直接探测和相干探测.

合集下载

VPI大作业题目V3

VPI大作业题目V3

VPI大作业题目V3验证型题目(10题,每题只能有一组学生选择,组内不同学生设置参数要有差异)1.基于直接探测和相干探测装置的光发射机指标参数测量系统设计(第二章)说明与要求:搭建直接探测和相干探测装置,对光发射机的重要指标如激光器线宽、强度噪声、调制后信号的啁啾大小等进行测量。

根据光谱仪、射频频谱分析仪获得的测量结果,估计测量误差大小并提出改进方法。

注:线宽的测量主要针对窄线宽激光器(100kHz左右)进行。

参考例程:Chirp and Transfer Function Measurement;RIN Measurement MethodsSelf-Heterodyne Linewidth Measurement。

难度等级:B2.相同速率(比特率)不同调制格式的光信号时频域特征研究与抗色散性能分析(第三章)说明与要求:信号速率固定为100Gbps。

分析脉冲占空比分别为100%,66%和33%的OOK,DPSK,QPSK和16QAM的光信号。

研究不同调制格式时域波形和光谱形状的差别;研究不同调制格式随标准单模光纤色散值变化而引起的脉冲展宽变化规律,比较其色散容限大小。

参考例程:Differential Phase Shift Keying (DPSK) vs. Non Return-to-Zero (NRZ)for 40 Gbit/s over 5*90 km Terrestrial System。

BER vs. Accumulated Dispersion for ASK, DPSK and DQPSK modulation formats;BER vs OSNR for ASK, DPSK and DQPSK Modulation Formats。

难度等级:A3.光纤中受激布里渊散射效应的研究(第三章)说明与要求:通过测量背向散射功率获得不同有效面积光纤的SBS阈值,构建相关变化规律曲线;讨论使用标准单模光纤时, SBS效应对相同速率不同调制格式(如OOK,BPSK,QPSK等)光信号的传输损伤。

北京交通大学光电子学作业参考答案

北京交通大学光电子学作业参考答案

变化.阴极在光照下发射光电子,光电子被极间电场加速聚焦,轰击倍增极,倍增极
在高速电子轰击下产生更多的电子,电子数目增大若干倍。
光敏电阻:
4. 光电倍增管的负高压供电方式\噪声特性? 负高压供电方式是指电源正极接地,使阳极输出直接接入放大器输入端而无需隔直流 电容。
优点是便于用直流法测量阳极输出电流,能响应变化非常缓慢的光信号。 缺点是地处于高电位,易受外界电磁干扰,噪声大。 对电磁屏蔽良好的光电倍增管来说,其噪声主要来源是暗电流、光信号电流、背景光 电流以及负载电阻的热噪声。如果光信号变化缓慢,还应考虑 1/f 噪声。
效率η则是对同一个问题的微观 ---宏观描述。现在把量子效率和灵敏度联系起来,
可得 η
=
hv e
Ri
光谱量子效率 η λ
=
hc eλ
Ri
通量阈 Pth 和噪声等效功率 NEP:实际情况告诉我们,当 p=o 时,光电探测器的输出
电流并不为零。这个电流称为暗电流,记为 In=( im2 )1/2,它是瞬时噪声电流的有
1. 描述 CCD 的性能参数有那些?其含义是什么? 一.转移效率:是指电荷包在进行一次转移中的效率,即电荷包从一个栅下势阱转移 到下一个栅下势阱时,有 V 部分电荷转移过去,余下 ε(称为失效率)部分没有转移, η 用公式表示为η=1-ε 二 暗电流:是指在既无光注入又无电注入情况下输出的电流。 三 噪声:散粒噪声、转移噪声和热噪声 四 灵敏度(响应度):指在一定光谱范围内,单位曝光量(光强与光照时间之积)的 输出信号电压(电流)。 五 分辨率:指摄像器对物像中明暗细节的分辨能力。用 MTF 表示分辨率 六 噪声等效功率 NEP:当入射辐射的功率为 NEP 时,则 CCD 输出的 S/N 为 1。NEP 又常常称为探测器的灵敏度。 七 动态范围:光敏元满阱信号/等效噪声信号。 八 峰值波长与截止波长:峰值波长(λp)表示探测器对入射光最灵敏的那个波长, 单位为μm(或 nm)。

