线性代数 李建平版本 复旦大学出版社 答案

合集下载

线性代数课后习题答案-复旦大学出版社-熊维玲

线性代数课后习题答案-复旦大学出版社-熊维玲

线性代数课后习题答案-复旦大学出版社-熊维玲第一章3.如果排列nx x x 21是奇排列,则排列11x xx n n的奇偶性如何?解:排列11x x x n n 可以通过对排列nx x x 21经过(1)(1)(2)212n n n nL 次邻换得到,每一次邻换都改变排列的奇偶性,故当2)1( n n 为偶数时,排列11x x x n n 为奇排列,当2)1( n n 为奇数时,排列11x xx n n为偶排列。

4. 写出4阶行列式的展开式中含元素13a 且带负号的项.解:含元素13a 的乘积项共有13223144(1)taa a a,13223441(1)taa a a,13213244(1)t a a a a ,13213442(1)taa a a,13243241(1)taa a a,13243142(1)taa a a六项,各项列标排列的逆序数分别为(3214)3t ,(3241)4t ,(3124)2t ,(3142)3t ,(3421)5t ,(3412)4t , 故所求为132231441aa a a,132134421a a a a,132432411a a a a。

5.按照行列式的定义,求行列式nn 0000100200100的值.解:根据行列式的定义,非零的乘积项只有1,12,21,1(1)t n n n nna a a a L ,其中(1)(2)[(1)(2)21]2n n t n n n L ,故行列式的值等于:(1)(2)2(1)!n n n6. 根据行列式定义,分别写出行列式xx x x x111123111212 的展开式中含4x 的项和含3x 的项.解:展开式含4x 的乘积项为411223344(1)(1)22ta a a a x x x x x含3x 的乘积项为1312213344(1)(1)1taa a a x x x x8. 利用行列式的性质计算下列行列式: 解:(1) 4113112342112341111111141023412341012110310()3412341201212412341230321r r r r r r r r r r r4243321111111130121012110101011(4)(4)160004000410044004r r r r r r (2)2605232112131412 1231211241124113210562202132035005620562c c r r r r (第二行与第四行相同) (3)22231132222221111111222202221110a ab b r a r a a b b r r a a b b b ab a r ar a ab b ab a b a2332111111()()012()012()000b a b a r ar b a a b a b a b a(4)3421211111101111111111111111000011111111111111x xxr r x x x x r r x x x x x x41224432111110011011001100111100r r x x x r r x x r r x x9.若540030087654321x =0,求.x 解:12341500567826001544(512)003374263500454835x x x x 转置即有:124(512)05x x11. 利用行列式按行或列展开的方法计算下列行列式: 解: (2)12431010110(1)(1)01011011011a aa a a D a D a a a a aaa按第一行展开11323212(1)(1)(1)(1)(1)]n n n a D a D a D aD D a D aD [一般地有221221(1)[(1)](1)(1)a a D aD aD a a D a a D ,其中:2221(1)111a a D a a a a a,111D a a .带入上式即可。

线性代数第二章习题部分答案

线性代数第二章习题部分答案

线性代数第二章习题部分答案第二章向量组的线性相关性§2-1 §2-2 维向量,线性相关与线性无关(一)一、填空题1. 设3 α1α +2 α2+α =5 α3+α , 其中α1=(2,5,1,3)T,α2=(10,1,5,10)T, α3=(4,1,1,1)T, 则α= (1,2,3,4)T .2. 设α1=(1,1,1)T, α2=(2,1,1)T,α3=(0,2,4)T,则线性组合α13α2+α3= (5,0,2)T .3. 设矩阵A= 5 ,设βi为矩阵A的第i个列向量,则2β1+β2β3= (2,8,2)T .二、试确定下列向量组的线性相关性1. α1=(2,1,0)T, α2=(1,2,1)T, α3=(1,1,1)T解:设k1α1+k2α2+k3α3=0,则k1 210 +k2 121 +k3 111 = 000即2k1+k2+k3=0k1+2k2+k3=0k2+k3=0 k1+2k2+k3=03k2k3=0k2+k3=0 k1+2k2+k3=0k2+k3=0k3=0 k1=k2=k3=0,线性无关。

2. α1=(1,1,2)T, α2=(0,0,0)T, α3=(1,4,3)T线性相关三、设有向量组α1=(1,1,0)T, α2=(1,3,1)T, α3=(5,3,t)T,问t取何值时该向量组线性相关。

解:设k1α1+k2α2+k3α3=0,则k1 110 +k2 131 +k3 53t =0即k1+k2+5k3=0k1+3k23k3=0k2+tk3=0 k1+k2+5k3=0k24k3=0k2+tk3=0k1+k2+5k3=0k1+3k23k3=0(t4)k3=0所以,t=4, 线性相关; t≠4, 线性无关四、设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表示式。

解:因为a1+b,a2+b线性相关,所以存在不全为零的k1,k2,使得k1(a1+b)+k2(a2+b)=0, 即(k1+k2)b=k1a1k2a2.又因为a1,a2线性无关,所以k1+k2≠0,于是,b=k1k1+k2a1k2k1+k2a2.五、已知向量组α1,α2,,α2n,令β1=α1+α2,β2=α2+α3,,β2n=α2n+α1,求证向量组β1,β2,,β2n线性相关。

线性代数课后练习参考答案(初稿)

线性代数课后练习参考答案(初稿)

