2014中考专题复习 三角形

合集下载

2014年中考专题复习 三角形的初步知识

2014年中考专题复习  三角形的初步知识

20114年中考专题复习 三角形的初步知识彩虹教育 杨义茂一、考点知识与应用考点一 三角形的性质:1、三角形的内角和是 ,三角形的任意一个外角 和它不相邻两个内角的和,三角形的一个外角 任意一个和它不相邻的内角2、三角形任意两边之和 第三边,任意两边之差 第三边3、三角形具有 性.应用:1、已知三角形的三边长分别是3、x 、9,则化简513x x -+-= ;2、有4根木条,长度分别为6cm ,8cm ,12cm ,20cm ,选其中三根作为边组成三角形,请问:共有多少种组合方法?其中能构成三角形的有几种?3、如图所示,P 为△ABC内任意一点,∠1=∠2,求证:∠ACB与∠BPC互补。

4、如图,在ΔABC 中,∠C=90°,BE 平分∠ABC,AF 平分外角∠BAD,BE 与FA 交与点E 。

求∠E 的度数。

考点二 定义与命题:1、定义:_______________________________________________________________2、命题:_____________________________________________________________应用:1、下列语句:①明天下雨吗? ②中国加油!四川加油!③锐角都相等.④过直线外一点有且只有一条直线和已知直线平行.其中是命题的有( )A、1个 B、2个 C、3个 D、4个 2、下列语句中,属于定义的是( )A 、对顶角相等B 、三角形的内角和等于1800C 、连接A 、B 两点并延长至点CD 、连接三角形两边中点的线段叫做三角形的中位线。

3、下列命题中,是假命题的为( ) A 、邻补角的平分线互相垂直;B 、平行于同一直线的两条直线互相平行;C 、如果一个角的两边平行于另一个角的两边,则这两个角一定相等;D 、平行线的一组内错角的平分线互相平行。

4、有如下命题:①无理数就是开方开不尽的数;②一个实数的立方根不是正数就是负数;③无理数包括正无理数,0,负无理数;④如果一个数的立方根是这个数本身,那么这个数是1或0。

2014届中考数学总复习——三角形及全等三角形

2014届中考数学总复习——三角形及全等三角形

知识点一、三角形的概念 1、由 直线上的三条线段 组成的图形叫三角形2、三角形的基本元素:三角形有 条边 个顶点 个内角知识点二、三角形的分类按边可分为 三角形和 三角形按角可分为 三角形; 三角形; 三角形谈重点:等边三角形属于特殊的 三角形,锐角三角形和钝角三角形有时称为 三角形 知识点三、三角形的性质 1、角:三角形的内角和是 ;三角形的任意一个外角 与它不不相连的两个内角的和;三角形的一个外角 任意一个和它不相邻的内角 2、边:三角形任意两边之和 第三边,任意两边之差 第三边 3、稳定性:三角形具有 性谈重点:(1)三角形的外角是指三角形一边和另一边的 组成的角,三角形有 个外角,三角形的外角和是 ;(2)三角形三边关系定理是确定三条线段是否构成三角形和判断线段间不等关系的主要依据。

知识点睛 2014年中考总复习—— 三角形与全等三角形知识点四、三角形中的主要线段1、角平分线:三角形的三条角平分线都在三角形部,且交于一点,这个交点是三角形的心,它到得距离相等2、中线:三角形的三条中线都在三角形部,且交于一点。

3、高线:不同三角形的三条高线位置不同,锐角三角形三条高都连三角形直角三角形有一条高线在部,另两条与重合,钝角三角形有一条高线在三角形部,两条在三角形部4、中位线:连接三角形任意两边的线段叫做三角形的中位线。

中位线定理:三角形的中位线第三边且等于第三边的知识点五、全等三角形的概念和性质1、概念:的两个三角形叫做全等三角形2、性质:全等三角形的、分别相等,全等三角形的对应线段(角平分线、中线、高线)周长、面积分别对应谈重点:全等三角形的性质是证明线段、角等之间数量关系的最主要依据3、判定定理:一般三角形的全等判定方法:①边角边,简记为②角边角:简记为③角角边:简记为④边边边:简记为直角三角形的全等判定除可用一般三角形全等判定的所有方法以外,还可以用来判定谈重点:1、判定全等三角形的条件中,必须至少有一组对应相等,用SAS判定全等,切记角为两边的。

安徽省2014年中考数学专题复习课件 第15课时 三角形

安徽省2014年中考数学专题复习课件 第15课时 三角形

4.已知△ABC 的三个内角∠A∶∠B∶∠C=1∶2∶1, 试判断△ABC 的形状,并说明理由.

