利用导数求曲线的切线方程

合集下载

空间曲线的切线方程

空间曲线的切线方程

空间曲线的切线方程空间曲线的切线方程,是指在三维空间中描述曲线切线的数学式子。

一般情况下,我们可以利用导数求解曲线的切线方程。

首先,我们需要明确空间曲线的定义。

空间曲线是一组随时间变化的点的集合,它们遵循一定的几何规律。

在三维空间中,这些点的坐标可以表示为参数方程的形式,例如:x = f(t)y = g(t)z = h(t)其中,t 是参数,描述时间的变化。

f(t), g(t), h(t) 则分别是点在 x、y、z 轴上的坐标随时间的变化。

接着,我们来看如何求解曲线的切线方程。

一个曲线的切线,是在该点处与曲线相切的直线。

我们可以利用导数这个数学工具,求解曲线在该点处的斜率,从而得到切线方程。

以 f(t) 为例,它在 t0 点处的导数可以用极限的形式表示为:f'(t0) = lim_Δt→0 (f(t0+Δt) - f(t0)) / Δt这个式子的含义是,当Δt 趨近於 0 時,点f(t0+Δt) 與点f(t0) 之間的斜率就趨近於 f'(t0)。

因此,当我们知道了 f'(t0) 的值,我们就可以利用点斜式的形式,求解曲线在 t0 点处的切线方程了:y - g(t0) = f'(t0) * (x - f(t0))z - h(t0) = f'(t0) * (x - f(t0))这两个式子可以简化为:(y - g(t0)) / (x - f(t0)) = f'(t0)(z - h(t0)) / (x - f(t0)) = f'(t0)这就是曲线在 t0 点处的切线方程了。