线性代数课后练习参考答案(初稿)线性代数课后习题参考答案(初稿)习题一1. 用行列式定义计算下列各题(1)4245322635-=-?-?=-(2)12130111110101(1)(1)21011110++=-+-= (3)13120010020020030(1)3002(1)243000040040004++=-=?-=-(4)111213100002300234645(1)4562(1)3(1)4045681089891078910+++=-=?-+?-=2. 利用行列式的性质计算下列各题(1)2 1412141312150620123212325625062-==(2)2851285110513102531906196512511310805120512121117609712--------==---=----=----------(3)111111111ab ac ae b c e bdcd de adf b c e adfbce bfcfefbce----=-=----111024020adfbce adfbce -== (4)3300011()()010a b b ba b b b a b a b a b a a b a a b a a b a a b b a a b b b b ab a b a-==--=--------(5)x a a aa x a aa a x a a a ax =(1)(1)(1)(1)x n a a a ax n a xa a x n a a x a x n a a a x+-+-+-+- =[(1)]x n a +-1111a aa x a a a x a a ax=[(1)]xn a+-1001001001x ax a x a---[(1)]x n a =+-1()n x a --(6)2222222222222222222(1)(2)(3)212325(1)(2)(3)2123250(1)(2)(3)212325(1)(2)(3)212325a a a a a a a ab b b b b b b bc c c c c c c cd d d d d d d d ++++++++++++==++++++++++++(7)12311000011231110001223110200(1)!1232110020123111001n n n n n n n n n n n n n nn -+-+-==--+----+-(8)012111110001012111 11200213111112201231230 123241n n n n n n n n n n n n n --------==-----------------12(1)2(1)n n n --=--3. 证明下列各题(1)111111111111111122222222222222223333333333333333a b b c c a a b c c a b b c c a a b b c c a a b c c a b b c c a a bb c c a a b c c a b b c c a ++++++++++=++++++++++++111111*********22222222222223333333333333a b c c b c c a a b c b c a a b c c b c c a a b c b c a a b c c b c c a a b c b c a ++=+++=+++ 1112223332a b c a b c a b c = (2)0()()()()00x y z x z y x y z y z x z x y x y z y z x zy x =-+++-+-+-(证明略)(3)11111111111111111110111111111110111111111110111xx x xxy y y y yy+---=++++---21000111111111001111110111001111110111000x x x x y xy x y y yy y y y-?-?- ?=++=++++ ?---??22222210011001100y xy x y x xy xy x y x y y y + ?=+-=-+= ?- ?-?(4)设012110001000100n n n a a x D a x a x----=-,则按最后一行展开,可得011132 10001101(1)00110n n n n n a a x x D a xa x x a x+-------=-+--211122122()n n n n n n n n a xD a x a xD a xa x D --------=+=++=++.332123223321123210n n n n n n n n n n na xa a x a x x D a xa a x a x a x a x -----------= =+++++=++++++4. 解法参考例 1.11.5. 问齐次线性方程组123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=??+-+=??++-=? 有非零解时,必须满足什么条件?解:齐次线性方程组有非零解,当且仅当1242310111λλλ---=-.又124111111231231012111112403(1)(3)λλλλλλλλλλλλ-----=--=--------+-(2)(3)0,λλλ=---=解得,0,λ=或2λ=,或3λ=.所以,当0,λ=或2λ=,或3λ=,齐次线性方程组有非零解.习题二 1. 1654127,2211210712A B A B -+=-=---2. 解:由A X B +=,得020133.221X B A -??=-=-- ? ?--?? 3. 解:213220583221720,0564292290T AB A A B -???? ? ?-=--=- ? ? ? ?- 4. 解:(1)()31,2,32132231101?? ?=?+?+?= ? (2)()22411,212336-???? ? ?-=- ? ? ? ?-????,(3)12110162134021311491231042217--?????? ??? ?= -(4) 1312140012678113413120510402??--???? ?= ? ? ?---????5. 解:(1)错误,令1101,,0111A B == ? ?则有AB BA ≠;(2)错误,令1101,,0111A B == ? ?则有222()2.A B A AB B +≠++(3) 错误,令1101,,0111A B == ? ?则可得22()().A B A B A B +-≠- (4) 错误,设00,10A ??=则有20A =,但0.A ≠(5)错误,设10,00A ??=则有2A A =,但.A I ≠6.解:2221010(),0101AB A B -== ? ?-7.证明:因为A 为对称矩阵,所以T A A =. 故(),T T T T T B AB B A B B AB ==因此,T B AB 是对称矩阵.8. 证明:因为(),(),T T T T T T A A A A AA AA == 所以,T T A A AA 是对称矩阵.9. 解:由32,A X B -=得43/211(3)15/2127/211/25/2X B A -?? ?=--=- ? ???. 10. 2cos 2sin 2,sin 2cos 2A θθθθ-??=cos sin sin cos n n n A n n θθθθ-??=对n 作数学归纳法. 当2n =时,22222cos 2s in 2cos sin 2cos sin sin 2cos 22cos sin cos sin A θθθθθθθθθθθθ-??--??==-??, 结论成立. 假设, 当n k =时, 结论成立, 即cos sin sin cos k k k A k k θθθθ-??=. 下证1n k =+结论成也立. 由归纳假设可得,1k A+=cos sin cos sin sin cos sin cos k k k A A k k θθθθθθθθ--=cos cos sin sin cos sin sin cos cos sin sin cos cos cos sin sin k k k k k k k k θθθθθθθθθθθθθθθθ---??=+-??cos(1)sin(1)sin(1)cos(1)k k k k θθθθ+-+??=++??因此,由归纳法可得cos sin sin cos n n n A n n θθθθ-??=. 11. (1)解:由初等行变换可得,111031113111031107221240012200122001043314500244000390001311118002150000000000A -------???????? ?----=→→→ ? ? ? ?------ ?-(2)解:由初等行变换可得,111111107125016016234000000 ? ? ?-→-→- ? ? ? ? ? ?-12. 解法见第38页例2.14.13. (1) 解:22222311111111111011111110111λλλλλλλλλλλλλλλλλλλ→→--- ? ? ? ? ? ?---?2221101100(1)(2)(1)(1)λλλλλλλλλλ?? ?→--- ? ?-+-+?,当2λ=-时,方程组无解,当1λ=时,方程组的增广矩阵为111100000000??因此方程组的解为12111010001k k --++ ? ? ? ? ? ???????, 12,k k 为任意常数,当1λ≠,且2λ≠-时,方程组有唯一解,221211(1)(1),,222x x x λλλλλλλ+++=-=-+=-+++(2)解:322111************213221λλλλλλλλλλλλ---??--→-- ? ? ? ?---?112111210111011101(2)(1)2(1)00(1)(3)1λλλλλλλλλλλλλλλ--???? ? ?→-+--→--- ? ? ? ?-------当1λ=时,方程组无解,方程组的增广矩阵为111100000000??因此方程组的解为12111010001k k --++ ? ? ? ? ? ???????, 12,k k 为任意常数,当3λ=时,方程组无解,当3λ≠且1λ≠时,方程组有唯一解,123411,,.33x x x λλλ-=-==-- 14. 解:通过初等变换,可得A 的标准型矩阵为,17100010101002800105100015?- ? ? ? ? ? ? ? ? ?-?15. 解析:通过初等行变换可将矩阵()A I 化为()()A I I B →,则1A B -= 例如(1)通过初等行变换,121012101052250101210121-→→ ? ? ?--,故 112522521--= ? ?-相类似的方法可求的其余矩阵的逆矩阵,答案见教材第177页. 16. 解:原线性方程组可写成123123122103430x x x= ??? ? ??? ???????,因此,11231123132210234301x x x -??==- ? ? ? ? ? ? ? ?17.(1)由原矩阵方程可得121122111321182431511133X --??-??-?? ? ?== ? ? ?-- ??? ?-,(2)由原矩阵方程可得1111143120112011104X --???????? ?== ? ??? ?---??????(3)由原矩阵方程可得11010143100210100201001134001120010102X ----???????? ? ??? ?=-=- ? ??? ? ? ??? ?--????????18证明:因为21()()k k I A I A A A I A I +-++++=-=,所以12()()k I A I A A A --=++++19.解:由220A A I --=,得()2A I AI -=,3(2)4A IA I I -+=-,因此,1(),2A I A --=13(2)4A IA I --+=-20. 证明:由220A AB B ++=,且B 可逆得,22[()],()A A B B E B A A B E ---+=-+=,因此,,A A B +可逆,且1212(),().A A B B A B B ----=-++=- 21. 令11123,01121001B C ??== ? ??? ?,则111311044,0111100122B C --??-??- ? ?==--,因此1111130004411000002200001100001100001B B A A A ----??- ? ?-=== ?- ? ?- ?. 22. 证明:若,B C 可逆,则有11000B C I CB --= ? ?,所以A 可逆,且1110.0C A B---??= 反之,若A 可逆, 设其逆为X Y Z V ??,则, 000B X Y I o CZ V I= ??? ???????,因此,,BZ I CY I ==,因此,B C 可逆.23. 证明:用反证法. 假设A 是奇异矩阵,则由2A A =,得211A A AA --=,即A E =,这与已知条件矛盾,所以A 是非奇异矩阵.习题三 1. (3,8,7)T β=2. 解: 设11223344,x x x x βαααα=+++ 即12341111121111,1111111111x x x x ? ? ? ? ?-- ? ? ? ? ?=+++ ? ? ? ? ?-- ? ? ? ? ?-- 解得, 12345111 ,,,4444x x x x ===-=-, 因此12345111.4444βαααα=+--3. 解: 由3(),αβαβ-=+ 得117(1,,2,)222T αα=-=---. 4. 类似第2题的解法,可得1234243.βαααα=+-+ 5. (1) 解: 设1122330,x x x ααα++= 即1231111260133x x x++= ? ? ? ? ? ???????,上面方程组只有零解,所以123,,ααα线性无关. (2) 因为111111111141406120612117024000A ? ? ?=-→-→- ? ? ? ? ? ?-, 所以秩(A)=2, 故123,,ααα线性相关. 6. 用反证法容易证明结论成立. 7. 证明: (1) 设11220,m m x x x βββ+++= 则有11220,m m x x x ααα+++= 又因为12,,,m ααα线性无关, 所以120,m x x x ==== 因此12,,,,mβββ线性无关.(2) 若12,,,,m βββ线性相关, 则存在不全为零的数12,,,,m x x x 使得11220,m m x x x βββ+++= 因此11220,m m x x x ααα+++= 故而12,,,m ααα线性相关.8. 证明: ()?设112223331()()()0,k k k αααααα+++++= 整理得,131122233()()()0k k k k k k ααα+++++=,因为123,,ααα线性无关, 所以131223000k k k k k k +=??+=??+=? 又因为1011100011≠, 所以上面方程组只有零解, 故122331,,αααααα+++线性无关.()? 设1122330,k k k ααα++= 整理得,123121232312331111()()()()()()0,222k k k k k k k k k αααααα+-++-++++-++= 又因为122331,,αααααα+++线性无关,所以123123123(000k k k k k k k k k +-=??-++=??-+=? 解得上面方程组只有零解,因此,123,,ααα线性无关. 证明: 9.(?)设1mi i i k αα==∑,和10.mi i i l α==∑ 则,111()mmmi i i i i i i i i i k l k l αααα====+=+∑∑∑,又α的表达式唯一,因此,i i i k l k += 即0,i l = 故,12,,,m ααα 线性无关.(?)设11m m i i i i i i k l ααα====∑∑,则1()0mi i i i k l α=-=∑,因为12,,,m ααα 线性无关,所以,,i i k l =故α的表达式唯一.10. 证明:因为12,,,m ααα 线性相关,则存在不全为零的数12,,,m k k k 使得,10.mi ii k α==∑若有某个0i k =,不妨设10k =,则有20,mi ii k α==∑ 又任一1m -向量都线性无关,因此230m k k k ====,这与12,,,m k k k 不全为零矛盾,因此12,,,m k k k 全不为零,命题得证. 11. 答案见教材178页. 12. 解: (1) 因为13213213221307107132076005A c c c ? ? ?=-→--→-- ? ? ? ? ? ?--+-+所以,当50,c -+≠ 即5c ≠时,123,,ααα线性无关.(2 ) 当5c =时,123,,ααα线性相关,且312111.77ααα=+ 13. 解:(1)因为2344112311231123112323440501005010326132610501000001021102101020000A --------=→→→ ? ? ? ?------因此,向量组1234,,,αααα的秩为2,12,αα是一个极大线性无关组,且314122,2.ααααα==-+用类似的方法可求(2),(3),答案见教材.14. (1) 因为120131(,)1224αα?? ?-= ? ???,有一个二阶子式01331=--,所以秩(12,αα)=2,即12,αα线性无关.(2)容易计算124,,ααα线性无关. 15. 答案见教材.16. (1)任取()()12121,,,,,,,,,n n x x x y y y V k R ∈∈则有11220n n x y x y x y ++++++=,120n kx kx kx +++=所以()()()121211221,,,,,,,,,n n n n x x x y y y x y x y x y V +=+++∈,12121(,,,)(,,,)n n k x x x kx kx kx V =∈,因此,1V 是线性空间.(2) 任取()()12122,,,,,,,n n x x x y y y V ∈,则有11222n n x y x y x y ++++++=,因此, ()()()121211222,,,,,,,,,.n n n n x x x y y y x y x y x y V +=+++? 因此,2V 不是线性空间. 17. 证明:因为01101111101101211110011==-=--,所以123,,ααα线性无关,即秩(123,,ααα)=3,故123,,ααα生成的子空间就是R .18. 因为 12311160,032-=-≠ 所以,秩(123,,ααα)=3,故123,,ααα是R 的一组基.令1112233k k k βααα=++,即123(5,0,7)(1,1,0)(2,1,3)(3,1,2).k k k =-++ 因此123123232350327k k k k k k k k ++=??-++=??+=?,解得,1232,3,1,k k k ===- 所以112323βααα=+-.19. 方法见例3.17. 20. 见教材答案21. 证明:因为A 是正交阵,所以21,1T A A A -==.又*,A A A E = 即*1A A A -=.因此,2**()T A A A E E ==,故*A 是正交阵. 习题四 1. 解(1)1251251251320170171490214000378017000?????? ? ?--- ? ? ?→→-- ? ?-, 所以,原方程组与下面方程组同解,1232325070x x x x x ++=??-=?选取3x 作为自由未知量,解得基础解系为1971-?? ? ? ???,因此,方程组的解为1971k -?? ? ? ???(2)313411311131159815980467113131340000--------→--→-- ? ? ? ? ? ?----,选取选取34,x x 作为自由未知量,解得基础解系为3/23/43/27/4,1001-故方程组的同解为123/23/43/27/41001k k -+ ? ? ? ?????(3)见教材答案(4)见教材答案2. (1)对增广矩阵做行初等变换得1121011210(,)211210*********/200031/2A b --???? ? ?=--→ ? ? ? ?----解得特解为5/6101/6??-??,对应的齐次线性方程组的基础解系为3510-?? ?- ? ? ???,因此方程组的同解为5/6101/6?? ? ? ? ?-??+3510k -?? ?- ? ? ???(2)答案见教材 3. (略)4. 证明:令i e 为n 阶单位矩阵的第i 列,即(0,0,,1,0,,0)Ti ie =, 则有0,1,2,,i Ae i n ==,因此12(,,,)0,n A e e e AI == 故0A =。

