广西南宁二中柳铁一中2021届高三9月联考数学理科
广西南宁三中等四校2021届高三9月联考数学(理)试题Word版含答案

广西南宁三中等四校2021届高三9月联考数学(理)试题第Ⅰ卷一.选择题:本大题共12小题.每小题5分,在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.如果集合{}|520M x y x ==-,集合{}3|log N x y x ==则M N =( )A .{}|04x x <<B .{}|4x x ≥C .{}|04x x <≤D .{}|04x x ≤≤2.己知2(,)a ib i a b R i+=+∈.其中i 为虚数单位,则a b -=( )A .-1B .1C .2D .-33.已知等差数列{}n a 满足:33,13133==a a ,求7a ( )A .19B .20C .21D .224.设f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=⎩⎪⎨⎪⎧1,x 为有理数,0,x 为无理数,则g(f (π))的值为( )A .1B .0C .-1D .π5.由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( )A .103B .4C .163D .66.在平面直角坐标系xOy 中,已知2211(2)5x y -+=,22240x y -+=,则221212()()x x y y -+-的最小值为( )A .5 B .15C .1215D .1157.右图是一个算法的流程图,则最后输出的( )A .6B .-6C .9D .-98.定义运算a ⊕b =⎩⎨⎧>≤)()(b a b b a a ,则函数()1f x =⊕2x的图象是( )9.若某几何体的三视图如图所示,则此几何体的外接球表面积等于( ) A .752π B .30πC .43πD .15π10.261(2)(1)x x+-求的展开式的常数项是( )A . 15B . -15C .17D .-1711.已知21F F 、 是双曲线22221x y a b-= (00a b >>, )的左、右焦点,点2F 关于渐近线的对称点恰好落在以1F 为圆心,1||OF 为半径的圆上,则双曲线的离心率为( )A .3B . 3C .2D . 212.函数f(x)=1,1, 11,1,2x a x x -=⎧⎪⎨⎛⎫+≠⎪ ⎪⎝⎭⎩若关于x 的方程22()(23)()30f x a f x a -++=有五个不同的实数解12345,,,,x x x x x 求12345x x x x x ++++=( )A .3B .5C .3aD .5 a第Ⅱ卷本卷包括必考题和选考题两部分。
2021届广西南宁二中、柳州高中高三9月份两校联考数学(理)试题Word版含解析

2021届广西南宁二中、柳州高中高三9月份两校联考数学(理)试题一、单选题1.已知集合,则()A. B . C . D.【答案】C【解析】由题意可得:,则。
本题选择C选项.2.复数对应的点在复平面内位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】D【解析】试题分析:,故在复平面内对应的点位于第四象限.【考点】复数与复平面的关系.3.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好40 20 60不爱好20 30 50总计60 50 110由算得附表:0.050 0.010 0.0013.841 6.635 10.828参照附表,得到的正确结论是()A.在犯错误的概率不超过的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过的前提下,认为“爱好该项运动与性别无关”C.有以上的把握认为“爱好该项运动与性别有关”D.有以上的把握认为“爱好该项运动与性别有关”【答案】C【解析】由,而,故由独立性检验的意义可知选C.4.设等差数列的前项和为,已知,则()A.16 B.20 C.24 D.26【答案】D【解析】。
故选D。
5.已知点()2,3A-在抛物线C:22y px=的准线上,记C的焦点为F,则直线AF的斜率为()A.43- B.1- C.34- D.12-【答案】C【解析】试题分析:由已知得,抛物线22y px =的准线方程为2px =-,且过点()2,3A -,故22p -=-,则4p =, ()2,0F ,则直线AF 的斜率303224k -==---,选C . 【考点】1、抛物线的标准方程和简单几何性质;2、直线的斜率. 6.展开式中,项的系数为( )A .30B .70C .90D .-150 【答案】B 【解析】,对于中 的系数为,对于中 的系数为,所以的系数为。
故选B 。