同样的,我们也可以求解出曲线在其他点的切线方程,只需要将 t0 换成不同的值即可。

总结来说,空间曲线的切线方程是利用导数求解曲线在某个点处的斜率,并以点斜式的形式表示出来的数学表达式。

对于几何图形的绘制和计算来说,这个方程具有重要的指导意义。

(完整版)利用导数求曲线的切线和公切线

(完整版)利用导数求曲线的切线和公切线

利用导数求曲线的切线和公切线一.求切线方程【例1】.已知曲线f(x)=x3-2x2+1.(1)求在点P(1,0)处的切线l1的方程;(2)求过点Q(2,1)与已知曲线f(x)相切的直线l2的方程.提醒:注意是在某个点处还是过某个点!二.有关切线的条数【例2】.(2014•北京)已知函数f(x)=2x3﹣3x.(Ⅰ)求f(x)在区间[﹣2,1]上的最大值;(Ⅱ)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;(Ⅲ)问过点A(﹣1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论)【解答】解:(Ⅰ)由f(x)=2x3﹣3x得f′(x)=6x2﹣3,令f′(x)=0得,x=﹣或x=,∵f(﹣2)=﹣10,f(﹣)=,f()=﹣,f(1)=﹣1,∴f(x)在区间[﹣2,1]上的最大值为.(Ⅱ)设过点P(1,t)的直线与曲线y=f(x)相切于点(x0,y),则y0=2﹣3x,且切线斜率为k=6﹣3,∴切线方程为y﹣y0=(6﹣3)(x﹣x),∴t﹣y0=(6﹣3)(1﹣x),即4﹣6+t+3=0,设g(x)=4x3﹣6x2+t+3,则“过点P(1,t)存在3条直线与曲线y=f(x)相切”,等价于“g(x)有3个不同的零点”.∵g′(x)=12x2﹣12x=12x(x﹣1),∴g(0)=t+3是g(x)的极大值,g(1)=t+1是g(x)的极小值.∴g(0)>0且g(1)<0,即﹣3<t<﹣1,∴当过点过点P(1,t)存在3条直线与曲线y=f(x)相切时,t的取值范围是(﹣3,﹣1).(Ⅲ)过点A(﹣1,2)存在3条直线与曲线y=f(x)相切;过点B(2,10)存在2条直线与曲线y=f(x)相切;过点C(0,2)存在1条直线与曲线y=f(x)相切.【例3】.已知函数f(x)=lnax(a≠0,a∈R),.(Ⅰ)当a=3时,解关于x的不等式:1+e f(x)+g(x)>0;(Ⅱ)若f(x)≥g(x)(x≥1)恒成立,求实数a的取值范围;(Ⅲ)当a=1时,记h(x)=f(x)﹣g(x),过点(1,﹣1)是否存在函数y=h(x)图象的切线?若存在,有多少条?若不存在,说明理由.【解答】解:(I)当a=3时,原不等式可化为:1+e ln3x+>0;等价于,解得x,故解集为(Ⅱ)∵对x≥1恒成立,所以,令,可得h(x)在区间[1,+∞)上单调递减,故h(x)在x=1处取到最大值,故lna≥h(1)=0,可得a=1,故a的取值范围为:[1,+∞)(Ⅲ)假设存在这样的切线,设切点T(x,),∴切线方程:y+1=,将点T坐标代入得:即,①设g(x)=,则∵x>0,∴g(x)在区间(0,1),(2,+∞)上是增函数,在区间(1,2)上是减函数,故g(x)极大=g(1)=1>0,故g(x)极,小=g(2)=ln2+>0,.又g()=+12﹣6﹣1=﹣ln4﹣3<0,由g(x)在其定义域上的单调性知:g(x)=0仅在(,1)内有且仅有一根,方程①有且仅有一解,故符合条件的切线有且仅有一条.【作业1】.(2017•莆田一模)已知函数f (x )=2x 3﹣3x+1,g (x )=kx+1﹣lnx . (1)设函数,当k <0时,讨论h (x )零点的个数;三.切线与切线之间的关系 【例4】.(2018•绵阳模拟)已知a ,b ,c ∈R ,且满足b 2+c 2=1,如果存在两条互相垂直的直线与函数f (x )=ax+bcosx+csinx 的图象都相切,则a+c的取值范围是 .23a b c ++=则23b c +,∵b 2+c 2=1,∴sin ,cos b a ββ==设,∴235sin()b c βϕ+=+,故a+c ∈[﹣,],【例5】.已知函数f (x )=lnx ﹣a (x ﹣1),g (x )=e x ,其中e 为自然对数的底数. (Ⅰ)设,求函数t (x )在[m ,m+1](m >0)上的最小值;(Ⅱ)过原点分别作曲线y=f (x )与y=g (x )的切线l 1,l 2,已知两切线的斜率互为倒数,求证:a=0或.【解答】(Ⅰ)解:,令t'(x)>0得x>1,令t'(x)<0得x<1,所以,函数t(x)在(0,1)上是减函数,在(1,+∞)上是增函数,∴当m≥1时,t(x)在[m,m+1](m>0)上是增函数,∴当0<m<1时,函数t(x)在[m,1]上是减函数,在[1,m+1]上是增函数,∴t(x)min=t(1)=e.