《线性代数》课后习题答案

《线性代数》课后习题答案

《线性代数》课后习题答案第一章行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。

因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。

任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(21212121221121212211212122 11b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。

因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221 121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。

如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。

又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。

综上所述,我们有)3(Q 是数域。

(2)类似可证明)(p Q 是数域,这儿p 是一个素数。

(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。

(反证法)如果)()(q Qp Q ?,则q b a p Q b a +=?∈?,,从而有q ab qb a p p 2)()(222++==。

由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。

所以有0=a 或0=b 。

线性代数(李建平)习题答案详解

线性代数(李建平)习题答案详解

线性代数习题一1.2.3(答案略)4. (1) ∵ (127435689)415τ=+= (奇数) ∴ (127485639)τ为偶数故所求为127485639(2) ∵(397281564)25119τ=+++= (奇数) ∴所求为3972815645.(1)∵(532416)421106τ=++++= (偶数)∴项前的符号位()611-=+ (正号)(2)∵325326114465112632445365a a a a a a a a a a a a = (162435)415τ=+=∴ 项前的符号位5(1)1-=- (负号) 6. (1) (2341)(1)12n n τ-⋅ 原式=(1)(1)!n n -=- (2)()((1)(2)21)1(1)(2)21n n n n n n τ--⋅⋅---⋅⋅ 原式=(1)(2)(1)!n n n --=-(3)原式=((1)21)12(1)1(1)n n n n n a a a τ-⋅-- (1)212(1)1(1)n n n n n a a a --=-7.8(答案略)9. ∵162019(42)0D x =⨯-⨯+⨯--⨯=∴7x =10. (1)从第2列开始,以后各列加到第一列的对应元素之上,得[]11(1)111001(1)111(1)11(1)1101x x n x x x n x x x n x x n x x +-+--==+-+--[]1(1)(1)n x n x -=+--(2)按第一列展开:11100000(1)(1)00n n n n n y x y D x x y x y x y-++=⋅+-=+-(3)1231134114512(1)2113211221n nnn nDn n nn n-+=----12310111101111(1)20111101111n nnnn nnn---+=--11111111(1)211111111nnn nnn--+=--(2)(3)2111111111(1)(1)211111111n nnnn nnn-+-+++--+=⨯---(1)(2)211111111(1)(1)211111111n nnn nnn-----+=-⋅----(1)(2)(1)11000100(1)(1)(1)2100100n n n n n nnn n n nnn-------++=-⋅=-⋅----习题二1.2.3.4.5(答案略) 6. 设 11122122xx x x ⎛⎫= ⎪⎝⎭B 为与A 可交换的矩阵,则有=AB BA 即 111211122122212211111111x x x x x x xx ⎛⎫⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ 解之得 11122122,,,x a x b x b x a ====7. (1)112233*********x y x y x y -⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ , 记为X =AY11223111101y z y z y ⎛⎫⎛⎫⎛⎫⎪ ⎪=- ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭ ,记为Y =BZ(2)()()X =A BZ =AB Z 即 11223325013x z x z x ⎛⎫⎛⎫⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪-⎝⎭⎝⎭ 8(答案略)9.2345()32181010341f -⎛⎫ ⎪=++= ⎪ ⎪⎝⎭A A A E10.(1)2222()()+-=+--=-A B A B A BA AB B A B(2) 2()()()+=++A B A B A B22=+++A BA AB B=222++A AB B11. ∵21,()2==+A A A B E ∴ 222,44=-=-+=B A E B A A E E 反之 若 2=B E ,则 244-=A A O ,即 2=A A12. (1) 设2(),()ij ij a b ==A A ∵T =A A ∴ij ji a a =又∵ 2=A O ∴0ii b =又 1122ij i j i j in nj b a a a a a a =+++ 22212i i in a a a =+++ (,1,2,,i j n =当 1,2,,i j n == 时,有1112121222120,0,0n n n n nn a a a a a a a a a ============ ∴ 0A =(2)设 ()ij a =A ,()T ij b =AA 则1122ij i j i j in jn b a a a a a a =+++∵ 0T =A A ∴ 0(,1,2,,)ij b i j n ==当 i j = 时,有 222120(1,2,,)i i in a a a i n +++== 故 120(1,2,,)i i in a a a i n ===== 即 0=A 13.(1) ∵ ()T T T =A A A A ∴T A A 为对称矩阵同理 T AA 也为对称矩阵(2) ∵ ()T T T T +=+=+A A A A A A ∴ T +A A 为对称矩阵又 ∵()()T T T T -=-=--A A A A A A ∴ T -A A 为反对称矩阵(3)∵111()()()222T T T T =++-=++-A A A A A A A A A 由(2)知,1()2T +A A 为对称矩阵,1()2T -A A 为反对称矩阵故 A 可表示成一个对称矩阵与一个反对称矩阵的和。