直接探测和相干探测PPT课件

直接探测和相干探测PPT课件
相干探测利用光信号的干涉原理,通过测量干涉条纹的数量、形状和变化来检测光 信号的强度、频率和相位信息。
相干探测需要将待测光信号与参考光信号进行干涉,通过检测干涉图样的变化来提 取光信号的参数。
相干探测技术能够提供高精度和高灵敏度的测量结果,因此在光学测量、光谱分析、 激光雷达等领域得到广泛应用。
相干探测的应用场景
直接探测
常用于短距离光纤通信和 局域网。
适用于高精度和低噪声应 用场景。
适用于高速数据传输和低 成本应用场景。
相干探测
常用于长距离光纤通信、 卫星光通信和光雷达等领
域。
优缺点比较
直接探测的优点
结构简单、成本低、实时性好; 缺点是精度较低,容易受到噪声 和干扰的影响。
相干探测的优点
精度高、抗干扰能力强;缺点是 需要本振光信号和复杂的干涉结 构,成本较高。
直接探测和相干探测ppt课件
目录
• 引言 • 直接探测技术 • 相干探测技术 • 直接探测与相干探测的比较 • 未来展望
01 引言
主题简介
直接探测和相干探测是光通信领域中 两种重要的信号检测方式,它们在原 理、应用和优缺点等方面存在显著差 异。
相干探测则利用光干涉原理,通过比 较输入光信号与本振光的干涉结果来 获取信息。
05 未来展望
技术发展趋势
01
02
03
探测技术不断升级
随着科技的进步,直接探 测和相干探测技术将不断 升级,提高探测精度和稳 定性。
智能化发展
未来探测技术将更加智能 化,能够自动识别和判断 目标,减少人工干预。
多模态融合
将不同探测方式进行融合, 形成多模态探测系统,提 高探测效率和准确性。
应用领域拓展

第十一章直接探测系统

第十一章直接探测系统

使光束直径小于光探测器得直径。
光电探测器接收到得功率 PS(为t) : PS (t)
P(单) :位波长,单位立体角得接收功率。
2
1 P()1 2
Ar L2
d
Ar / L接2 : 收系统对应得立体角。
对于被动系统: P由 普: 朗克公式给出
对于主动系统:
P()
2 hc2 5
1 e hc / kT
2hf
PS
△ 此为直接探测系统在理论上得极限信噪比,即直接探测
系统得量子极限。
△ 直接探测系统在理论上可测量得最小功率为:
( NEP)量
2hf
当f 1, 1时,(NEP)量 2h (理想值)
△实际探测系统不可能就是理想状态;
①实际系统得视场不能就是衍射极限对应得小视场。
②背景噪声不可能为零。
②另外光电探测器输出得光电流正比于光场振幅
得平方,即光强。
④如果入射信号光为强度调制光(IM),设调制信号为d(t) 则光电探测器输出得光电e流:
IP h P[1 d (t)] *特别注意:光电探测器响应得就是光场得包络,目前,没有 可以直接响应光场频率得探测器。 二、直接探测系统得信噪比 设信号得光功率为:PS 噪声功率为:PN 光电探测器输出得信号电功率为:SP 噪声功率为:NP
①像差
②大气扰动引起得跳动等 光斑比非理想状态下得爱里衍射斑 要大,但视场还就是要小
原因:①工艺上得限制
②Ad小,背景噪声小 2、背景功率:
经推导:
2
Pb (t)= 1 N()Ard1 2d
d
Ab L2
Ad fr2
限制背景功率得措施: ①空间上限制系统得视场角。 ②加光学滤光片时对背景进行光谱滤波。 二、扩展系统视场得方法 在不降低系统灵敏度和空间分辨率 得条件下扩大视场: 1、采用多元探测器列阵或采用摄像器件 对每个探测器,视场不大,噪声影响不大,作用距离长 空间分辨率高