(Ⅱ)设l2的方程为y=k2x,切点为(x2,y2),则,∴x2=1,y2=e∴k2=e.由题意知,切线l1的斜率,∴切线l1的方程为,设l1与曲线y=f(x)的切点为(x1,y1),∴,∴,,又y1=lnx1﹣a(x1﹣1),消去y1,a后整理得,令,则,∴m(x)在(0,1)上单调递减,在(1,+∞)上单调递增,若x1∈(0,1),∵,,∴,而,在单调递减,∴.若x1∈(1,+∞),∵m(x)在(1,+∞)上单调递增,且m(e)=0,∴x1=e,∴综上,a=0或.【作业2】.(2017•黄山二模)已知函数f(x)=(ax2+x﹣1)e x+f'(0).(1)讨论函数f(x)的单调性;(2)若g(x)=e﹣x f(x)+lnx,h(x)=e x,过O(0,0)分别作曲线y=g(x)与y=h(x)的切线l1,l2,且l1与l2关于x轴对称,求证:﹣<a <﹣.四.求公切线的方程【例6】.(2018•安阳一模)已知函数,g(x)=3elnx,其中e为自然对数的底数.(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)试判断曲线y=f(x)与y=g(x)是否存在公共点并且在公共点处有公切线.若存在,求出公切线l的方程;若不存在,请说明理由.【解答】解:(Ⅰ)由,得,令f′(x)=0,得.当且x≠0时,f′(x)<0;当时,f′(x)>0.∴f(x)在(﹣∞,0)上单调递减,在上单调递减,在上单调递增;(Ⅱ)假设曲线y=f(x)与y=g(x)存在公共点且在公共点处有公切线,且切点横坐标为x>0,则,即,其中(2)式即.记h(x)=4x3﹣3e2x﹣e3,x∈(0,+∞),则h'(x)=3(2x+e)(2x﹣e),得h(x )在上单调递减,在上单调递增,又h(0)=﹣e3,,h(e)=0,故方程h(x0)=0在(0,+∞)上有唯一实数根x=e,经验证也满足(1)式.于是,f(x0)=g(x)=3e,f′(x)=g'(x)=3,曲线y=g(x)与y=g(x)的公切线l的方程为y﹣3e=3(x﹣e),即y=3x.【作业3】.已知函数f (x)=lnx,g(x)=2﹣(x>0)(1)试判断当f(x)与g(x)的大小关系;(2)试判断曲线 y=f(x)和 y=g(x)是否存在公切线,若存在,求出公切线方程,若不存在,说明理由;(3)试比较(1+1×2)(1+2×3)…(1+2012×2013)与 e4021的大小,并写出判断过程.五.与公切线有关的参数取值范围问题【例7】.已知函数f(x)=blnx,g(x)=ax2﹣x(a∈R).(Ⅰ)若曲线f(x)与g(x)在公共点A(1,0)处有相同的切线,求实数a、b的值;(Ⅱ)当b=1时,若曲线f(x)与g(x)在公共点P处有相同的切线,求证:点P唯一;(Ⅲ)若a>0,b=1,且曲线f(x)与g(x)总存在公切线,求正实数a的最小值.【解答】解:(Ⅰ)f′(x)=,g'(x)=2ax﹣1.∵曲线f(x)与g(x)在公共点A(1,0)处有相同的切线,∴,解得a=b=1.(Ⅱ)设P(x0,y),则由题设有lnx=ax2﹣x…①,又在点P有共同的切线,∴f′(x0)=g′(x),∴,∴a=,代入①得lnx0=x,设h(x)=lnx ﹣+x,则h′(x)=+(x>0),则h′(x)>0,∴h(x)在(0,+∞)上单调递增,所以 h(x)=0最多只有1个实根,从而,结合(1)可知,满足题设的点P只能是P(1,0).(Ⅲ)当a>0,b=1时,f(x)=lnx,f′(x)=,f(x)在点(t,lnt)处的切线方程为y﹣lnt=(x﹣t),即y=x+lnx﹣1.与y=ax2﹣x,联立得ax2﹣(1+)x﹣lnt+1=0.∵曲线f(x)与g(x)总存在公切线,∴关于t(t>0)的方程△=+4a(lnt﹣1)=0,即=4a(1﹣lnt)(*)总有解.若t>e,则1﹣lnt<0,而>0,显然(*)不成立,所以 0<t<e,从而,方程(*)可化为4a=.令H(t)=(0<t<e),则H′(t)=.∴当0<t<1时,h'(t)<0;当1<t<e时,h'(t)>0,即 h(t)在(0,1)上单调递减,在(1,e)上单调递增.∴h(t)在(0,e)上的最小值为h(1)=4,∴要使方程(*)有解,只须4a≥4,即a≥1.∴正实数a的最小值为1.【例8】.(2017•韶关模拟).已知函数f(x)=ae x(a≠0),g(x)=x2(Ⅰ)若曲线c1:y=f(x)与曲线c2:y=g(x)存在公切线,求a最大值.(Ⅱ)当a=1时,F(x)=f(x)﹣bg(x)﹣cx﹣1,且F(2)=0,若F(x)在(0,2)内有零点,求实数b的取值范围.