线性代数课后习题答案全解.pdf

线性代数课后习题答案全解.pdf

第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102−−−;解 381141102−−−=2×(−4)×3+0×(−1)×(−1)+1×1×8 −0×1×3−2×(−1)×8−1×(−4)×(−1) =−24+8+16−4=−4. (2)b a c a c b cb a ;解 ba c a cb cb a=acb +bac +cba −bbb −aaa −ccc =3abc −a 3−b 3−c 3. (3)222111c b a c b a ;解 222111c b a c b a=bc 2+ca 2+ab 2−ac 2−ba 2−cb =(a −b )(b −c )(c −a ). 2(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx −y 3−(x +y )3−x =3xy (x +y )−y 3 3−3x 2 y −x 3−y 3−x =−2(x 3 3+y 3 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数:).(1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n −1) 2 4 ⋅ ⋅ ⋅ (2n );解 逆序数为2)1(−n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个)⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n −1)2, (2n −1)4, (2n −1)6, ⋅ ⋅ ⋅, (2n −1)(2n −2) (n −1个)(6)1 3 ⋅ ⋅ ⋅ (2n −1) (2n ) (2n −2) ⋅ ⋅ ⋅ 2. 解 逆序数为n (n −1) : 3 2(1个) 5 2, 5 4 (2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n −1)2, (2n −1)4, (2n −1)6, ⋅ ⋅ ⋅, (2n −1)(2n −2) (n −1个) 4 2(1个) 6 2, 6 4(2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n )2, (2n )4, (2n )6, ⋅ ⋅ ⋅, (2n )(2n −2) (n −1个) 3. 写出四阶行列式中含有因子a 11a 23 解 含因子a 的项. 11a 23(−1)的项的一般形式为t a 11a 23a 3r a 4s 其中rs 是2和4构成的排列, 这种排列共有两个, 即24和42. ,所以含因子a 11a 23 (−1)的项分别是t a 11a 23a 32a 44=(−1)1a 11a 23a 32a 44=−a 11a 23a 32a 44 (−1), t a 11a 23a 34a 42=(−1)2a 11a 23a 34a 42=a 11a 23a 34a 42 4. 计算下列各行列式:.(1)71100251020214214; 解 71100251020214214010014231020211021473234−−−−−======c c c c 34)1(143102211014+−×−−−= 143102211014−−=01417172001099323211=−++======c c c c .(2)2605232112131412−; 解 2605232112131412−26053212213041224−−=====c c 041203212213041224−−=====r r 0000003212213041214=−−=====r r . (3)efcf bf de cd bd aeac ab −−−;解 ef cf bf de cd bd ae ac ab −−−ec b e c b ec b adf −−−=abcdef adfbce 4111111111=−−−=.(4)dc b a 100110011001−−−. 解d c b a 100110011001−−−dc b aab ar r 10011001101021−−−++===== d c a ab 101101)1)(1(12−−+−−=+01011123−+−++=====cd c ada ab dc ccdad ab +−+−−=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a −b )3 证明;1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c −−−−−−=====ab a b a b a ab 22)1(22213−−−−−=+21))((a b a a b a b +−−==(a −b )3 (2) . y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=y x z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4−c 3, c 3−c 2, c 2−c 1 得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4−c 3, c 3−c 2得)022122212221222122222=++++=d d c c b b a a . (4)444422221111d c b a d c b a d c b a =(a −b )(a −c )(a −d )(b −c )(b −d )(c −d )(a +b +c +d ); 证明 444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b −−−−−−−−−=)()()(111))()((222a d d a c c a b b dc b ad a c a b +++−−−= ))(())((00111))()((a b d b d d a b c b c c bd b c a d a c a b ++−++−−−−−−= )()(11))()()()((a b d d a b c c b d b c a d a c a b ++++−−−−−= =(a −b )(a −c )(a −d )(b −c )(b −d )(c −d )(a +b +c +d ). (5)12211 000 00 1000 01a x a a a a x x xn n n+⋅⋅⋅−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−−− =x n +a 1x n −1+ ⋅ ⋅ ⋅ +a n −1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+−=, 命题成立. 假设对于(n −1)阶行列式命题成立, 即 D n −1=x n −1+a 1 x n −2+ ⋅ ⋅ ⋅ +a n −2x +a n −1则D , n 按第一列展开, 有 11100 100 01)1(11−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−−+=+−x x a xD D n n n n =xD n −1+a n =x n +a 1x n −1+ ⋅ ⋅ ⋅ +a n −1x +a n 因此, 对于n 阶行列式命题成立. .6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90°、或依副对角线翻转, 依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nnn a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n n nn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(−−==, D 3 证明 因为D =det(a =D .ij ), 所以 nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=−⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−=−− )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(−−+−+⋅⋅⋅++−=−=.同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−=− )1(11112)1(2D D n n T n n 2)1(2)1()1()1(−−−=−=. D D D D D n n n n n n n n =−=−−=−=−−−−)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k (1)为k 阶行列式): aa D n 1 1⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解 aa a a a D n 010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 000 00 000 0010 000)1(−×−+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−=n n n aa a )1()1(2 )1(−×−⋅⋅⋅⋅−+n n n a a an n n n n a a a+⋅⋅⋅−⋅−=−−+)2)(2(1)1()1(=a n −a n −2=a n −2(a 2−1).(2)xa aa x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(−1)分别加到其余各行, 得 ax x a ax x a a x x a aa a x D n −−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−⋅⋅⋅−−⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n −⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−+=0000 0 000 00 )1(=[x +(n −1)a ](x −a )n −1 (3). 111 1 )( )1()( )1(1111⋅⋅⋅−⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅⋅−⋅⋅⋅−−⋅⋅⋅−=−−−+n a a a n a a a n a a a D n n n n nn n ; 解 根据第6题结果, 有 nnn n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1−⋅⋅⋅−−⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−=−−−++此行列式为范德蒙德行列式.∏≥>≥++++−−+−−=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++−−−=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+−++−⋅−⋅−=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+−=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开) nn n n n nd d c d c b a b a a 00011111111−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn −−−−+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−+. 再按最后一行展开得递推公式D 2n =a n d n D 2n −2−b n c n D 2n −2, 即D 2n =(a n d n −b n c n )D 2n −2于是 . ∏=−=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D −==,所以 ∏=−=ni i i i i n c b d a D 12)(.(5) D =det(a ij ), 其中a ij 解 a =|i −j |; ij =|i −j |, 043214 01233 10122 21011 3210)det(⋅⋅⋅−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−⋅⋅⋅==n n n n n n n n a D ij n 04321 1 11111 11111 11111 1111 2132⋅⋅⋅−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−−−⋅⋅⋅−−−⋅⋅⋅−−⋅⋅⋅−−⋅⋅⋅−=====n n n n r r r r15242321 0 22210 02210 00210 0001 1213−⋅⋅⋅−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−−−⋅⋅⋅−−−⋅⋅⋅−−⋅⋅⋅−+⋅⋅⋅+=====n n n n n c c c c =(−1)n −1(n −1)2n −2 (6).nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121 nn n n a a a a a a a a a c c c c +−⋅⋅⋅−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−=====−−100001 000 100 0100 0100 0011332212132 1111312112111000011 000 00 11000 01100 001 −−−−−−+−⋅⋅⋅−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=−−−−−−+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni i n a a a a .8. 用克莱姆法则解下列方程组: (1) =+++−=−−−−=+−+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为 14211213513241211111−=−−−−=D , 142112105132412211151−=−−−−−−=D , 284112035122412111512−=−−−−−=D , 426110135232422115113−=−−−−=D , 14202132132212151114=−−−−−=D , 所以 111==D D x , 222==D Dx , 333==DD x , 144−==D D x .