第八章 外差(相干)探测系统

第八章  外差(相干)探测系统
2 IF
上页 下页 后退
外差探测系统
经推导
2 2
对中频周期求平均
PIF = 4α Ps PL cos [ωIF t + (φL − φs ) ] ⋅ RL = 2α 2 Ps PL RL
在直接探测中,探测器输出的电功率为: 在直接探测中,探测器输出的电功率为:
PL = is2 RL = α 2 Ps2 RL
上页 下页 后退
外差探测系统
直接检测接收机框图
外差检测接收机框图
上页 下页 后退
外差探测系统
外差原理图
相干光通信系统
上页 下页 后退
外差探测系统
8.1.1 光频外差探测的实验装置
光频外差探测的实验装置, 光频外差探测的实验装置,即光频外差多普勒测速的原 理装置。 理装置。
CO2激本探 fs-fL
Es(t)=As cos(ωst+φs) EL(t)=AL cos(ωLt+φL)
由光电探测器的平方律特性, 由光电探测器的平方律特性,其输出光电流为
i = a[ Es (t ) + EL (t ) ]
上页
2
下页
后退
外差探测系统
i = α As2 cos2 (ωst +φs )
eη hv
功率的时变项, 功率的时变项, 相当于探测器 的频率响应非 光谱响应
中频光电流振幅、频率和相位都随信号光的振幅、 中频光电流振幅、频率和相位都随信号光的振幅、频率和 相位成比例变化;因此,振幅调制、频率调制、相位调制 相位成比例变化;因此,振幅调制、频率调制、 的光波所携带的信息,通过光频外差探测均可实现解调。 的光波所携带的信息,通过光频外差探测均可实现解调。

第八章 外差(相干)探测系统

第八章  外差(相干)探测系统

y
KL K Ly Ks
K Lx
y
θ θ
O
x l z
O
D
x
图8.3– 1
坐标关系
注意到在探测器面上x=0, 则有 es=Es cosωst eL=EL cos(ωLt+KL sinθ·y) 在(0,y)点上的中频电流 iIF (0,y,t)=α·EsEL cos(ωIFt+KL·y·sinθ) =α·E E =α Es·EL cos(ωIFt+KL·y·θ) y θ) (8.3 - 6) (8.3 - 4) (8.3 - 5)
∆f =
C
λ
∆λ = 3 × 109 Hz 2
(8.1 - 15)
在外差探测中, 情况发生了根本变化。 如果取差 频宽度作为信息处理器的通频带∆f, 即
ωs − ωL ∆ f IF = 2π
= fs − fL
(8.1 - 16)
外差探测具有更窄的接收带宽, 外差探测具有更窄的接收带宽,即对背景光有良好 的滤波性能。 的滤波性能。
这里c是光速。
ω IF
c
(8.3 - 16)
总的中频电流为
iIF (t ) =
α
D∫
D/2
−D / 2
iIF (0, x, y )dy
∆ K IF Dθ sin 2 = α Es E L cos ω IF t ⋅ ∆ K IF ⋅ Dθ 2
(8.3 - 17)
y
K
s
K
L
θ
Kcos θ
O l
θ
Ksin θ
D
x
图 8.3 - 2 两束光平行但不垂直于探测器
考虑到sinθ≈θ, y点产生的中频电流iIF (0,y,t)可 以写为 iIF (0,y,t)=αEsEL cos(ωIFt+∆KIFy sinθ) 式中 (8.3 - 15)