7.已知函数,若将它的图象向右平移个单位长度,得到函数的图象,则函数图象的一条对称轴方程为( )A .B .C .D .【答案】C【解析】由题意知,令,解得,当时,,即函数的图象的一条对称轴的方程为.本题选择C 选项.8.在ABC △中,点,M N 满足2AM MC =,BN NC =,若MN xAB yAC =+,则x y +的值为( )A .13B .12C .23 D .34【答案】A【解析】△ABC 中,点M ,N 满足2AM MC =,BN NC =,所以()111111323226MN MC CN AC CB AC AB AC AB AC =+=+=+-=-, 结合题意可得:x =12,y =−16,所以x +y =13.本题选择A 选项.9.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如.现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于( ).A.B.C.D.【答案】C【解析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C. 10.某几何体的三视图如图所示,其正视图和侧视图都是边长为23的正三角形,该几何体的外接球的表面积为()A.9π B.16π C.24π D.36π【答案】B【解析】此几何体为圆锥,过圆锥的旋转轴做轴截面,△ABC是边长为3为3,△ABC的外心即为外接球的球心,外接球半径223R h==,外接球的表面积24216. Sππ=⨯=本题选择B选项.点睛:(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理. (3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.11.已知为双曲线的左,右焦点,点为双曲线右支上一点,直线与圆相切,且,则双曲线的离心率为( )A .B .C .D .【答案】C 【解析】设与圆相切于点,则因为,所以为等腰三角形,设的中点为,由 为的中点,所以,又因为在直角中,,所以①又②,③ 故由①②③得,,故本题选C点睛:在圆锥曲线中涉及到焦点弦问题,通常要灵活应用圆锥的定义得到等量关系,本题中由几何关系得到,由双曲线定义有,列方程即可求离心率的值..12.已知函数()f x 使定义在R 上的奇函数,且当0x <时, ()()1x f x x e =+,则对任意m R ∈,函数()()()F x f f x m =-的零点个数至多有( ) A .3个 B .4个 C .6个 D .9个 【答案】A【解析】当0x <时()()'2x f x x e =+,由此可知()f x 在(),2-∞-上单调递减,在()2,0-上单调递增, ()22f e --=-, ()10f -=且()0,1x f x →→,数()f x 是定义在R 上的奇函数,()00f=,而(),1x∈-∞-时,()0f x<,所以()f x的图象如图,令()t f x=,则()f t m=,由图可知,当()1,1t∈-时方程()t f x=至多3个根,当()1,1t∉-时方程()t f x=没有根,而对任意m R∈,()f t m=至多有一个根()1,1t∈-,从而函数()()()F x f f x m=-的零点个数至多有3个.点晴:本题考查函数导数与单调性.确定零点的个数问题:可利用数形结合的办法判断交点个数,如果函数较为复杂,可结合导数知识确定极值点和单调区间从而确定其大致图象.方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理. 恒成立问题以及可转化为恒成立问题的问题,往往可利用参变分离的方法,转化为求函数最值处理.也可构造新函数然后利用导数来求解.注意利用数形结合的数学思想方法.二、填空题13.若变量x,y满足约束条件20220x yx yx y+≥⎧⎪-≤⎨⎪-+≥⎩,则2z x y=-的最小值等于_______.【答案】52-【解析】画出可行域如图所示,目标函数变形为2y x z=-,当z最小时,直线2y x z=-的纵截距最大,故将直线2y x=经过可行域,尽可能向上移到过点1(1,)2B-时,z取到最小值为152(1).22z=⨯--=-点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.14.如图所示,在直角梯形ABCD 中,,,,BC DC AE DC M N ⊥⊥分别是,AD BE 的中点,将三角形ADE 沿AE 折起,下列说法正确的是__________(填上所有正确的序号).①不论D 折至何位置(不在平面ABC 内)都有MN ∥平面DEC ; ②不论D 折至何位置都有MN AE ⊥;③不论D 折至何位置(不在平面ABC 内)都有MN AB .【答案】①②【解析】由已知,在未折叠的原梯形中,AB ∥DE,BE ∥AD.所以四边形ABED 为平行四边形,∴DA=EB.折叠后得出图形如下:①过M ,N 分别作AE ,BC 的平行线,交ED ,EC 于F ,H.连接FH则HN EN CB EB =,FM DMEA DA=, ∵AM=BN ,∴EN=DM ,等量代换后得出HN=FM , 又CB ∥EA,∴HN ∥FM , ∴四边形MNHF 是平行四边形。
广西南宁二中、玉林高中高三数学9月联考试题 理 新人教A版

本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
