多少?
• 水质模型的分类:
1、按水域类型:河流、河口、河网、湖泊 2、按水质组分:单一组分、耦合组分(BOD-DO模型)、
多重组分(比较复杂,如综合水生态模型) 3、按水力学和排放条件:稳态模型、非稳态模型
水质模型按 空间维数分类
零维水质模型 一维水质模型 二维水质模型 三维水质模型
2019/11/25
0
水质模型
(4)按水质组分是否作为随机变量,可分为随 机模型和确定性模型。
水质模型还可以按模型的其他特征分类。如 按水质组分的迁移特性,可分为对流模型, 扩散模型和对流-扩散模型。按水质组分的 转化特性可分为纯迁移模型,纯反应模型和 迁移-反应模型等。
0
水质模型
1.2 水质模型的发展及建立步骤
一、水质模型的发展过程 第一阶段(1925-1965年):开发了比较简单的 生物化学需氧量(BOD)和溶解氧(DO)的双线 性系统模型,对河流和河口的水质问题采用 了一维计算方法进行模拟。 第二阶段(1965-1970年):研究发展BOD—DO 模型的多维参数估值,将水质模型扩展为六 个线性系统模型。发展河流、河口、湖泊及 海湾的水质模拟,方法从一维发展到二维。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河流水质数学模型
A
1
一、河流概况 二、河流水环境容量模型 三、河流水质模型 四、河流水质数学模型的发展趋势
A
2
一、河流概况
1、地表水环境质量标准 2、2011年十大水系水质类别比例 3、河流中有机污染物概况
A
3
1、地表水环境质量标准
依据地表水水域环境功能和保护目标,按功能高低依次划分为五类: Ⅰ类 主要适用于源头水、国家自然保护区; Ⅱ类 主要适用于集中式生活饮用水地表水源地一级保护区、珍稀水生生
物栖息地、鱼虾类产场、仔稚幼鱼的索饵场等; Ⅲ类 主要适用于集中式生活饮用水地表水源地二级保护区、鱼虾类越冬
场、洄游通道、水产养殖区等渔业水域及游泳区; Ⅳ类 主要适用于一般工业用水区及人体非直接接触的娱乐用水区; Ⅴ类 主要适用于农业用水区及一般景观要求水域。
对应地为五类,不同功能类别分别执行相应类别的标准值。水域功 能类别高的标准值严于水域功能类别低的标准值。同一水域兼有多类 使用功能的,执行最高功能类别对应的标准值。实现水域功能与达功 能类别标准为同一含义。
(1)溶解氧
溶解氧是指溶解于水中的游离氧,常以DO来表示,是反映水体中存在氧 的数量指标。天然水体中溶解氧数量一般以5~10mg/L,受到严重污染的水体, 溶解氧含量几乎接近于零,水质将严重恶化,因为当好氧有机物排入水体后, 会被好氧微生物分解,使水体中溶解氧急剧下降,造成水体中溶解氧的缺乏, 如果水体中溶解氧耗尽,有机物又会被厌氧微生物分解,发生腐败现象,产 生甲烷、硫化氢等恶臭物质,因此掌握水体中溶解氧的含量对分析水质污染、 自净能力都有重要意义。
ksy
2yC2 K1C
A
14
三、河流水质模型
(一)一维河流水质模型 1、河段划分 2、单一河段水质模型 3、多河段水质模型
排放污水,由于河流水深相对很浅,近似假定污水排入后
即刻在水深方向均匀混合,这种情况下,C 0, C 0,
t
z
二维稳态污染物质弥散方程为
C C 2C 2C uxvyksxx2ksyy2K1C
均匀河段,在水深变化不大的情况下,横向流速v=0,纵 向弥散项远小于对流项,可以忽略,则上式可简化为
uC x
(2)生化需氧量
生化需氧量(BOD)是水样中的有机物在生物化学分解过程中所消耗氧的量。 它是以水样在一定温度(20℃)下,在密闭容器中保存一定时间(一般为五日)后 溶解氧的减少量来表示,五日的BOD值记为BOD5 。
A