(2)=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为 665510006510006510065100065==D , 15075100165100065100065000611==D , 114551010651000650000601000152−==D , 703511650000601000051001653==D , 39551601000051000651010654−==D , 2121100005100065100651100655==D , 所以66515071=x , 66511452−=x , 6657033=x , 6653954−=x , 6652124=x .9. 问λ, µ取何值时, 齐次线性方程组 =++=++=++0200321321321x x x x x x x x x µµλ有非零解?解 系数行列式为µλµµµλ−==1211111D .令D =0, 得 µ=0或λ=1.于是, 当µ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组 =−++=+−+=+−−0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ−−+−−=−−−−=101112431111132421D=(1−λ)3 =(1−λ)+(λ−3)−4(1−λ)−2(1−λ)(−3−λ) 3+2(1−λ)2 令D =0, 得+λ−3. λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3 解 由已知:的线性变换.= 221321323513122y y y x x x ,故= −3211221323513122x x x y y y−−−−=321423736947y y y ,−+=−+=+−−=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换++=++−=+=32133212311542322y y y x y y y x y y x ,+−=+=+−=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3 解 由已知的线性变换.−= 221321514232102y y y x x x−− −=321310102013514232102z z z−−−−=321161109412316z z z ,所以有 +−−=+−=++−=3213321232111610941236z z z x z z z x z z z x .3. 设 −−=111111111A ,−−=150421321B , 求3AB −2A 及A T 解 B .−−− −− −−=−1111111112150421321111111111323A AB−−−−= −−− −=2294201722213211111111120926508503,−= −− −−=092650850150421321111111111B A T.4. 计算下列乘积: (1)−127075321134;解 −127075321134 ×+×+××+×−+××+×+×=102775132)2(71112374=49635.(2)123)321(;解123)321(=(1×3+2×2+3×1)=(10).(3))21(312−;解 )21(312−×−××−××−×=23)1(321)1(122)1(2−−−=632142. (4)−−−−20413121013143110412 ; 解−−− −20413121013143110412 −−−=6520876. (5)321332313232212131211321)(x x x a a a a a a a a a x x x ;解321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3a 13x 1+a 23x 2+a 33x 3321x x x )322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设 =3121A ,=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA . 因为=6443AB ,=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2 解 (A +B )吗? 2≠A 2+2AB +B 2 因为.=+5222B A ,=+52225222)(2B A=2914148,但 + +=++43011288611483222B AB A=27151610,所以(A +B )2≠A 2+2AB +B 2 (3)(A +B )(A −B )=A . 2−B 2 解 (A +B )(A −B )≠A 吗? 2−B 2 因为.=+5222B A ,=−1020B A ,==−+906010205222))((B A B A ,而= −=−718243011148322B A ,故(A +B )(A −B )≠A 2−B 2 6. 举反列说明下列命题是错误的:.(1)若A 2 解 取=0, 则A =0;=0010A , 则A 2 (2)若A =0, 但A ≠0. 2 解 取=A , 则A =0或A =E ;=0011A , 则A 2 (3)若AX =AY , 且A ≠0, 则X =Y .=A , 但A ≠0且A ≠E . 解 取=0001A , −=1111X ,=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k 解 . ==12011011012λλλA , ===1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,=101λk A k . 8. 设=λλλ001001A , 求A k 解 首先观察. =λλλλλλ0010010010012A=222002012λλλλλ,=⋅=3232323003033λλλλλλA A A ,=⋅=43423434004064λλλλλλA A A ,=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,=k A k k k k k k k k k k λλλλλλ0002)1(121−−−−. 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,−=⋅=−−−+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A+++=+−+−−+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:−=−−−k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T 证明 因为A AB 也是对称矩阵.T (B =A , 所以T AB )T =B T (B T A )T =B T A T B =B T 从而B AB ,T 10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .AB 是对称矩阵.证明 充分性: 因为A T =A , B T (AB )=B , 且AB =BA , 所以 T =(BA )T =A T B T 即AB 是对称矩阵.=AB ,必要性: 因为A T =A , B T =B , 且(AB )T AB =(AB )=AB , 所以T =B T A T 11. 求下列矩阵的逆矩阵:=BA .(1)5221; 解=5221A . |A |=1, 故A −1 存在. 因为−−= =1225*22122111A A A A A ,故 *||11A A A =−−−=1225. (2)−θθθθcos sin sin cos ; 解−=θθθθcos sin sin cos A . |A |=1≠0, 故A −1 存在. 因为−= =θθθθcos sin sin cos *22122111A A A A A , 所以 *||11A A A =−−=θθθθcos sin sin cos . (3)−−−145243121; 解−−−=145243121A . |A |=2≠0, 故A −1 存在. 因为−−−−−= =214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =−−−−−−=1716213213012. (4)n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解=n a a a A 0021, 由对角矩阵的性质知=−n a a a A 10011211 . 12. 解下列矩阵方程:(1) −=12643152X ; 解 −=−126431521X − −−=12642153 −=80232. (2) −=−−234311*********X ; 解 1111012112234311−−− −=X−−− −=03323210123431131 −−−=32538122. (3) −= − −101311022141X ;解 11110210132141−− − − −=X− −=210110131142121 =21010366121=04111. (4)−−−= 021102341010100001100001010X . 解 11010100001021102341100001010−−−−− =X −−− =010100001021102341100001010 −−−=201431012. 13. 利用逆矩阵解下列线性方程组:(1) =++=++=++3532522132321321321x x x x x x x x x ; 解 方程组可表示为= 321153522321321x x x , 故 = = −0013211535223211321x x x ,从而有 ===001321x x x . (2) =−+=−−=−−05231322321321321x x x x x x x x x . 解 方程组可表示为=−−−−−012523312111321x x x , 故 =−−−−−= −3050125233121111321x x x , 故有 ===305321x x x . 14. 设A k =O (k 为正整数), 证明(E −A )−1=E +A +A 2+⋅ ⋅ ⋅+A k −1 证明 因为A . k =O , 所以E −A k E −A =E . 又因为k =(E −A )(E +A +A 2+⋅ ⋅ ⋅+A k −1所以 (E −A )(E +A +A ),2+⋅ ⋅ ⋅+A k −1由定理2推论知(E −A )可逆, 且)=E ,(E −A )−1=E +A +A 2+⋅ ⋅ ⋅+A k −1.证明 一方面, 有E =(E −A )−1 另一方面, 由A (E −A ).k E =(E −A )+(A −A =O , 有2)+A 2−⋅ ⋅ ⋅−A k −1+(A k −1−A k )=(E +A +A 2+⋅ ⋅ ⋅+A k −1故 (E −A ))(E −A ),−1(E −A )=(E +A +A 2+⋅ ⋅ ⋅+A k −1两端同时右乘(E −A ))(E −A ),−1 (E −A ), 就有−1(E −A )=E +A +A 2+⋅ ⋅ ⋅+A k −1.15. 设方阵A 满足A 2−A −2E =O , 证明A 及A +2E 都可逆, 并求A −1及(A +2E )−1 证明 由A .2 A −A −2E =O 得2或 −A =2E , 即A (A −E )=2E ,E E A A =−⋅)(21, 由定理2推论知A 可逆, 且)(211E A A −=−. 由A 2 A −A −2E =O 得2或 −A −6E =−4E , 即(A +2E )(A −3E )=−4E ,E A E E A =−⋅+)3(41)2( 由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A −=+−.证明 由A 2−A −2E =O 得A 2 |A −A =2E , 两端同时取行列式得 2即 |A ||A −E |=2,−A |=2,故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2由 A ≠0, 故A +2E 也可逆. 2 ⇒A −A −2E =O ⇒A (A −E )=2E−1A (A −E )=2A −1)(211E A A −=−E ⇒,又由 A 2 ⇒ (A +2E )(A −3E )=−4 E ,−A −2E =O ⇒(A +2E )A −3(A +2E )=−4E所以 (A +2E )−1(A +2E )(A −3E )=−4(A +2 E )−1 ,)3(41)2(1A E E A −=+−.16. 设A 为3阶矩阵, 21||=A , 求|(2A )−1 解 因为−5A *|.*||11A A A =−, 所以 |||521||*5)2(|111−−−−=−A A A A A |2521|11−−−=A A=|−2A −1|=(−2)3|A −1|=−8|A |−1 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)=−8×2=−16.−1=(A −1 证明 由)*.*||11A A A =−, 得A *=|A |A −1 |A *|=|A |, 所以当A 可逆时, 有n |A −1|=|A |n −1从而A *也可逆.≠0,因为A *=|A |A −1 (A *), 所以−1=|A |−1又A .*)(||)*(||1111−−−==A A A A A , 所以(A *)−1=|A |−1A =|A |−1|A |(A −1)*=(A −1 18. 设n 阶矩阵A 的伴随矩阵为A *, 证明:)*.(1)若|A |=0, 则|A *|=0;(2)|A *|=|A |n −1 证明.(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)−1 A =A A *(A *)=E , 由此得 −1=|A |E (A *)−1所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0.=O ,(2)由于*||11A A A =−, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n 若|A |≠0, 则|A *|=|A |.n −1 若|A |=0, 由(1)知|A *|=0, 此时命题也成立.;因此|A *|=|A |n −1.19. 设−=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A −2E )B =A , 故− −−−=−=−−321011330121011332)2(11A E A B −=011321330. 20. 设 =101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2 (A −E )B =A +B 得 2即 (A −E )B =(A −E )(A +E ).−E , 因为01001010100||≠−==−E A , 所以(A −E )可逆, 从而=+=201030102E A B .21. 设A =diag(1, −2, 1), A *BA =2BA −8E , 求B . 