本卷满分150分,考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
第I 卷(选择题,共60分)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、考号在答题卡上填写清楚,并认真核准条形码上的考号、姓名,在规定的位置贴好条形码。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
答在试卷上的答案无效。
一、选择题:本大题共12小题,每小题5分,共60分。
1.已知集合{}2,3,4{|=,A B x x mn m ==,、n A m n ∈≠且},则集合B 非空真子集有( )A .3个B . 6个C .7个D .8个2.已知复数z=1+i ,则221z z z --( ) A .2i B .—2i C .2 D .—23.平面坐标系中,0为坐标原点,点A (3,1),点B (-1,3),若点C 满足OC OA OB αβ=+, 其中,R αβ∈且αβ+=1,则点C 的轨迹方程为( ) A .2x+y=l B .x+2y=5 C .x+y=5 D .x —y=14.设数列{}n a 是公差不为零的等差数列,它的前n 项和为S n ,且S 1、S 2、S 4成等比数列,则31a a 等于( ) A .2B .3C . 4D . 5 5.设x ,y 满足约束条件:04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则231x y x +++的最小值是 ( )A .2B .3C .4D .56.函数y= 5x 3—2sin3x+tanx —6的图象的对称中心是( )A . (0,0)B . (6,0)C . (一6,0)D . (0,—6)7.条件1:24x P +>,条件1:13Q x>-,则p ⌝是Q ⌝的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 8.已知函数()3sin()(0)6f x x πωω=->和()2cos(2)1g x x ϕ=++的图像的对称轴完全相同,若[0,]2x π∈,则()f x 的取值范围是( ) A .3[,3]2- B .3(,3)2- C .3[,)2-+∞ D .(,3)-∞ 9.设曲线C:x 2=y 上有两个动点A 、B ,直线AB 与曲线C 在A 点处切线垂直,则点B 到y 轴距离的最小值是( )A .22B 3C 2D .210.如图,在四面体A- BCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)的球心O ,且与BC 、DC 分别交于E 、F ,如果截面AEF 将四面体分成体积相等的两部分,设四棱锥A 一BEFD 与三棱锥A — EFC 表面积分别为S l ,S 2,则必有( )A .S 1与S 2的大小不能确定B .S 1≥S 2C .S 1<S 2D .S 1= S 211.已知函数()sin cos ,()2sin f x x x g x x =+=,动直线x=t 与()f x 、()g x 的图象分别交于点P 、Q ,则|PQ|的取值范围是( )A .[0,1]B .[0,2]C .2]D .2]12.定义域在R 上的函数()f x 满足:①(2)f x +是奇函数;②当2x ≥时,1212.4'()0.42x x f x x x +≥<+<又,则12()()f x f x +的值( ) A .恒小于0 B .恒大于0 C .恒大于等于0 D .恒小于等于0第Ⅱ卷(非选择题,满分90分)二、填空题:本题共4小题,每小题5分,共20分。
广西2021-2022学年高三上学期开学联考理科数学试卷

函数 gx ax2 lnx 1,1 x 2 的最大值为
169 ln 2.. 9
22. 设双曲线 x2 y2 1, 其右焦点为 F,过 F 的直线与双曲线 C 的右支交于 A、B 两点, 3
(1)求直线的斜率; (2)求 AB 中点的轨迹坐标方程.
解:(1)设直线方程为 y kx 2k ,代入方程 x2 y2 1, 得 3
3k 2 1 x2 12k 2 x 12k 2 3 0,
设
Ax1,
y1 ,
Bx2 ,
y2 ,则
x1
x2
12k 2 3k 2 1
0,
x1x2
3 3k 2 1
0,
144k 4 4 3k 2 1 12k 2 3 3k2 3 0 ,
所以 k ,
3 3
3, .
(2)设 AB 中点为 x0,y0 ,
解:(1) 观察表格知这 6 年中,单车盈利超过 9.5(万元)的年份数量为 X,X 的分布列如下:
年份代号 X
10
12
盈利 y(万元)
1/3
1/3
X 的期望
EX 10 1 12 1 22 .
3
33
(3)从 1-6 这 6 个年份中任取两年,盈利总额小于 18(万元)的年份代号是
1,2;1,3;1,4;1,6;
16
.
x
17. 已知正三棱锥 P ABC 的底面边长为 2, PA PB PC 2,PB,PC 中点分别为
D, E ,则直线 AE、CD 的夹角为 arc cos 1 . 6
18.