【解答】解:(Ⅰ)设公切线l与c1切于点(x1,a)与c2切于点(x2,),∵f′(x)=ae x,g′(x)=2x,∴,由①知x2≠0,①代入②:=2x2,即x2=2x1﹣2,由①知a=,设g(x)=,g′(x)=,令g′(x)=0,得x=2;当x<2时g′(x)>0,g(x)递增.当x>2时,g′(x)<0,g(x)递减.∴x=2时,g(x)max =g(2)=,∴amax=.(Ⅱ)F(x)=f(x)﹣bg(x)﹣cx﹣1=e x﹣bx2﹣cx﹣1,∵F(2)=0=F(0),又F(x)在(0,2)内有零点,∴F(x)在(0,2)至少有两个极值点,即F′(x)=e x﹣2bx﹣c在(0,2)内至少有两个零点.∵F″(x)=e x﹣2b,F(2)=e2﹣4b﹣2c﹣1=0,c=,①当b≤时,在(0,2)上,e x>e0=1≥2b,F″(x)>0,∴F″(x)在(0,2)上单调增,F′(x)没有两个零点.②当b≥时,在(0,2)上,e x<e2≤2b,∴F″(x)<0,∴F″(x)在(0,2)上单调减,F′(x)没有两个零点;③当<b<时,令F″(x)=0,得x=ln2b,因当x>ln2b时,F″(x)>0,x<ln2b时,F″(x)<0,∴F″(x)在(0,ln2b)递减,(ln2b,2)递增,所以x=ln2b时,∴F′(x)最小=F′(ln2b)=4b﹣2bln2b﹣+,设G(b)=F′(ln2b)=4b﹣2bln2b﹣+,令G′(b)=2﹣2ln2b=0,得2b=e,即b=,当b<时G′(b)>0;当b>时,G′(b)<0,当b=时,G(b)最大=G()=e+﹣<0,∴G(b)=f′(ln2b)<0恒成立,因F′(x)=e x﹣2bx﹣c在(0,2)内有两个零点,∴,解得:<b <,综上所述,b 的取值范围(,).【作业4】.已知函数f(x)=a(x ﹣)﹣blnx(a,b∈R),g(x)=x2.(1)若a=1,曲线y=f(x)在点(1,f(1))处的切线与y轴垂直,求b的值;(2)若b=2,试探究函数f(x)与g(x)在其公共点处是否有公切线,若存在,研究a的个数;若不存在,请说明理由.六.公切线的条数问题【例9】.已知函数f(x)=lnx,g(x)=e x.(1)确定方程f(x)=实数根的个数;(2)我们把与两条曲线都相切的直线叫作这两条曲线的公切线,试确定曲线y=f (x),y=g(x)公切线的条数,并证明你的结论.【解答】解:(1)由题意得lnx==1+,即lnx﹣1=.分别作出y=lnx﹣1和y=的函数图象,由图象可知:y=lnx﹣1和y=的函数图象有两个交点,∴方程f(x)=有两个实根;(2)解:曲线y=f(x),y=g(x)公切线的条数是2,证明如下:设公切线与f(x)=lnx,g(x)=e x的切点分别为(m,lnm),(n,e n),m≠n,∵f′(x)=,g′(x)=e x,∴,化简得(m﹣1)lnm=m+1,当m=1时,(m﹣1)lnm=m+1不成立;当m≠1时,(m﹣1)lnm=m+1化为lnm=,由(1)可知,方程lnm=有两个实根,∴曲线y=f(x),y=g(x)公切线的条数是2条.【作业5】.已知函数f(x)=x2+2(1﹣a)x﹣4a,g(x)=﹣(a+1)2,则f (x)和g(x)图象的公切线条数的可能值是.【作业1解答】解:(1)f′(x)=(2x+1)(x﹣1)2=0,x=﹣或1,∴x=﹣是h(x)的零点;∵g′(x)=k﹣,k<0,g′(x)<0,g(x)在[1,+∞)上单调递减,g(x)的最大值为g(1)=k+1.k<﹣1,g(1)<0,g(x)在[1,+∞)上无零点;k=﹣1,g(1)=0,g(x)在[1,+∞)上有1个零点;﹣1<k<0,g(1)>0,g(e1﹣k)=ke1﹣k+k<0,g(x)在[1,+∞)上有1个零点;综上所述,k<﹣1时,h(x)有1个零点;﹣1≤k<0时,h(x)有两个零点;(2)设切点(t,f(t)),f′(x)=6x2﹣6x,∴切线斜率f′(t)=6t2﹣6t,∴切线方程为y﹣f(t)=(6t2﹣6t)(x﹣t),∵切线过P(a,﹣4),∴﹣4﹣f(t)=(6t2﹣6t)(a﹣t),∴4t3﹣3t2﹣6t2a+6ta﹣5=0①由题意,方程①有3个不同的解.令H(t)=4t3﹣3t2﹣6t2a+6ta﹣5,则H′(t)=12t2﹣6t﹣12at+6a=0.t=或a.a=时,H′(t)≥0,H(t)在定义域内单调递增,H(t)不可能有两个零点,方程①不可能有两个解,不满足题意;a时,在(﹣),(a,+∞)上,H′(t)>0,函数单调递增,在(,a)上,H′(t)<0,函数单调递减,H(t)的极大值为H(),极小值为H (a);a时,在(﹣∞,a),(,+∞)上,H′(t)>0,函数单调递增,在(a,)上,H′(t)<0,函数单调递减,H(t)的极大值为H(a),极小值为H ();要使方程①有三个不同解,则H()H(a)<0,即(2a﹣7)(a+1)(2a2﹣5a+5)>0,∴a>或a<﹣1.