直接探测和相干探测

直接探测和相干探测

直接探测和相干探测概述直接探测和相干探测是两种常用的信号探测方法。

直接探测是通过直接测量信号的幅度或频率来判断信号的存在与否,而相干探测则是通过与参考信号进行干扰相消来提高探测性能。

本文将对这两种探测方法进行详细介绍,并对它们的优缺点进行讨论。

直接探测直接探测是一种简单直接的信号探测方法。

在直接探测中,我们直接测量信号的幅度或频率,并将其与一个预设的阈值进行比较。

如果信号的幅度或频率超过了阈值,则判定信号存在;否则,判定信号不存在。

直接探测在实际应用中非常常见,例如在无线通信中,接收机常常通过测量信号的功率来判断信道的质量。

另外,在雷达系统中,也可以使用直接探测来探测目标的存在。

然而,直接探测方法存在一些缺点。

首先,它对噪声非常敏感,噪声的存在往往会导致误判。

其次,直接探测方法通常无法提供对信号的相位信息的判断,这在某些应用中可能是十分重要的。

相干探测相干探测是一种基于相干性原理的信号探测方法。

在相干探测中,我们通过将接收到的信号与一个已知的参考信号进行干扰相消,从而提高探测性能。

相干探测的核心思想是利用干扰相消来减小噪声的影响,并提高信号与噪声之间的信噪比。

通过与参考信号进行相关运算,我们可以将信号的相位信息从噪声中提取出来,从而实现对信号的更准确的判断。

相干探测在很多应用中被广泛使用。

在通信系统中,相干解调可以大大提高接收机的性能。

在雷达系统中,相干处理可以提供目标的精确距离和速度信息。

然而,相干探测方法也存在一些限制。

首先,相干探测方法通常需要事先获得参考信号,这对于某些应用来说可能是十分困难的。

其次,对于复杂的信号,相干探测可能需要耗费大量的计算资源。

优缺点比较直接探测和相干探测具有不同的优缺点。

直接探测方法简单直接,适用于一些简单的探测问题。

然而,直接探测方法对噪声非常敏感,且无法提供对信号相位的判断。

相比之下,相干探测方法可以通过干扰相消来减小噪声的影响,并提高探测性能。

相干探测还可以提供对信号的相位信息的判断,这对于一些需要精确测量的应用非常重要。

第10章 相干探测

第10章  相干探测

e iIF 2 h
PL Ps cos ( L S )t (L S )
三、良好的滤波性能
在直接探测过程中,光探测器除接收信号光以外,杂散背 景光也不可避免地同时入射到光探测器上。为了抑制杂散 背景光的干扰,提高信号噪声比,一般都要在光探测器的 前面加上孔径光阑和窄带滤光片。 相干探测系统对背景光的滤波性能比直接探测系统要高。 因为相干接收时要求信号光和本地振荡光空间方向严格调 准。而背景光入射方向是杂乱的,不能满足空间调准要求, 于是就不能得到输出。所以相干探测自身有很好的空间滤 波性能,无需像直接探测那样在系统中加孔径光阑和滤光 片。
四、有利于微弱光信号的探测
在直接探测中光探测器输出的光电流正比于信号光的平均 光功率,即光探测器输出的电功率正比于信号光平均光功 率的平方。 2
e 2 S p I RL Ps RL hν
2 p
在相干探测中光混频器输出的中频信号功率正比于信号光 和本振光平均光功率的乘积。通常,入射到光探测器上的 信号光功率是非常小的(尤其在远距离上应用,例如光雷 达、遥感、空间光通信等应用),因而,在直接探测中光 探测器输出的电信号也是极其微弱的。在相干探测过程中, 尽管信号光功率非常小,但只要本振光功率足够大,仍能 得到可观的中频输出。相干探测对微弱光信号的探测特别 2 有利。 e
2
在同样信号光功率PS条件下,这两种探测方法所得到的信号 功率比G为
PIF 2 PL G SP PS
PL PS , G 107 ~ 108
二、可获得全部信息——振幅、频率、位相
• 在直接探测中,光探测器输出的光电流随信号光的振幅或 强度的变化而变化,光探测器对信号光的频率或相位变化 不响应。 • 在相干探测中,光电探测器输出的中频光电流的振幅、频 率和相位都随信号光的振幅、频率和相位的变化而变化。 这使我们能把频率调制和相位调制的信号光像幅度调制或 强度调制一样进行解调。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SNRdB 10lg
I RL i RL
2 s 2 n
20lg
i
2 n
Is
1/ 2
--电信号功率和电噪声功率之比
信噪比是衡量光电探测系统质量好坏的一个 重要指标
模拟信号系统:3~5,
精度高时10~100
数字脉冲系统:例如,光通信误码率<10-9
要求信噪比~20dB
提高系统信噪比的基本途径:
基准精度 幅度 频率 10-3~10-4 10-6~10-8 测量精度 10-2~10-3 10-5~10-7 基准稳定方法
模拟量 稳定电路
晶振, 数字锁相环
现代光电测量中常优先考虑采用频率测量法!
9.1.3直接探测的应用举例
例3. 光电测距 发射光波
--光电光波测距
0t 0 2D / c
应用于测量:
几何量(长度、位移· · · · ) 表面形状参量(工件粗糙度、伤痕· · · ) 光学参量(吸收、反射· · · ) 电磁量(电流、电场、磁场· · · ) · · · · · · · · · · · · · ·
应用于控制:
激光制导、飞行物自动跟踪 激光稳频、机器人视觉 · · · · · · · · ·
9.2.1 相干探测的基本原理
9.2.2 相干探测的条件
9.2.3 相干探测的应用举例
9.2.1 相干探测的基本原理
1. 相干探测的物理过程
接收光波
距离--光通量(相位)
第09章 直接探测和相干探测 直接探测:(非相干探测)
装置简单,光源为相干光源或非相干光 源,只能探测光功率(光强)。
相干探测: (光学外差探测)
装置复杂,光源必须为相干光源,间接 探测光波的振幅、频率和相位等参数。
9.2 相干探测
--Coherent Detection --又称为光外差探测
2 2 s
最理想情况,只有信号光电流 引起的散粒噪声(忽略吗?)
s SNRd 2hv f
i
2 nS
2eISf
--直接探测的量子极限
s SNRd 2hv f
2hv f
-直接探测的量子极限
量子极限的另一种表达是:
NEPd