已知函数
f
x
ex , x 1,1 x2 1 2,x 1,3
,
函
数
广西柳州铁路第一中学高三数学9月联考试题(二)理

2017届柳州铁一中学联考试卷(二)理科数学(考试时间 120分钟 满分 150分)第Ⅰ卷一、选择题(本大题12个小题,每题5分,共60分,请将答案涂在答题卷上)1.已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B I 等于( )A .[1,4)-B .(2,3]C .(2,3)D .(1,4)-2.设复数z 满足11zi z+=-,则z =( ) A .1B .2C .3D .23.已知平面向量n m ,的夹角为,6π且2,3==n m ,在ABC ∆中,n m AB 22+=,n m AC 62-=,D 为BC 边的中点,则AD =( )A .2B .4C .6D .84.某年级有1000名学生,随机编号为0001,0002,…,1000,现用系统抽样方法,从中抽出200人,若0122号被抽到了,则下列编号也被抽到的是( ) A .0116B .0927C .0834D .07265.若某几何体的三视图(单位:cm )如图所示,则该几何体的体积等于( )A .310cm B .320cmC .330cmD . 340cm6. 若3cos()cos()02πθπθ-++=,则cos2θ的值为( )A .45B .45-C .35D .35-7. 若202n x dx =⎰ ,则12nx x-()的展开式中常数项为( )A .12B .12-C .32 D .32- 8.阅读如图所示的程序框图,输出的结果S 的值为( )A .0B 3C .3D .32-9.有4名优秀大学毕业生被某公司录用,该公司共有5个科室,由公司人事部门安排他们到其中任意3个科室上班,每个科室至少安排一人,则不同的安排方案种数为( )A .120B .240C .360D .48010. 已知()f x 是定义在R 上的偶函数,且在(],0-∞上是增函数,设412(log 7),(log 3),a f b f ==0.6(0.2)c f =则c b a ,,的大小关系是( )A .b a c <<B .b a c <<C .a c b <<D .c b a <<11.过点(2错误!未找到引用源。
广西南宁二中柳铁一中2021届高三9月联考数学理科(wd无答案)

广西南宁二中柳铁一中2021届高三9月联考数学理科一、单选题(★★) 1. 已知集合,集合,则()A.B.C.D.(★★) 2. 已知复数满足,则()A.B.C.D.5(★) 3. 若,,,则 a、 b、 c的大小关系为()A.B.C.D.(★★) 4. 某几何体的三视图如图,则几何体的体积为A.8π﹣16B.8π+16C.16π﹣8D.8π+8 (★★★) 5. 已知圆,直线,则A.与相离B.与相交C.与相切D.以上三个选项均有可能(★★★) 6. 已知向量,若,则的取值范围是()C.D.A.B.(★) 7. 展开式中项的系数为()A.5B.6C.-6D.-4(★★★) 8. 某程序框图如图所示,若输出,则图中执行框内应填入()A.B.C.D.(★★) 9. 《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为步和步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A.B.C.D.(★★) 10. 已知函数为 R上的奇函数,当时,,则曲线在处的切线方程为()A.B.C.D.(★★★) 11. 已知函数,下列结论中错误的是()A.的图像关于点中心对称B.的图像关于直线对称D.既是奇函数,又是周期函数C.的最大值为(★★★★) 12. 若函数在其定义域上有两个零点,则的取值范围是()A.B.C.D.二、填空题(★) 13. 若 x, y满足约束条件,则的最大值为_______.(★) 14. 已知等差数列中前 n项和为,且,,则________.(★★★)15. 以O为中心,,为焦点的椭圆上存在一点M,满足,则该椭圆的离心率为_______________.(★★★) 16. 已知四棱锥的五个顶点在同一球面上.若该球的半径为4,是边长为2的正方形,且,则当最长时,四棱锥的体积为_______________. 三、解答题(★★) 17. 在中,内角 A, B, C的对边分别为 a, b, c,且满足.(1)求 B;(2)若, AD为 BC边上的中线,当的面积取得最大值时,求 AD的长.(★★) 18. 若养殖场每个月生猪的死亡率不超过,则该养殖场考核为合格,该养殖场在2019年1月到8月养殖生猪的相关数据如下表所示:月份1月2月3月4月5月6月7月8月月养殖量/3456791012千只3月利润/十3.64.1 4.45.26.27.57.99.1万元生猪死亡数/只 2937 49 53 77 98 126 145(1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率; (2)根据1月到8月的数据,求出月利润 y (十万元)关于月养殖量 x (千只)的线性回归方程(精确到0.001). (3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系,若9月份的养殖量为1.5万只,试估计:该月利润约为多少万元?附:线性回归方程 中斜率和截距用最小二乘法估计计算公式如下: ,参考数据:.(★★★) 19. 如图,在直三棱柱中, , D , E , F 分别为棱,,的中点,且,.(1)求证:平面 平面 ;(2)求二面角的余弦值.(★★★) 20. 已知动圆 Q 经过定点,且与定直线相切(其中 a 为常数,且).记动圆圆心 Q 的轨迹为曲线 C.(1)求 C 的方程,并说明 C 是什么曲线? (2)设点 P 的坐标为 ,过点 P 作曲线 C 的切线,切点为 A ,若过点 P 的直线 m 与曲线C 交于 M , N 两点,证明:.(★★★★★) 21. 已知函数,.(1)讨论 的单调性;(2)若,设 ,证明: , ,使.(★★★) 22. 在平面直角坐标系中,直线的参数方程为(为参数),以原点 O为极点, x正半轴为极轴建立极坐标系,曲线 C的极坐标方程为.(1)求直线的普通方程和曲线 C的直角坐标方程;(2)设,直线与 C的交点为 A, B,求.(★★★) 23. 已知函数.(1)求不等式的解集;(2)若的最小值为 m, a、 b、 c为正数且,求证:.。
广西南宁二中柳铁一中2021届高三9月联考数学理科答案

11.答案:B 解析:回归对称性的定义,奇偶性定义和周期性定义可排除. 12.答案:A
13.答案: 4
14.答案:70
解析:依题意
a5
a1
4d
13 ,
S5
5a1
ቤተ መጻሕፍቲ ባይዱ
10d
35
,所以 a1
1, d
3
则 ,
S7
7a1
在 ACD 中,由余弦定理得
AD2 CA2 CD2 2 CA CD cos π 12 1 2 2 6
3 1
3 2
7
.