解 由A *BA =2BA −8E 得 (A *−2E )BA =−8E , B =−8(A *−2E )−1A =−8[A (A *−2E )]−1 =−8(AA *−2A )−1 =−8(|A |E −2A )−1 =−8(−2E −2A )−1 =4(E +A )−1 =4[diag(2, −1, 2)]−1−1)21 ,1 ,21(diag 4−==2diag(1, −2, 1).22. 已知矩阵A 的伴随阵−=8030010100100001*A , 且ABA −1=BA −1+3E , 求B .解 由|A *|=|A |3 由ABA =8, 得|A |=2. −1=BA −1 AB =B +3A ,+3E 得 B =3(A −E )−1A =3[A (E −A −1)]−1 A 11*)2(6*)21(3−−−=−=A E A E−=−−=−1030060600600006603001010010000161. 23. 设P −1 −−=1141P AP =Λ, 其中,−=Λ2001, 求A 11 解 由P . −1AP =Λ, 得A =P ΛP −1, 所以A 11= A =P Λ11P −1 |P |=3, .−=1141*P ,−−=−1141311P ,而−= −=Λ11111120 012001,故−− −−−=31313431200111411111A −−=68468327322731. 24. 设AP =P Λ, 其中−−=111201111P ,−=Λ511,求ϕ(A )=A 8(5E −6A +A 2 解 ϕ(Λ)=Λ). 8(5E −6Λ+Λ2 =diag(1,1,5)8)[diag(5,5,5)−diag(−6,6,30)+diag(1,1,25)]=diag(1,1,58 ϕ(A )=P ϕ(Λ)P )diag(12,0,0)=12diag(1,0,0).−1 *)(||1P P P Λ=ϕ−−−−−− −−−=1213032220000000011112011112=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A −1+B −1 证明 因为也可逆, 并求其逆阵.A −1(A +B )B −1=B −1+A −1=A −1+B −1而A ,−1(A +B )B −1是三个可逆矩阵的乘积, 所以A −1(A +B )B −1可逆, 即A −1+B −1 (A 可逆.−1+B −1)−1=[A −1(A +B )B −1]−1=B (A +B )−1 26. 计算A .−−−30003200121013013000120010100121. 解 设 =10211A , =30122A , −=12131B ,−−=30322B ,则 2121B O B E A O E A+=222111B A O B B A A ,而 −= −−+−=+4225303212131021211B B A ,−−= −− =90343032301222B A , 所以 2121B O B E A O E A +=222111B A O B B A A−−−=9000340042102521, 即−−−30003200121013013000120010100121−−−=9000340042102521. 27. 取==−==1001D C B A , 验证|||||||| D C B A D C B A ≠.解 4100120021010*********0021010010110100101==−−=−−=D C B A , 而 01111|||||||| ==D C B A ,故 ||||||||D C B A D C B A ≠. 28. 设 −=22023443O O A , 求|A 8|及A 4解 令. −=34431A ,=22022A , 则=21A O O A A ,故 8218=A O O A A=8281A O O A ,1682818281810||||||||||===A A A A A .= =464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1−O B A O ; 解 设 =−43211C C C C O B A O , 则O B A O 4321C C C C = =s n E O O E BC BC AC AC 2143. 由此得====s n EBC OBC O AC E AC 2143⇒ ====−−121413B C O C O C A C ,所以= −−−O A B O O B A O 111. (2)1−B C O A . 解 设 =−43211D D D D B C O A , 则 = ++= s nE O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得=+=+==s nEBD CD O BD CD O AD E AD 423121⇒ =−===−−−−14113211B D CA B D O D A D ,所以−= −−−−−11111B CA B O A BC O A . 30. 求下列矩阵的逆阵: (1)2500380000120025; 解 设 =1225A , =2538B , 则−−= =−−5221122511A ,−−==−−8532253811B .于是 −−−−= = =−−−−850032000052002125003800001200251111B A B A .(2)4121031200210001. 解 设 =2101A ,=4103B ,=2112C , 则−= =−−−−−−1111114121031200210001B CA B O A BC O A−−−−−=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵: (1)−−340313021201;解−−340313021201(下一步: r 2+(−2)r 1, r 3+(−3)r 1 ~. )−−−020*********(下一步: r 2÷(−1), r 3 ~÷(−2). )−−010*********(下一步: r 3−r 2 ~. )−−300031001201(下一步: r 3 ~÷3. )−−100031001201(下一步: r 2+3r 3 ~. )−100001001201(下一步: r 1+(−2)r 2, r 1+r 3 ~. )100001000001.(2)−−−−174034301320;解−−−−174034301320(下一步: r 2×2+(−3)r 1, r 3+(−2)r 1 ~. )−−−310031001320(下一步: r 3+r 2, r 1+3r 2 ~. )0000310010020(下一步: r 1 ~÷2. )000031005010.(3)−−−−−−−−−12433023221453334311;解−−−−−−−−−12433023221453334311(下一步: r 2−3r 1, r 3−2r 1, r 4−3r 1~. )−−−−−−−−1010500663008840034311(下一步: r 2÷(−4), r 3÷(−3) , r 4~÷(−5). )−−−−−22100221002210034311(下一步: r 1−3r 2, r 3−r 2, r 4−r 2~. )−−−00000000002210032011.(4)−−−−−−34732038234202173132. 解−−−−−−34732038234202173132(下一步: r 1−2r 2, r 3−3r 2, r 4−2r 2~. )−−−−−1187701298804202111110(下一步: r 2+2r 1, r 3−8r 1, r 4−7r 1 ~. )−−41000410002020111110(下一步: r 1↔r 2, r 2×(−1), r 4−r 3~. )−−−−00000410001111020201(下一步: r 2+r 3~. )−−00000410003011020201. 2. 设= 987654321100010101100001010A , 求A .解100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(−1))−=100010101.− =100010101987654321100001010A= − =287221254100010101987321654.3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵: (1)323513123;解 100010001323513123~−−−101011001200410123~ −−−−1012002110102/102/3023~−−−−2/102/11002110102/922/7003~−−−−2/102/11002110102/33/26/7001故逆矩阵为−−−−21021211233267.(2)−−−−−1210232112201023.解−−−−−10000100001000011210232112201023~−−−−00100301100001001220594012102321~−−−−−−−−20104301100001001200110012102321~ −−−−−−−106124301100001001000110012102321 ~−−−−−−−−−−10612631110`1022111000010000100021 ~−−−−−−−106126311101042111000010000100001故逆矩阵为−−−−−−−10612631110104211. 4. (1)设 −−=113122214A ,−−=132231B , 求X 使AX =B ;解 因为−−−−=132231 113122214) ,(B A−−412315210 100010001 ~r ,所以−−==−4123152101B A X .(2)设−−−=433312120A , −=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为−−−−=134313*********) ,(T T B A−−−411007101042001 ~r ,所以−−−==−417142)(1T T T B A X ,从而−−−==−4741121BA X . 5. 设−−−=101110011A , AX =2X +A , 求X .解 原方程化为(A −2E )X =A . 因为−−−−−−−−−=−101101110110011011) ,2(A E A−−−011100101010110001~,所以−−−=−=−011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r −1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r −1阶子式, 也可能存在等于0的r 阶子式. 例如,=010*********A , R (A )=3.0000是等于0的2阶子式, 010001000是等于0的3阶子式. 7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, −1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:−0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式: (1)−−−443112112013;解−−−443112112013(下一步: r 1↔r 2 ~. )−−−443120131211(下一步: r 2−3r 1, r 3−r 1 ~. )−−−−564056401211(下一步: r 3−r 2 ~. )−−−000056401211, 矩阵的2秩为, 41113−=−是一个最高阶非零子式.(2)−−−−−−−815073*********;解−−−−−−−815073*********(下一步: r 1−r 2, r 2−2r 1, r 3−7r 1 ~. )−−−−−−15273321059117014431(下一步: r 3−3r 2~. )−−−−0000059117014431, 矩阵的秩是2, 71223−=−是一个最高阶非零子式.(3)−−−02301085235703273812. 解−−−02301085235703273812(下一步: r 1−2r 4, r 2−2r 4, r 3−3r 4~. )−−−−−−023*********63071210(下一步: r 2+3r 1, r 3+2r 1~. )−0230114000016000071210(下一步: r 2÷16r 4, r 3−16r 2. )~−02301000001000071210 ~−00000100007121002301, 矩阵的秩为3, 070023085570≠=−是一个最高阶非零子式.10. 设A 、B 都是m ×n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B .11. 设−−−−=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 −−−−=32321321k k k A+−−−−−)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =−2且k ≠1时, R (A )=2;(3)当k ≠1且k ≠−2时, R (A )=3.12. 求解下列齐次线性方程组: (1) =+++=−++=−++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有 A = −−212211121211~ −−−3/410013100101,于是 ==−==4443424134334x x x x x x x x ,故方程组的解为−= 1343344321k x x x x (k 为任意常数).(2) =−++=−−+=−++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有 A = −−−−5110531631121~−000001001021,于是 ===+−=4432242102x x x xx x x x ,故方程组的解为+−= 10010*********k k x x x x (k 1, k 2 (3)为任意常数).=−+−=+−+=−++=+−+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有 A =−−−−−7421631472135132~1000010000100001,于是 ====0004321x x x x ,故方程组的解为 ====00004321x x x x .(4) =++−=+−+=−+−=+−+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x .解 对系数矩阵A 进行初等行变换, 有 A =−−−−−3127161311423327543~−−000000001720171910171317301,于是 ==−=−=4433432431172017191713173x x x x x x x xx x ,故方程组的解为−−+= 1017201713011719173214321k k x x x x (k 1, k 2为任意常数).13. 求解下列非齐次线性方程组: (1) =+=+−=−+83111021322421321321x x x x x x x x ;解 对增广矩阵B 进行初等行变换, 有。