-直接探测的噪声等效功率
例:η为1,Δf为1Hz,~2hν,已很接近单个光子的
9.1.3直接探测的应用举例
特点:信息加载--辐通量(光强)
几何量(长度、位移· · · · ) 表面形状参量(工件粗糙度、伤痕· · · ) 光学参量(吸收、反射· · · ) 电磁量(电流、电场、磁场· · · ) · · · · · · · · · · · · · ·
辐通量(幅度、频率、相位· · · )
光-电信号变换 光信号
光电 探测器
电信号
E E0 cos(2 vt 0 )
人眼和探测器 可以响应平均光功率
ΦE
2 0
平方律器件
光-电信号变换 光信号
光电 探测器
电信号
E E0 cos(2 vt 0 )
光的频率:1014~1015Hz 探测器响应频率<1010Hz
光-电信号变换 光信号
--光学方法,如场镜、光锥、浸没透镜· · · · ·
-- ---《应用光学》
--电学方法,如滤波、低噪声放大、弱信
号检测· · · · · · · ---第十章
--热力学方法,制冷降低探测器噪声
2) 直接探测的信噪比极限:
以光电二极管为例
Psd (e / hv ) SNRd 2 2 2 2 Pnd inS inB inD inT
光场包络的 频率<1010Hz
例1 比较光场频率和光强度信号的变化频率 设光栅的栅距P=40μm 相对移动的速度V =1cm/s 半导体激光器,波长λ =890nm
光场频率 v =? 光强度信号的变化频率f = ?
9.1.1直接探测的基本原理
2.直接探测系统的信噪比
1)信噪比定义:
2 2 Is Us P I R I s s L s SNR 2 2 SNRI 2 或 SNRU 2 P i u i R i n n n n L n
能量hν。 实际上,几乎不可能???
9.1 直接探测
--Drirect Detection ,又称为非相干探测
装置简单,光源为相干光源或非相干光源, 只能探测平均光功率(光强)
9.1.1直接探测的基本原理
9.1.2* 直接探测系统的视场和作用距离 9.1.3直接探测的应用举例
9.1.3直接探测的应用举例
2 2 s
散粒噪声
热噪声
信号光电流、背景光电流和器件暗电流 最理想情况,只有信号 2 光电流引起的散粒噪声 inS 2eIS f
s SNRd 2hv f
--直接探测的量子极限
2.直接探测系统的信噪比
2) 直接探测的信噪比极限:
P ( e / hv ) sd SNRd 2 2 2 2 Pnd inS inB inD inT
光电 探测器
电信号
E E0 cos(2 vt 0 )
响应平均光功率 直接探测 响应光的频率 · · · 相干探测
第09章
直接探测和相干探测
光-电信号变换
直接探测 (平均光功率) 相干探测 (光的波动参数) 探测方法的改进
9.1 直接探测
--Drirect Detection ,又称为非相干探测 装置简单,光源为相干光源或非相干光源, 只能探测平均光功率(光强) 9.1.1直接探测的基本原理 9.1.2* 直接探测系统的视场和作用距离 9.1.3直接探测的应用举例
1.直接探测基本物理过程:
光波:
光功率:
2 s (t ) as
Es (t ) as sin(st S s (t ) as
人眼和探测器可以响应平均光功率
平方律器件:
--光电探测器 响应光场包络 光场的频率 1014~1015Hz
I ds S s [1 V (t )]
9.1.3直接探测的应用举例
例1. 光电磁场测量
磁场
振动方向旋转角度
光通量幅度
磁场--光通量(幅度)
9.1.3直接探测的应用举例
例2. 光栅莫尔条纹测位移
x Δ m cos(2π ) P
t
精度已可达±0.1μm/m
位移--光通量(频率)
光通量的频率测量
光电转速表 光栅位移传感器
测“幅度”与“频率”方法,测量精度的比较:
相关文档
最新文档