即 AD 7 .
18.(1)2 月到 6 月中,合格的月份为 2,3,4 月份,
记恰好有 2 个月考核获得合格为事件 A,
则事件
A
发生的概率为: P( A)
C32 C21 C53
柳铁一中、南宁二中 2021 届高三 9 月联考数学理科试题答案
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1.答案:A
解析:由 B x x 3 x 4 0 x 3 x 4 ,又 A x Z 2 x 5 1, 0,1, 2,3, 4
0
令z 1
所以 A B 1,0,1, 2,3
2.答案:C
解析:法一: z 3 4i (3 4i)(1 2i) 5 10i 1 2i ,| z | (1)2 (2)2 5 1 2i (1 2i)(1 2i) 5
法二:
z
3 1
4i 2i
,|
z
||
3 1
4i 2i
|
(全优试卷)广西南宁二中、柳州高中高三9月份两校联考数学理试题Word版含答案

2018届南宁二中、柳州高中两校联考第一次考试理科数学第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|320}A x x x =-+≤,{|124}xB x =<<,则A B ⋂=( ) A .{|12}x x ≤≤ B .{|12}x x <≤C .{|12}x x ≤<D .{|02}x x ≤< 2.复数21iz i-=+对应的点在复平面内位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.“真人秀”热潮在我国愈演愈烈,为了了解学生是否喜欢某“真人秀”节目,某中学随机调查了110名学生,得到如下列联表:由()()()()()22n ad bc K a b c d a c b d -=++++算得()22110403020207.860506050K ⨯⨯-⨯=≈⨯⨯⨯.附表:参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“喜欢该节目与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“喜欢该节目与性别无关”C .有99%以上的把握认为“喜欢该节目与性别有关”D .有99%以上的把握认为“喜欢该节目与性别无关”4.设等差数列{}n a 的前n 项和为n S ,已知12345a a a a a ++=+,560S =,则10a =( )A .16B .20C .24D .265.已知点()2,3A -在抛物线2:2C y px =的准线上,记抛物线C 的焦点为F ,则直线AF的斜率为( ) A .43-B .-1C . 34-D .12- 6.()()5212x x +-展开式中,2x 项的系数为( ) A .30 B .70 C .90 D .-150 7.已知函数()2sin(2)6f x x π=+,若将它的图象向右平移6π个单位长度,得到函数()g x 的图象,则函数()g x 图象的一条对称轴方程为( ) A .12x π=B .4x π=C . 3x π=D .23x π=8.在ABC 中,点,M N 满足2AM MC =,BN NC =,若MN xA B yA C =+,则x y+的值为( ) A .13 B .12 C . 23 D .349.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数N 除以正整数m 后的余数为n ,则记为()mod N n m =,例如()112mod 3=,现将该问题以程序框图的算法给出,执行该程序框图,则输出的n 等于( )A .21B .22C .23D .2410.某几何体的三视图如图所示,其正视图和侧视图都是边长为体的外接球的表面积为( )A .9πB .16πC . 24πD .36π11.已知12,F F 为双曲线()2222:10,0x y C a b a b-=>>的左,右焦点,点P 为双曲线C 右支上一点,直线1PF 与圆222x y a +=相切,且212||||PF F F =,则双曲线C 的离心率为( )A.43 C .53D .2 12.已知函数()f x 是定义在R 上的奇函数,当0x <时,()()1xf x x e =+,则对任意的m R ∈,函数()(()F x f f x m =-的零点个数至多有( )A .3个B .4个C . 6个D .9个第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若变量,x y 满足约束条件200220x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩,则2z x y =-的最小值等于 .14.如图所示,在直角梯形ABCD 中,,,,BC DC AE DC M N ⊥⊥分别是,AD BE 的中点,将三角形ADE 沿AE 折起,下列说法正确的是 (填上所有正确的序号).①不论D 折至何位置(不在平面ABC 内)都有MN ∥平面DEC ; ②不论D 折至何位置都有MN AE ⊥;③不论D 折至何位置(不在平面ABC 内)都有MN AB ∥.15.已知函数()()()()240ln 10x x x f x x x ⎧-+≤⎪=⎨+>⎪⎩,若关于x 的不等式()||f x ax ≥恒成立,则a 的取值范围是 .16.已知数列{}n a 中,11a =,{}n a 的前n 项和为n S ,当2n ≥时,有221nn n na a S S =-成立,则2017S = .三、解答题 (共70分.解答应写出文字说明、证明过程或演算步骤.)17.