【作业2解答】解:由已知得f'(x)=[ax2+(2a+1)x]e x,f'(0)=0,所以f (x)=(ax2+x﹣1)e x.(1)f'(x)=[ax2+(2a+1)x]e x=[x(ax+2a+1)]e x.①若a>0,当或x>0时,f'(x)>0;当时,f'(x)<0,所以f(x)的单调递增区间为;单调递减区间为.②若a=0,f(x)=(x﹣1)e x,f'(x)=xe x,当x>0时,f'(x)>0;当x<0时,f'(x)<0,所以f(x)的单调递增区间为(0,+∞);单调递减区间为(﹣∞,0).③若,当或x<0时,f'(x)<0;当时,f'(x)>0,所以f(x)的单调递增区间为;单调递减区间为.④若,故f(x)的单调递减区间为(﹣∞,+∞).⑤若,当或x>0时,f'(x)<0;当时,f'(x)>0,所以f(x)的单调递增区间为;单调递减区间为.当a>0时,f(x)的单调递增区间为;单调递减区间为.当a=0时,f(x)的单调递增区间为(0,+∞);单调递减区间为(﹣∞,0).,当时,f(x)的单调递增区间为;单调递减区间为.当时,f(x)的单调递减区间为(﹣∞,+∞);当时,f(x)单调递增区间为;单调递减区间为,(0,+∞);(2)证明:g(x)=e﹣x f(x)+lnx=﹣e﹣x(ax2+x﹣1)e x+lnx=ax2+x﹣1+lnx,设l2的方程为y=k2x,切点为(x2,y2),则,所以x2=1,y2=e,k2=e.由题意知k1=﹣k2=﹣e,所以l1的方程为y=﹣ex,设l1与y=g(x)的切点为(x1,y1),则.又,即,令,在定义域上,u'(x)>0,所以(0,+∞)上,u(x)是单调递增函数,又,所以,即,令,则,所以,故.【作业3解答】解:(1)证明:设F(x)=f(x)﹣g(x),则F′(x)=﹣,由F'(x)=0,得x=3,当0<x<3时,F'(x)<0,当x>3时F'(x)>0,可得F(x)在区间(0,3)单调递减,在区间(3,+∞)单调递增,所以F(x)取得最小值为F(3)=ln3﹣1>0,∴F(x)>0,即f(x)>g(x);(2)假设曲线f(x)与g(x)有公切线,切点分别为P(x0,lnx)和Q(x1,2﹣).因为f′(x)=,g′(x)=,所以分别以P(x0,lnx)和Q(x1,2﹣)为切线的切线方程为y=+lnx﹣1,y=+2﹣.令,即2lnx1+﹣(3+ln3)=0.令h(x)=2lnx1+﹣(3+ln3).所以由h′(x)=﹣=0,得x1=3.显然,当0<x1<3时,h'(x)<0,当x1>3时,h'(x)>0,所以h(x)min=ln3﹣1>0,所以方程2lnx1+﹣(3+ln3)=0无解,故二者没有公切线.所以曲线y=f(x)和y=g(x)不存在公切线;(3)(1+1×2)(1+2×3)•…•(1+2012×2013)>e4021.理由:由(1)可得lnx>2﹣(x>0),可令x=1+n(n+1),可得ln(1+n(n+1))>2﹣>2﹣=2﹣3(﹣),则ln(1+1×2)+ln(1+2×3)+…+ln(1+2012×2013)>2×2012﹣3(1﹣+﹣+…+﹣)=4024﹣3+>4021.即有(1+1×2)(1+2×3)…(1+2012×2013)>e4021.【作业4解答】解:(Ⅰ)∵f(x)=x﹣﹣blnx,∴f′(x)=1+﹣,由于曲线y=f(x)在点(1,f(1))处的切线垂直于y轴,故该切线斜率为0,即f′(1)=0,即1+1﹣b=0,∴b=2;(2)假设f(x),g(x)的图象在其公共点(x0,y)处存在公切线,由f(x)=a(x﹣)﹣2lnx,得f′(x)=,g′(x)=2x,由f′(x0)=g′(x),得=2x,即2x3﹣ax2+2x﹣a=0,即(x02+1)(2x﹣a)=0,则x=,又函数的定义域为(0,+∞),当a≤0时,x0=≤0,则f(x),g(x)的图象在其公共点(x,y)处不存在公切线;当a>0时,令f()=g(),﹣2ln﹣2=,即=ln,令h(x)=﹣ln(x>0),h′(x)=x﹣=,则h(x)在(0,2)递减,(2,+∞)递增.且h(2)=﹣<0,且当x→0时,h(x)→+∞;当x→+∞时,h(x)→+∞,∴h(x)在(0,+∞)有两个零点,∴方程=ln在(0,+∞)解的个数为2.综上:当a≤0时,函数f(x)与g(x)的图象在其公共点处不存在公切线;当a>0时,函数f(x)与g(x)的图象在其公共点处存在公切线,a的值有2个.在导数的练习中,常见这一类题型:已知含有的一个不等式,以及的一些其他性质,让解不等式或者比较大小。