6
3.2耗氧有机物及来源
耗氧有机物主要是指溶解性和颗粒性碳水 化合物、蛋白质、油脂、氨基酸、脂肪酸、 酯类等有机物。这类有机物在水中可被微 生物利用和分解,转化为二氧化碳、水和 氮。由于在被微生物分解的过程中消耗水 体中大量的溶解氧,因此被称为耗氧有机 物。
3.1氧平衡指标
氧平衡指标是影响水体水质变化的一个关键性指标,它表示水体中溶解 氧的情况,水体中有机物的含量不易直接测定,一般以有机物在氧化过程中 所消耗的溶解氧或氧化剂的含量来间接反映有机物的数量和危害程度。
常用的氧平衡指标有溶解氧(DO)、生化需氧量(BOD)、化学需氧量(COD)、总 需氧量(TOD)。
A
7
3.3水体的耗氧和复氧
(1)影响水体中氧消耗的主要因素 ①水中有机物在微生物作用下发生碳化分解和硝化分解; ②底泥有机物耗氧; ③水生生物的呼吸作用; ④其他还原性物质的氧化作用。 (2)影响复氧和增氧的因素 ①水流中的氧; ②大气复氧,即大气中的氧在水体中的溶解与扩散; ③自养型水生植物光合作用产生的氧。
质从含量较高的流体中向含量较 低的流体迁移,使两种流体分界
面处形成过度混合带,混合带不
2.一维情况下河流水环境容量模型
断发展扩大,趋向于成为均质的 混合物质,即为弥散现象。
设河流中污染物一维对流弥散方程为
C t uC xks 2xC 2 k1C (1)
式中ks为弥散系数(表征流动水体中污染物在沿水流 方向弥散的速率系数);k1为污染物的降解系数;C 为排污口下游处的浓度解(mg/L) ; X为沿河段的 纵向距离m;u为河水流速(m/s)。
A
4
2、2011年十大水系水质类别比例
长江、黄河、珠江、松花江、淮河、海河、辽河、浙闽片河流、西南 诸河和内陆诸河十大水系监测的469个国控断面中Ⅰ~Ⅲ类、Ⅳ~Ⅴ类 和劣Ⅴ类水质断面比例分别为61.0%、25.3%和13.7%。主要污染指 标为化学需氧量、五日生化需氧量和总磷。
A
5
3. 河流中有机污染物的相关情况
A
8
二、河流水环境容量模型
1.可概化为零维的河流水环境容量模型 2.一维情况下河流水环境容量模型 3.二维情况下河流水环境容量模型
A
9
1.可概化为零维的河水完全混合基本方程
在河流是稳态,排污一定,污染物在河段内均匀混合, 污染物为持久性、不分解、不沉淀,河流无支流和其它排 污口时,通常采用完全混合模型,模型公式 如下:
式中:C一污水与河水混合后的浓度(mg/L); cp一河流上游某污染物浓度(mg/L); Qp一河流上游流量(m /s); Qh一排放口处污水量(m /s);
ch一排放口污染物浓度(mg/L)。
A
10
一维模型:对于较长河流,当污染物在横向和
弥散:两种流体接触时,某种物
垂向的浓度分布不均衡性可以忽略时,可用一 维模型来模拟河水的水质和计算水环境容量。
A
11
2.1稳态解
稳态是指均匀河段定常排污条件,即过水断面、流速、
流量等都不随时间变化, C 0
此时(1)式变化为
t
d2C u dcK1 C0 dx2 ks dx ks
通过解析得稳态解为
当x≥0时, 当x<0时,
CC0e2x,2
u 2ks
(1)
CC0e1x,1
u 2ks
(1)
C0为污染物进入河水完全混合的初始浓度(mg/L);
A
12
2.2不考虑弥散作用的稳态解
当不考虑弥散作用,即弥散系数ks=0时,(1)式变化

u C x
K1C
解上述方程得
K1 x
C C0e u
A
13
二维模型:如果模拟的河流水面较宽(超过200m),则按一维 模型计算结果可能误差较大,因此需采用二维模型计算。
3.二维情况下河流水环境容量模型
一个均匀河段的起始断面,从排污口连续稳定的向河流
相关文档
最新文档