△ABC 是等腰直角三角形. 理由:设每份为 x°,根据题意, 得 x+2x+x=180, 解得 x=45,2x=90, 所以△ABC 是等腰直角三角形.
皖考解读
考点聚焦
皖考探究
当堂检测
如 图, AE 是△ABC 的角平 分线 ∠ BAE = 1 ∠CAE= ∠BAC. 2 三角形的三条角平分线的交点在三角形的 内 ________ 部.
皖考解读
考点聚焦
皖考探究
当堂检测
第15课时┃ 三角形
如图,AF 是△ABC 的高∠BFA=∠CFA=90°. 三 角 形 的 高
________ 锐角 三角形的三条高的交点在三角形的内部; 直角 三角形的三条高的交点是直角顶点; ______ 钝角 三 ______ 角形的三条高所在直线的交点在三角形的外部.
皖考解读
考点聚焦
皖考探究
当堂检测
第15课时┃ 三角形
2. 如图 15-4 所示, ∠A、 ∠1、 ∠2 的大小关系是( B )
图 15-4 A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠1
由“三角形的一个外角大于和它不相邻的任 解 析 意内角”可知,∠2>∠1>∠A.故选 B.
考点聚焦
皖考探究
当堂检测
第15课时┃ 三角形
例 5 [2013· 上海] 当三角形中一个内角 α 是另一个内 角 β 的两倍时, 我们称此三角形为“特征三角形”, 其中 α 称为“特征角”.如果一个“特征三角形”的“特征角” 为 100°,那么这个“特征三角形”的最小内角的度数为 30° . ________

2014年中考试题分类汇编相似三角形 (2)

2014年中考试题分类汇编相似三角形 (2)
(2)证明:∵E为AB的中点,CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4, ,∴ .
8、解答:
解:(1)若四边形EBFB′为正方形,则BE=BF即:10﹣t=3t,解得t=2.5;
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∠BAM=∠CAN,在△BAM和△CAN中,
△BAM≌△CAN(SAS),∴∠ABC=∠ACN.
2)解:结论∠ABC=∠ACN仍成立.由如下:∵△ABC、△AMN是等边三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∠BAM=∠CAN∵在△BAM和△CAN中,
在Rt△ABC中,AC=3,BC=4,∴BC=5,∴cosA=.
AD=AC•cosA=3×=1.8;(II)若CF:CE=3:4,如答图3所示.
∵△CEF∽△CAB,∴∠CEF=∠B.由折叠性质可知,∠CEF+∠ECD=90°,
又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.同理可得:∠B=∠FCD,CD=BD,
∵∠B+∠A=90°,∴∠CFE=∠A,又∵∠C=∠C,∴△CEF∽△CBA.
、解答:
1)证明:∵点P是菱形ABCD对角线AC上的一点,
∴∠DAP=∠PAB,AD=AB,∵在△APB和△APD中
,△APB≌△APD(SAS);(2)解:①∵△APB≌△APD,
∴DP=PB,∠ADP=∠ABP,∵在△DFP和△BEP中,
如图,过点O作OM⊥BC于点M,则在Rt△OFM中,OF=BF=3t,FM= BC﹣BF=6﹣3t,OM=5,由勾股定理得:OM2+FM2=OF2,