用导数求切线方程的四种类型

用导数求切线方程的四种类型

用导数求切线方程的四种类型用导数求切线方程是导数的重要应用之一。

求曲线的切线方程的关键在于求出切点P(x,y)及斜率。

设P(x,y)是曲线y=f(x)上的一点,则以P的切点的切线方程为:y-y=f'(x)(x-x)。

若曲线y=f(x)在点P(x,f(x))的切线平行于y轴(即导数不存在)时,由切线定义知,切线方程为x=x。

下面例析四种常见的类型及解法。

类型一:已知切点,求曲线的切线方程这类题较为简单,只需求出曲线的导数f'(x),并代入点斜式方程即可。

例如,曲线y=x^3-3x^2+1在点(1,-1)处的切线方程为y-(-1)=-3(x-1),即y=-3x+2.类型二:已知斜率,求曲线的切线方程这类题可利用斜率求出切点,再用点斜式方程加以解决。

例如,与直线2x-y+4=0平行的抛物线y=x^2的切线方程为2x-y-1=0.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法。

例如,求过曲线y=x^3-2x上的点(1,-1)的切线方程。

设想P(x,y)为切点,则切线的斜率为y'|(x=x)=3x^2-2.故所求切线方程为y-(1-2)=(3-2)(x-1),或5x+4y-1=0.类型四:已知两曲线的交点,求切线方程这类题一般需先求出两曲线在交点处的导数,再代入点斜式方程加以解决。

例如,已知曲线y=x^3-x和y=2x-x^2的交点为(1,0),求它们在该点的切线方程。

两曲线在交点处的导数分别为1和-1.故所求切线方程为y-(0)=1(x-1),或y-(0)=-1(x-1),即y=x-1或y=-x+1.类型四:已知过曲线外一点,求切线方程对于这类问题,我们可以先设定切点,再求解切点,使用待定切点法来解决。

例4:求过点(2,0)且与曲线$y=x/(1+x^2)$相切的直线方程。

解:设P(x,y)为切点,则切线的斜率为$y'=\frac{1-x^2}{(1+x^2)^2}$。

用导数求切线方程的四种类型知识讲解

用导数求切线方程的四种类型知识讲解

用导数求切线方程的四种类型用导数求切线方程的四种类型浙江 曾安雄求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,因而选B.类型二:已知斜率,求曲线的切线方程此类题可利用斜率求出切点,再用点斜式方程加以解决.例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+=B.230x y --=C.210x y -+=D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|.01x =∴.由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利用∆法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0∆=,得1b =-,故选D.类型三:已知过曲线上一点,求切线方程过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线方程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.又知切线过点(11)-,,把它代入上述方程,得3200001(2)(32)(1)x x x x ---=--. 解得01x =,或012x =-.故所求切线方程为(12)(32)(1)y x --=--,或13112842y x ⎛⎫⎛⎫⎛⎫--+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728⎛⎫- ⎪⎝⎭,为切点的直线.这说明过曲线上一点的切线,该点未必是切点,解决此类问题可用待定切点法.类型四:已知过曲线外一点,求切线方程此类题可先设切点,再求切点,即用待定切点法来求解. 例4 求过点(20),且与曲线1y x=相切的直线方程. 解:设00()P x y ,为切点,则切线的斜率为0201x x y x ='=-|. ∴切线方程为00201()y y x x x -=--,即020011()y x x x x -=--. 又已知切线过点(20),,把它代入上述方程,得020011(2)x x x -=--. 解得000111x y x ===,,即20x y +-=. 评注:点(20),实际上是曲线外的一点,但在解答过程中却无需判断它的确切位置,充分反映出待定切点法的高效性.例5 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程.解:曲线方程为33y x x =-,点(016)A ,不在曲线上. 设切点为00()M x y ,,则点M 的坐标满足30003y x x =-. 因200()3(1)f x x '=-,故切线的方程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--. 化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线方程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型一或类型三;若点A 不在曲线上,应先设出切点并求出切点.在初中数学中,曲线的切线没有一般的定义。