《微积分》课后答案(复旦大学出版社(曹定华 李建平 毛志强 著))第二章

《微积分》课后答案(复旦大学出版社(曹定华 李建平 毛志强 著))第二章
x 0
x 0
lim f ( x) lim ex 0
x 0
所以,当 a 0 时, lim f ( x) 存在。
x 0
4. 利用极限的几何意义说明 lim sinx 不存在.
x
解:因为当 x 时,sin x 的值在-1 与 1 之间来回振摆动,即 sin x 不无限接近某一 定直线 y A ,亦即 y f ( x) 不以直线 y A 为渐近线,所以 lim sin x 不存在。
lim xn 0
n
n.
即 xn 0
2. 证明:若 lim xn=a,则 lim ∣xn∣=|a|.考察数列 xn=(-1)n,说明上述结论反之不成立.
ne
由数列极限的定义得
lim xn k a .
t
1
xn k a
天天learn()为您提供大学各个学科的课后答案、视频教程在线浏览及下载。
此文档由天天learn()为您收集整理。
第二章
习题 2-1 1. 证明:若 lim xn=a,则对任何自然数 k,有 lim xn+k=a.
n n
证:由 lim xn a ,知 0 , N1 ,当 n N1 时,有
n
xn a
n.
x 0
1 x
当 x 从小于 0 的方向无限接近于 0 时, e 的值无限接近于 0,故 lim e 0.
x 0
ww
(2)若 lim f ( x) 存在,则 lim f ( x) lim f ( x) ,
x 0 x 0
x 0
由(1)知
lim f ( x) lim ( x 2 a) lim ( x 2 a) a ,