在ABC ∆中,角,,A B C 所对的边分别是,,a b c2sin c A =且c b <. (Ⅰ)求角C 的大小;(Ⅱ)若4b =,延长AB 至D ,使BC BD =,且5AD =,求ACD 的面积. 18.某商场计划销售某种产品,现邀请生产该产品的甲、乙两个厂家进场试销10天,两个厂家提供的返利方案如下:甲厂家每天固定返利70元,且每卖出一件产品厂家再返利2元;乙厂家无固定返利,卖出40件以内(含40件)的产品,每件产品厂家返利4元,超出40件的部分每件返利6元.经统计,两个厂家10天的试销情况茎叶图如下:(Ⅰ)现从厂家试销的10天中抽取两天,求这两天的销售量都大于40的概率; (Ⅱ)若将频率视作概率,回答以下问题:(ⅰ)记乙厂家的日返利额为X (单位:元),求X 的分布列和数学期望;(ⅱ)商场拟在甲、乙两个厂家中选择一家长期销售,如果仅从日返利额的角度考虑,请利用所学的统计学知识为商场做出选择,并说明理由.19.已知三棱柱111ABC A B C -中,12AB AC AA ===,侧面11ABB A ⊥底面ABC ,D 是BC 的中点,1160,B BA B D AB ∠=⊥.(Ⅰ)求证:AC ⊥平面11ABB A ; (Ⅱ)求二面角1C AD C --的余弦值.20.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点()1,0F ,过点F 且坐标轴不垂直的直线与椭圆交于,P Q 两点,当直线PQ 经过椭圆的一个顶点时其倾斜角恰好为60. (Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为坐标原点,线段OF 上是否存在点(),0T t ,使得QP TP PQ TQ ⋅=⋅?若存在,求出实数t 的取值范围;若不存在,说明理由. 21.已知()2xf x e ax =-,()g x 是()f x 的导函数.(Ⅰ)求()g x 的极值;(Ⅱ)若()1f x x ≥+在0x ≥时恒成立,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为22cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数).以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4sin ρθ=. (Ⅰ)求曲线1C 的普通方程和2C 的直角坐标方程;(Ⅱ)已知曲线3C 的极坐标方程为()0,R θααπρ=<<∈,点A 是曲线3C 与1C 的交点,点B 是曲线3C 与2C 的交点,且,A B 均异于原点O ,且||AB =α的值. 23.选修4-5:不等式选讲已知函数()|23||21|f x x x =++-. (Ⅰ)求不等式()5f x ≤的解集;(Ⅱ)若关于x 的不等式()|1|f x m <-的解集非空,求实数m 的取值范围.试卷答案一、选择题1-5: CDCDC 6-10: BCACB 11、12:CA二、填空题13.52-14.①② 15.40a -≤≤ 16.11009三、解答题17.【解析】(Ⅰ)由正弦定理sin sin sin a b cA B C==,2sin sin A C A =,∵sin 0A ≠,∴sin C =, 又c b <,∴3C π=.(Ⅱ)设BC x =,则5AB x =-,在ABC 中,由余弦定理得()2225424cos3x x x π-=+-⋅⋅,求得32x =,即37,22BC AB ==,在ABC 中,由正弦定理得sin sin BC ABA C=,∴sin sin 14BC C A AB ==, ∴ACD 的面积1sin 2S AC AD A =⋅⋅=1452⨯⨯=. 18.【解析】(Ⅰ)记“抽取的两天销售量都大于40”为事件A ,则()22210145C P A C ==.(Ⅱ)(ⅰ)设乙产品的日销售量为a ,则当38a =时,384152X =⨯=; 当39a =时,394156X =⨯=;当40a =时,404160X =⨯=;当41a =时,40416166X =⨯+⨯=;当42a =时,40426172X =⨯+⨯=; ∴X 的所有可能取值为:152,156,160,166,172,∴X 的分布列为∴1521561601055EX =⨯+⨯+⨯166172162510+⨯+⨯=.(ⅱ)依题意,甲厂家的日平均销售量为:380.2390.4400.2⨯+⨯+⨯410.1420.139.5+⨯+⨯=,∴甲厂家的日平均返利额为:7039.52149+⨯=元, 由(ⅰ)得乙厂家的日平均返利额为162元(149>元), ∴推荐该商场选择乙厂家长期销售.19.【解析】(Ⅰ)取AB 中点O ,连接1,OD B O ,1B BA 中,112,2,60AB B B B BA ==∠=,故1AB B 是等边三角形,∴1B O AB ⊥,又1B D AB ⊥,而1B O 与1B D 相交于1B ,∴AB ⊥平面1B OD , 故AB OD ⊥,又OD AC ∥,所以AC AB ⊥,又∵侧面11ABB A ⊥底面ABC 于AB ,AC 在底面ABC 内,∴AC ⊥平面11ABB A . (Ⅱ)以O 为坐标原点,分别以1OB OD OB 、、方向为x y z 、、轴建立空间直角坐标系,如图所示.()()()()(11,2,0,1,0,0,0,1,0,1,0,0,C A D B B --,∴()()11,0,3,0,2,0BB AC =-=,111AC AC CC AC BB =+=+(=-,()1,1,0AD =,设平面1ADC 的法向量为(),,m x y z =,依题意有:1020m AD x y m AC x y ⎧⋅=+=⎪⎨⋅=-++=⎪⎩,令1x =,则1,y z =-=(1,m =-,又平面ADC 的法向量为()0,0,1n =,∴cos ,m n ==,∴二面角1C AD C --的余弦值为5. 