求曲线在某点的切线方程方法

求曲线在某点的切线方程方法

求曲线在某点的切线方程方法引言在数学和物理学中,研究曲线的切线是很常见的问题。

切线可以帮助我们了解曲线的局部特征和性质,它在微积分、力学和工程学等领域中都有广泛的应用。

本文将介绍一些常见的方法来求解曲线在某点的切线方程。

切线的定义在数学中,曲线上某点的切线可以被定义为通过该点并且与曲线在该点附近重合的直线。

切线的斜率即为曲线在该点的导数。

方法一:求导法一种常见的方法是使用导数来求解曲线在某点的切线方程。

设曲线的方程为y=f(x),我们要求解曲线在点(x0,y0)处的切线方程。

1.首先求曲线的导数f'(x)。

2.将点(x0,y0)带入导数函数,求出导数的值f'(x0)。

3.使用切线方程的一般形式y-y0=f'(x0)(x-x0),将(x0,y0)和f'(x0)代入,得到切线方程。

方法二:斜率和点法另一种常用的方法是使用斜率和已知点来求解切线方程。

同样假设曲线的方程为y=f(x),我们要求解曲线在点(x0,y0)处的切线方程。

1.计算曲线在点(x0,y0)处的斜率,即f'(x0)。

2.使用点斜式切线方程y-y0=f'(x0)(x-x0),将(x0,y0)和f'(x0)代入,得到切线方程。

方法三:曲线近似法第三种方法是使用曲线的近似来求解切线方程。

此方法适用于那些难以计算导数的曲线。

1.在点(x0,y0)处取曲线的一个非常小的线段,该线段基本上与切线重合。

2.使用线性函数来拟合这个线段,得到近似切线方程。

方法四:参数法对于参数方程表示的曲线,我们可以使用参数法来求解切线方程。

假设曲线的参数方程为x=f(t),y=g(t),我们要求解曲线在参数值t0处的切线方程。

1.计算参数值t0对应的点的坐标(x0,y0)。

2.求解参数方程的导数dx/d t和dy/dt。

3.使用点斜式切线方程y-y0=(dy/d t)/(dx/d t)(x-x0),将(x0,y0)、dx/d t和d y/dt代入,得到切线方程。

参数方程的导数与曲线的切线

参数方程的导数与曲线的切线

参数方程的导数与曲线的切线参数方程是描述曲线的一种方式,通常用一个参数来表示曲线上的点的坐标。

在求解参数方程的导数时,我们可以得到曲线上各点斜率的表达式,进而求出曲线上某一点的切线方程。

本文将探讨参数方程的导数与曲线的切线之间的关系。

一、参数方程的导数对于参数方程 x=f(t)、y=g(t),其中 t 为参数,f(t) 和 g(t) 分别表示曲线在 x 和 y 方向上的坐标。

我们可以通过求 f(t) 和 g(t) 的导数,得到参数方程的导数 dx/dt 和 dy/dt。

具体来说,参数方程 x=f(t) 的导数 dx/dt 表示了曲线在 x 方向上的单位长度变化率,而参数方程 y=g(t) 的导数 dy/dt 表示了曲线在 y 方向上的单位长度变化率。

二、曲线的切线方程曲线的切线是与曲线仅在一个点相切的直线。

对于参数方程x=f(t)、y=g(t) 所表示的曲线,我们可以利用参数方程的导数求解曲线上任意一点的切线方程。

在某一参数值 t0 处,曲线上的点坐标为 (x0, y0),而曲线在该点的切线的斜率为 dy/dx。

根据导数的定义可知 dy/dx = (dy/dt) / (dx/dt)。

因此,在已知参数方程及其导数的情况下,我们可以求解曲线上任意一点的切线斜率,并利用该斜率和该点的坐标来得到切线方程。

三、参数方程导数与曲线切线的应用参数方程的导数与曲线的切线有着广泛的应用。

其中一些应用包括:1. 曲线的切线近似替代:由于参数方程的导数表示曲线在 x 和 y 方向上的单位长度变化率,我们可以使用曲线上某一点的切线方程来近似代替曲线本身的计算,从而简化问题的复杂度。

2. 曲线的切线求解:通过参数方程导数和切线斜率的计算,我们可以得到曲线上任意一点的切线方程。

这对于研究曲线的特性和性质非常有帮助。

3. 曲线的切线绘制:通过求解切线方程,我们可以绘制出曲线上某一点处的切线。

这有助于我们更好地理解和可视化曲线的形状和变化。

用导数求切线方程的步骤

用导数求切线方程的步骤

导数的切线方程怎么求
先求出函数在(x0,y0)点的导数值导数值就是函数在X0点的切线的斜率值。

之后代入该点坐标(x0,y0),用点斜式就可以求得切线方程。

当导数值为0,改点的切线就是y=y0;当导数不存在,切线就是x=x0;当在该点不可导,则不存在切线。

切线方程:切线方程是研究切线以及切线的斜率方程,涉及几何、代数、物理向量、量子力学等内容。

是关于几何图形的切线坐标向量关系的研究。

导数:导数是函数的局部性质。

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

导数的本质是通过极限的概念对函数进行局部的线性逼近。

例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

用导数求切线方程的四种类型

用导数求切线方程的四种类型

添加标题
添加标题
添加标题
导数大于0表示函数在对应区间内 单调递增
导数小于0表示函数在对应区间内 单调递减
导数在几何上表导数等于0时,函数可能存在拐点或极值点 导数小于0时,函数在对应区间内单调递减
导数等于切线斜率 导数可以求出切线的斜率
导数在求切线方程中起到关 键作用
添加标题
添加标题
切线与该点处的切线垂直
添加标题
添加标题
切线方程的求解需要用到切点处的 坐标和斜率
确定函数表达式 确定导数表达式 计算导数值 代入切点坐标
代入切点坐标求斜率要细心 切线斜率与函数值大小无关 切线方程的形式要正确 切线方程与函数解析式不同
切线方程的书写格式要正确 切线斜率的计算要准确 切点坐标的选取要合理 切线方程的求解方法要规范
切线斜率:通 过将切点坐标 代入导函数中,
求得斜率为 f'(x0)
切线方程:利 用点斜式方程 y-y0=f'(x0)(xx0),得到切线
方程
确定函数在某点的导数 利用导数求出该点的切线斜率 根据切线斜率和已知点写出切线方程 验证切线方程是否符合题意
切点是曲线上某一点,在该点处函 数的导数存在
切点处函数值必须为零
汇报人:XX
导数与切线斜率的关系是密 切相关的
切点是曲线上某 一点,在该点处 曲线的切线存在
切点处的导数值 即为切线的斜率
切点坐标由曲线 方程和切线斜率 共同确定
切点是唯一确定 的,但切线方程 可能有多种形式
确定函数表达 式
求导函数
代入切点坐标
计算切线斜率
切点坐标:已 知曲线上的一 个点,记为(x0,
y0)
定义:切线方 程是表示切点 与曲线在某一 点的切线关系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为 — 。 一 厂 , ( 。 ) . ( — z 。 ) 。
Y一 2 x 上 一 点 A ( 1 , 2 ), 求 点 A 处 的切 线 方 程 。
^ ,
所以z 。 一 。 或z 。 一 一 号。
例 已 1 知 宝 已 知A - z)
△ — ・0
综 上所 述 , 过点 ( 一1 , 一2 ) 且 与 曲 线 Y一
2 x— z。相 切 的 直 线 方 程 为 : 一2 x或 1 9 xq - 4 y@ 2 7 —0 。
—4 。 所 以 曲线 一2 z z在 点 A ( 1 , 2 ) 处 的 切 线