2014年苏州市初三数学中考复习专题五、三角形及其全等、相似

2014年苏州市初三数学中考复习专题五、三角形及其全等、相似

五、三角形及其全等、相似徐国红吴中区木渎实验中学【课标要求】1.三角形的有关概念:(1)了解三角形有关的概念,掌握三角形的三边关系;(2)理解三角形内角和定理及推论;(3)理解三角形的角平分线、中线、高的概念及画法和性质.2.特殊三角形的性质和判定:(1)了解等腰三角形及等边三角形的有关概念,掌握其性质及判定;(2)掌握线段中垂线和角平分线的性质及判定;(3)了解直角三角形的有关概念,掌握其性质与判定;(4)掌握勾股定理与逆定理,并能用来解决有关问题.3.全等三角形:(1)理解全等三角形的定义和性质;(2)掌握三角形全等的性质与判定,熟练掌握三角形全等的证明;4.相似三角形:(1)比例线段:了解比例线段的有关概念及其性质,并会用比例的性质解决简单的问题.(2)相似图形:了解相似多边形,相似三角形的概念,掌握其性质和判定并会运用;(3)相似三角形:①了解两个三角形相似的概念,探索两个三角形相似的条件;②能利用图形的相似解决一些实际问题;③通过实例了解中心投影和平行投影,了解视点、视线及盲区的涵义;(4)位似了解位似变换和位似图形的概念,掌握并运用其性质.【课时分布】【知识回顾】1.知识脉络(1)三角形的概念及性质三角形的概念:由三条线段首尾顺次相接组成的图形,叫做三角形.三角形的性质:①三角形的内角和是180°;②三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任何一个内角;③三角形的任意两边之和大于第三边;三角形任意两边之差小于第三边.(2)三角形中的重要线段三角形的角平分线:三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.三角形的高线从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称高.三角形的中线在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.三角形的中位线①连接三角形两边中点的线段叫做三角形的中位线.②定理:三角形的中位线平行于第三边,且等于它的一半.(3)三角形的外心、内心①三角形三边的垂直平分线交于一点,这个点叫做三角形的外心,三角形的外心到三角形各顶点的距离相等.②三角形的三条角平分线交于一点,这个点叫做三角形的内心,三角形的内心到三角形三边的距离相等.(4)等腰三角形等腰三角形的有关概念及分类:①有两边相等的三角形叫等腰三角形,三边相等的三角形叫做等边三角形,也叫正三角形;②等腰三角形分为腰和底不相等的等腰三角形和腰和底相等的等腰三角形;等腰三角形的性质:①等腰三角形的两个底角相等(简称为“等边对等角”);②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称为“三线合一”);③等腰三角形是轴对称图形.等腰三角形的判定:①有两边相等的三角形是等腰三角形;②如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称为“等角对等边”).(5)等边三角形的性质与判定等边三角形的性质:①等边三角形的内角相等,且都等于60°;②等边三角形的三条边都相等;等边三角形的判定:①三条边相等的三角形是等边三角形;②三个角相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.(6)线段的垂直平分线线段的垂直平分线概念:经过线段中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线.线段的垂直平分线性质:线段垂直平分线上的点到这条线段两个端点的距离相等.线段的垂直平分线判定:到一条线段的两个端点距离相等的点在线段的垂直平分线上,线段的垂直平分线可以看作是到线段两端点距离相等的点的集合.(7)角平分线的性质及判定角平分线的性质:角平分线上的点到角的两边的距离相等.角平分线的判定:角的内部到角的两边距离相等的点在角的平分线上,角的平分线可以看作是到角两边距离相等的点的集合.直角三角形的性质:①直角三角形的两锐角互余;②直角三角形中,30°角所对的边等于斜边的一半;③直角三角形斜边上的中线等于斜边的一半;④勾股定理:直角三角形两直角边的平方和等于斜边的平方.直角三角形的判定:①有一个角等于90°的三角形是直角三角形;②有两角互余的三角形是直角三角形;③如果三角形一边上的中线等于这边的一半,则该三角形是直角三角形;④勾股定理的逆定理:如果三角形一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.(8)全等三角形的性质与判定 全等三角形的概念:能够完全重合的两个三角形叫做全等三角形. 全等三角形的性质:全等三角形的对应边、对应角分别相等. 全等三角形的判定:①有三边对应相等的两个三角形全等,简记为(SSS);②有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS); ③有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA); ④有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS); ⑤有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL). (9)比例线段比例线段的概念:在四条线段a ,b ,c ,d 中,如果其中两条线段的比等于另外两条线段的比,即dcb a = (或a ∶b =c ∶d ),那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段. 