20.【解析】(Ⅰ)由题意知1c =, 又tan 603bc==23b =,2224a b c =+=, 所以椭圆C 的方程为:22143x y +=. (Ⅱ)设直线PQ 的方程为:()()1,0y k x k =-≠,代入22143x y +=,得:()22223484120k x k x k +-+-=, 设()()1122,,,P x y Q x y ,线段PQ 的中点为()00,R x y ,则2122834k x x k+=+, 212024234x x k x k +==+,()0023134k y k x k=-=-+, 由QP TP PQ TQ ⋅=⋅得:()(2)0PQ TQ TP PQ TR ⋅+=⋅=, 所以直线TR 为直线PQ 的垂直平分线,直线TR 的方程为:222314()3434k k y x k k k +=--++. 令0y =得:T 点的横坐标22213344k t k k==++, ()20,k ∈+∞,所以()2344,k +∈+∞,所以1(0,)4t ∈. 所以线段OF 上存在点(),0T t ,使得QP TP PQ TQ ⋅=⋅,其中1(0,)4t ∈.21.【解析】(Ⅰ)()2x f x e ax =-,()()2x g x f x e ax '==-,()2xg x e a '=-,当0a ≤时,()0g x '>恒成立,()g x 无极值; 当0a >时,()0g x '=,解得()ln 2x a =,由()0g x '>,得()ln 2x a >;由()0g x '<,得()ln 2x a <, 所以当()ln 2x a =时,有极小值()22ln 2a a a -.(Ⅱ)令()()210xh x e ax x x =---≥,则()()120xh x e ax x '=--≥,注意到()()000h h '==,解法一:()()20xh x e a x ''=-≥,①当12a ≤时,由0x ≥,得()20xh x e a ''=-≥,即()h x '在[0,)+∞上单调递增, 所以0x ≥时,()()00h x h ''≥=,从而()h x 在[0,)+∞上单调递增, 所以0x ≥时,()()00h x h ≥=,即()1f x x ≥+恒成立. ②当12a >时,由()20xh x e a ''=-<解得()0ln 2x a ≤<,即()h x '在[0,ln(2a))上单调递减,所以()0ln 2x a ≤<时,()()00h x h ''≤=,从而()h x 在[0,ln(2a))上单调递减, 所以()0ln 2x a <<时,()()00h x h <=,即()1f x x ≥+不成立. 综上,a 的取值范围为1(,]2-∞.解法二:令()1xk x e x =--,则()1xk x e '=-,由()0k x '>,得0x >;()0k x '<,得0x <,∴()()00k x k ≥=,即1xe x ≥+恒成立,故()2(12)h x x ax a x '≥-=-, 当12a ≤时,120a -≥,于是0x ≥时,()0h x '≥,()h x 在[0,)+∞上单调递增, 所以()()00h x h ≥=,即()1f x x ≥+成立.当12a >时,由()10x e x x >+≠可得()10xe x x ->-≠. ()12(1)x x h x e a e -'<-+-(1)(2)x x x e e e a --=--,故当(0,ln(2))x a ∈时,()0h x '<,于是当(0,ln(2))x a ∈时,()h x 单调递减,()()00h x h <=, ()1f x x ≥+不成立. 综上,a 的取值范围为1(,]2-∞.22.【解析】(Ⅰ)由22cos 2sin x y ϕϕ=+⎧⎨=⎩消去参数ϕ可得1C 普通方程为()2224x y -+=,∵4sin ρθ=,∴24sin ρρθ=,由222sin x y y ρρθ⎧+=⎨=⎩,得曲线2C 的直角坐标方程为22(2)4x y +-=;(Ⅱ)由(Ⅰ)得曲线221:(2)4C x y -+=,其极坐标方程为4cos ρθ=,由题意设12(,),(,)A B ραρα,则12||||4|sin cos |AB ρραα=-=-sin()4πα=-=∴sin()14πα-=±,∴()42k k Z ππαπ-=+∈,∵0απ<<,∴34πα=. 23.【解析】(Ⅰ)原不等式为:|23||21|5x x ++-≤, 能正确分成以下三类:当32x ≤-时,原不等式可转化为425x --≤,即7342x -≤≤-; 当3122x -<<时,原不等式可转化为45≤恒成立,所以3122x -<<;当12x ≥时,原不等式可转化为425x +≤,即1324x ≤≤.所以原不等式的解集为73{|}44x x -≤≤.全优试卷 (Ⅱ)由已知函数342,231()4,22142,2x x f x x x x ⎧--≤-⎪⎪⎪=-<<⎨⎪⎪+≥⎪⎩,可得函数()y f x =的最小值为4, 由()|1|f x m <-的解集非空得:|1|4m ->. 解得5m >或3m <-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广西南宁二中柳铁一中2021届高三9月联考数学理
科
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 已知集合,集合,则
()
A.B.C.D.