线性代数习题答案详解__复旦大学出版社

线性代数习题答案详解__复旦大学出版社

线性代数课后习题答案习题一1、2、3(答案略)4、 (1) ∵ (127435689)415τ=+= (奇数) ∴ (127485639)τ为偶数故所求为127485639(2) ∵(397281564)25119τ=+++= (奇数) ∴所求为3972815645、(1)∵(532416)421106τ=++++= (偶数)∴项前的符号位()611-=+ (正号)(2)∵325326114465112632445365a a a a a a a a a a a a = (162435)415τ=+=∴ 项前的符号位5(1)1-=- (负号) 6、 (1) (2341)(1)12n n τ-⋅L L 原式=(1)(1)!n n -=- (2)()((1)(2)21)1(1)(2)21n n n n n n τ--⋅⋅---⋅⋅L L 原式=(1)(2)2(1)!n n n --=-(3)原式=((1)21)12(1)1(1)n n n n n a a a τ-⋅--L L (1)212(1)1(1)n n n n n a a a --=-L7、8(答案略)9、 ∵162019(42)0D x =⨯-⨯+⨯--⨯=∴7x =10、 (1)从第2列开始,以后各列加到第一列的对应元素之上,得[]11(1)111001(1)1110(1)11(1)111x x n x x x n x x x n x x n x x +-+--==+-+--L LL L L L L L L L L L L L L L L L LLL[]1(1)(1)n x n x -=+--(2)按第一列展开: 11100000(1)(1)0n n n n n y xy D x x yx y xy-++=⋅+-=+-L L L L L L L L(3)1231134114512(1)2113211221n n n n n D n n n n n -+=----L L L LL L L L L L L 12310111101111(1)20111101111n n n n n n n n ---+=--L L L LL L L L L L L11111111(1)211111111n n n n n n--+=--L L LL L L L L L(2)(3)2111111111(1)(1)211111111n n nn n n n n-+-+++--+=⨯---L L L L L L L L L L(1)(2)211111111(1)(1)211111111n n n n n n n-----+=-⋅----L L LL L L L L L (1)(2)(1)1221100(1)(1)(1)221001n n n n n n n n n n n n n-------++=-⋅=-⋅----LLL L LL L LL习题二1、2、3、4、5(答案略) 6、 设 11122122xx x x ⎛⎫= ⎪⎝⎭B 为与A 可交换的矩阵,则有=AB BA即 111211122122************x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 解之得 11122122,,,x a x b x b x a ==== 7、 (1)112233*********x y x y x y -⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ , 记为X =AY11223111101y z y z y ⎛⎫⎛⎫⎛⎫⎪ ⎪=- ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭ ,记为Y =BZ(2)()()X =A BZ =AB Z 即 11223325013x z x z x ⎛⎫⎛⎫⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪-⎝⎭⎝⎭ 8(答案略)9、2345()32181010341f -⎛⎫ ⎪=++= ⎪ ⎪⎝⎭A A A E10、(1)2222()()+-=+--=-A B A B A BA AB B A B(2) 2()()()+=++A B A B A B22=+++A BA AB B=222++A AB B11、 ∵21,()2==+A A A B E∴ 222,44=-=-+=B A E B A A E E 反之 若 2=B E ,则 244-=A A O ,即 2=A A12、 (1) 设2(),()ij ij a b ==A A ∵T =A A ∴ij ji a a =又∵ 2=A O ∴0ii b =又 1122ij i j i j in nj b a a a a a a =+++L 22212i i in a a a =+++L (,1,2,,)i j n =L当 1,2,,i j n ==L 时,有1112121222120,0,0n n n n nn a a a a a a a a a ============L L L∴ 0A =(2)设 ()ij a =A ,()T ij b =AA 则1122ij i j i j in jn b a a a a a a =+++L∵ 0T =A A ∴ 0(,1,2,,)ij b i j n ==L 当 i j = 时,有 222120(1,2,,)i i in a a a i n +++==L L 故 120(1,2,,)i i in a a a i n =====L L 即 0=A 13、(1) ∵ ()T T T =A A A A ∴T A A 为对称矩阵同理 T AA 也为对称矩阵(2) ∵ ()T T T T +=+=+A A A A A A ∴ T +A A 为对称矩阵又 ∵()()T T T T -=-=--A A A A A A ∴ T -A A 为反对称矩阵(3)∵111()()()222T T T T =++-=++-A A A A A A A A A由(2)知,1()2T +A A 为对称矩阵,1()2T -A A 为反对称矩阵故 A 可表示成一个对称矩阵与一个反对称矩阵的与。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数(低分数版)
习题一
1.2.3(答案略)
4. (1) ∵ (奇数)
∴为偶数
故所求为
(2) ∵(奇数)
∴所求为397281564
5.(1)∵ (偶数)
∴项前的符号位(正号)
(2)∵
∴项前的符号位(负号)
6. (1)
(2)
(3)原式=
7.8(答案略)
9. ∵

10. (1)从第2列开始,以后各列加到第一列的对应元素之上,得
(2)按第一列展开:
(3)
习题二
1.2.3.4.5(答案略)
6. 设为与可交换的矩阵,则有

解之得
7. (1),记为
,记为
(2)即
8(答案略)
9.
10.(1)
(2)
=
11. ∵

反之若 , 则 ,即
12. (1) 设∵∴
又∵∴

当时,有

(2)设,则
∵∴
当时,有
故即
13.(1) ∵∴为对称矩阵
同理也为对称矩阵
(2)∵
∴为对称矩阵
又∵
∴为反对称矩阵
(3)∵
由(2)知,为对称矩阵,为反对称矩阵
故可表示成一个对称矩阵与一个反对称矩阵的和。

14. (1)必要性:∵

充分性:∵

(2) 必要性:∵

充分性:∵

(3) 必要性:∵


充分性:∵

15(答案略)
16. ∵
∴可逆。


17. ∵
∴可逆,且
18.(答案略)
19. ∵,若可逆,则
∴故可逆,且
20.设,∵是对称矩阵∴记,则
,即为对称矩阵,又∵ , ∴为对称矩阵。

21.(1)设,则
(2)∵∴
又∵

于是即
(3)∵∴
于是
(4) (注意加条件:可逆)
∵可逆∴

22. ∵∴
23. 24.(答案略)
25. ∵∴
∴可逆,且
26. ∵∴
又∵, ,

27(答案略)
28. ∵∴
又∵∴

29.
∵∴

30.(答案略)
31.(1)
(2)
32.
33. (1) ∵

(2) ∵

习题三
1.2.3.4(答案略)
5. ∵不能由线性表示
∴线性方程组无解
不妨假设能由线性表示,则存在一组数,使
从而
此式与方程组无解矛盾。

故不能由的任何部分组线性表示
6. 依题意
所以

7. ∵∴
令∵
∴可逆,于是

8.(答案略)
9.当即当或时,线性相关
否则线性无关。

10 .(1)设

∴即
故线性无关。

(2)设

∵线性无关∴解之得
11. 一方面,向量组能由基本单位向量组线性表示;
另一方面,基本单位向量组由向量组线性表示为
∴向量组与向量组等价。

12. 一方面可由向量组线性表示;另一方面由于与有相同的秩,所以就是向量组的一个极大无关组,从而可以由线性表示.

13.设是向量组中任意一个向量
∵可由线性表示
又,∴线性无关
∴是的一个极大无关组。

14. ∵可由线性表示,而也可由线性表示
∴从而
故线性无关。

15.必要性:∵是一组维向量,若线性无关,显然任意维向量都可由线性表示。

充分性:∵任意维向量都可以由线性表示,∴基本单位向量组可由线性表示,故
∴从而线性无关。

习题四
1.2.3.4.5.6(答案略)
7. 设,由得即
可见,是方程组的两个解
又∵∴是方程组的两个线性无关的解。

于是,问题就转化为求解方程组∵
取即为所求。

8、设所求方程组为不妨设
依题设,

故所求方程组为
9、由题设可知为的解,又因为,所以的基础解为所含向量个数为.
故为的基础解系
于是的通解为
10、的互解为

方程组有非零解.
显然满足方程所以是所求非零的公共解.
11(答案略)
12.由题设知,方程组的基础解系含一个解向量.
可见是方程组的基础解系
由知,知

又线性无关.
可见为它的一个解,
从而为的一个特解。

故的通解为
13(1)假设线性相关
线性无关
纯由向量组线性表示
从而是方程组的解与已知矛盾
线性无关.
(2)设
又线性无关
从而故线性无关.
14.设是的一个解,是的基础解系由13知
又的任一解都可由向量组线性表示.的解向量组所含向量个数
15.设是的一个特解
是的一个基础解系
则的任意解


显然是的个线性无关的解.
则其中
习题五
1(答案略)
2、设是的属于特征值的特征向量,则

解此方程组得或
3、设是的特征值,是的属于特征值的特征向量,则

故即或
4、
故的特征值为.
5.由题设知为的特征值。

于是

6.
7. 存在可逆矩阵,使
于是故B是幂等矩阵.
8.令
依题设
9.由,得(二重),
可见方程的基础解系含2个解向量,
从而

10(答案略)
11.(1)设
原矩阵不是正交矩阵.
(2)

所以原矩阵为正交矩阵.
12(答案略)
13. 设为与正交的向量.
则即,此方程组的通解为
(1) A的属于特征值的特征向量为(2)记则
又。

相关文档
最新文档