( 1 ) 求 出 函 数 y— f( ) 在 点 X。处 的 导
数 f ( L z 。 );
( 2 ) 根据 直线 方程 的 点斜 式 , 得 切 线 方 程
得 一2 —2 z。 + j 一( 2 —3 x: ) ( 一1 一 z。 ),
即 2 x +3 z 5 —0 。
两个关 系: ①切 点处 的导数 即为切 线 的斜 率 ; ②切 点 既在 曲线上 , 又在 切 线 上 。
2 . 已知 点 不 在 曲线 上 的 切 线 方 程
由上述 可知 , 利 用 导 数 求 曲线 的切 线 方 程时, 一 般先求 出函数在 该 点 的导 数 , 即 为 曲
线在 该点 的切 线 的 斜 率 , 再 用 直 线 方 程 的 点
孟 S
△.
1 着旦 喜 . 1 互 : ; 再 H 傅 q 直 傅 廿 巾 弓 血甲 : j


2( - z+ △z)一 ( z + △z ) 。 一 2 x+ z。
△ 一0
2 3
一h m[ 2 —3 x 一3 xA x一 ( △z) 。 ]
一2 —3 x 2 。 设切 点 坐标 为 ( z 。 , 2 . z 。 一z 3 ) , 则 切 线斜 率 为 愚= = = 2 —3 x 5 。 所 以切线 方程 为 : 一2 。 + = = = ( 2 —3 x 5 ) ( 一 z。 ) 又 因为切 线过 点 ( 一1 , -2 ) , 所 以把点 ( 一1 , 一2 ) 代人 方程 ,
方程 为 :
Y一 2— 4( z一 1 ), 即 v一 4 - z一 2。
点评 : 本题 已知 点 ( 一 1 , 一2 )不 在 曲 线
上 , 不是 切 点 , 所 以 不 能 直 接 将 点 的 坐 标 代 入
点评 : 求 曲 线 的切 线 方 程 要 充 分利 用好
到 求 切 线 斜 率 的 方 程 中去 。

矬 标 为 ( _ _ 3 , _ 詈 _ ) 时 , 切 线 斜 率 为



1 1 1 1 1


切 线 方 程 为 + 2一 一
( z+ 1 ) , 即


3 4 ・△z 一 -2 , . 9( t △z)



△ z

l9x 十 4Y 十 27— 0。

所 以 切 点 坐 标 为 ( 。 , 0 ) 或 ( 一 3 , _ 詈 I ) 。 …
当切 点 坐 标 为 ( O , O ) 时 , 切 线 斜 率 为 2,
切 线 方 程 为 一 2 x;
因 为
, .
. .
2( 1 + △- z) 一 2× 1


1 9
学习 研 究 版 2 0 1 6 年 第1 2 期撼 强 飘 鞲 礴 闲 舞 麓 隳 麴
利 用 导 数 求 曲线 的切 线方 程
■ 陈泉 清
函 数 一 f( z) 在 点 z。处 的 导 数 的 几 何
意义, 就 是 曲 线 — f( x) 在点 ( x o , f( z o ) ) 处 切 线 的 斜 率 。 由 导 数 的 几 何 意 义 求 切 线 的 斜 率, 即是 求 切点 处所 对应 的导数 。因此 , 求 曲 线在某 点 处 的切 线 方 程 , 可 以 先 求 出 函 数 在 该 点 的导 数 , 即为 曲线在 该 点 的切 线 的斜 率 , 再 用直 线 方 程 的 点斜 式 写 出 切 线方 程 , 其 步 骤为 :
例 2 求过点 ( 一1 , 一2 ) 且 与 曲 线 = : = 2 z— z。 相 切 的直线 方程 。
^ ,
斜 式 写 出 切 线 方 程 。但 是 解 决 这 类 问题 一 定 要 先 弄清 已知 点 在 不 在 曲线 上 , 这 是 解 题 的
关 键 。
缸 一O ‘
相关文档
最新文档