2. 已知复数满足,则()
A.B.
C.D.5
3. 若,,,则a、b、c的大小关系为()A.B.C.D.
4. 某几何体的三视图如图,则几何体的体积为
A.8π﹣16 B.8π+16C.16π﹣8 D.8π+8
5. 已知圆,直线,则
A.与相离B.与相交C.与相切D.以上三个选项均有可能
6. 已知向量,若,则的取值范围是()
C.D.
A.B.
7. 展开式中项的系数为()
A.5 B.6 C.-6 D.-4
8. 某程序框图如图所示,若输出,则图中执行框内应填入()
A.B.
C.D.
9. 《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为步和步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()
A.B.C.D.
10. 已知函数为R上的奇函数,当时,,则曲线
在处的切线方程为()
A.B.
C.D.
11. 已知函数,下列结论中错误的是()
A.的图像关于点中心对
称B.的图像关于直线对称
D.既是奇函数,又是周期函数C.的最大值为
12. 若函数在其定义域上有两个零点,则的取值范围是()
A.B.
C.D.
二、填空题
13. 若x,y满足约束条件,则的最大值为_______.
14. 已知等差数列中前n项和为,且,,则________.
15. 以O为中心,,为焦点的椭圆上存在一点M,满足
,则该椭圆的离心率为_______________.
16. 已知四棱锥的五个顶点在同一球面上.若该球的半径为4,
是边长为2的正方形,且,则当最长时,四棱锥的体积为_______________.
三、解答题
17. 在中,内角A,B,C的对边分别为a,b,c,且满足
.
(1)求B;
(2)若,AD为BC边上的中线,当的面积取得最大值时,求AD
的长.
18. 若养殖场每个月生猪的死亡率不超过,则该养殖场考核为合格,该养殖月份1月2月3月4月5月6月7月8月
月养殖量/千只
3 4 5 6 7 9 10 12 3
月利润/十万元 3.6 4.1 4.4 5.2 6.2 7.5 7.9 9.1
生猪死亡数/只29 37 49 53 77 98 126 145
(1)从该养殖场2019年2月到6月这5个月中任意选取3个月,求恰好有2个月考核获得合格的概率;
(2)根据1月到8月的数据,求出月利润y(十万元)关于月养殖量x(千只)的线性回归方程(精确到0.001).
(3)预计在今后的养殖中,月利润与月养殖量仍然服从(2)中的关系,若9月份的养殖量为1.5万只,试估计:该月利润约为多少万元?
附:线性回归方程中斜率和截距用最小二乘法估计计算公式如下:,
参考数据:.
19. 如图,在直三棱柱中,,D,E,F分别为棱,
,的中点,且,.
(1)求证:平面平面;
(2)求二面角的余弦值.
20. 已知动圆Q经过定点,且与定直线相切(其中a为常数,且).记动圆圆心Q的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线?
(2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于M,N两点,证明:.
21. 已知函数,.
(1)讨论的单调性;
(2)若,设,证明:,,使.
22. 在平面直角坐标系中,直线的参数方程为(为参数),以原点O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程
为.
(1)求直线的普通方程和曲线C的直角坐标方程;
(2)设,直线与C的交点为A,B,求.
23. 已知函数.
(1)求不等式的解集;
(2)若的最小值为m,a、b、c为正数且,求证:
.。