比例线段的性质: ①基本性质:a b =cdad =bc ; ②合比性质:a b =cdddc b b a +=+; ③等比性质:若a b =c d =···=mn (b +d +···+n ≠0),那么ba n db mc a =+⋅⋅⋅+++⋅⋅⋅++.黄金分割的概念:点C 把线段AB 分成两条线段AC 和BC ,如果AC AB =BCAC ,则线段AB 被点C 黄金分割,点C 叫线段AB的黄金分割点,AC 与AB 的比叫做黄金比. (10)相似多边形相似多边形的概念: 对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比,相似比为1的两个多边形全等. 相似多边形的性质:①相似多边形的对应角相等,对应边成比例; ②相似多边形周长的比等于相似比;③相似多边形面积的比等于相似比的平方. (11)相似三角形 相似三角形概念各角对应相等,各边对应成比例的两个三角形叫做相似三角形. 相似三角形判定:① 平行于三角形一边的直线和其他两边(或两边延长线)相交,所构成的三角形与原三角形相似; ②两角对应相等,两三角形相似;③两边对应成比例且夹角相等,两三角形相似; ④三边对应成比例,两三角形相似. 相似三角形性质:①相似三角形的对应角相等,对应边成比例;②相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比; ③相似三角形周长的比等于相似比;④相似三角形面积的比等于相似比的平方. (12)图形的位似 图形位似的概念:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这两个图形叫位似图形.这个点叫做位似中心,这时的相似比称为位似比. 图形的位似性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.3.能力要求例1 如图5-1-1,在△ABC 中,AB=AC ,点D 是BC 的中点,点E 在AD 上.(1)求证:BE=CE ;(2)如图5-1-2,若BE 的延长线交AC 于点F ,且BF ⊥AC ,垂足为F ,∠BAC =45°,原题设其它条件不变.求证:△AEF ≌△BCF . 【分析】(1)根据等腰三角形三线合一的性质可得AD 是BC 边上的垂直平分线,然后利用线段垂直平分线的性质定理,可直接证明BE=CE ;(2)先判定△ABF 为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF ,再根据同角的余角相等求出∠EAF =∠CBF ,然后利用“角边角”证明△AEF 和BCF 全等即可.【解】 (1)∵AB=AC ,D 是BC 的中点,∴AD ⊥BC . ∴BE=CE . (2)∵∠BAC =45°,BF ⊥AF ,∴△ABF 为等腰直角三角形. ∴AF=BF .∵AB=AC ,点D 是BC 的中点,∴AD ⊥BC .∴∠EAF +∠C =90°. ∵BF ⊥AC ,∴∠CBF +∠C =90°.∴∠EAF =∠CBF . 在△AEF 和△BCF 中,90EAF CBFAF BF AFE BFC ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△AEF ≌△BCF (ASA ).【说明】本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,线段垂直平分线的性质定理,等腰直角三角形的判定与性质,同角的余角相等的性质,是基础题,熟记和灵活运用三角形全等的判定方法与各性质是解题的关键.例2 如图5-2,四边形ABCD 中,AC 平分∠DAB ,∠ADC =∠ACB =90°,E 为AB 的中点.(1)求证:2AC =AB ·AD ;(2)求证:CE ∥AD ;(3)若AD =4,AB =6,求ACAF的值. 【分析】(1)由AC 平分∠DAB ,∠ADC =∠ACB =90°,可证得△ADC ∽△ACB ,然后由相似三角形的对应边成比 例,证得2AC =AB ·AD ;(2)由E 为AB 的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE =BE =AE ,继而可证得∠DAC =∠ECA ,得到CE ∥AD ;(3)易证得△AFD ∽△CFE ,然后由相似三角形的对应边成比例,求得ACAF的值. 【解】(1)∵AC 平分∠DAB ,∴∠DAC =∠CAB . ∵∠ADC =∠ACB =90°,∴△ADC ∽△ACB . ∴AD :AC =AC :AB .∴AC 2=AB ·AD .(2)∵E 为AB 的中点,∠ACB=90°∴CE =12AB =AE .∴∠EAC =∠ECA . ∵∠DAC =∠CAB ,∴∠DAC =∠ECA .∴CE ∥AD . (3)∵CE ∥AD ,∴△AFD ∽△CFE .∴AD :CE =AF :CF . ∵CE =12AB ,∴CE =12×6=3. ∵AD =4,∴43AF CF =.∴74AC AF =. 【说明】此题考查了相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质.相似三角形相似的判定方法有:(1)平行于三角形的一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;这是判定三角形相似的一种基本方法.其基本图形可分别记为“A ”型和“X ”型,在应用时要善于从复杂的图形中抽象出这些基本图形;(2) 两角对应相等,两三角形相似,此种判定方法最为常用,应熟练掌握; (3) 两边对应成比例且夹角相等,两三角形相似; (4) 三边对应成比例,两三角形相似.例3 如图5-3,在Rt △ABC 中,∠C =90°,点P 为AC 边上的一点,将线段AP 绕点A 顺时针方向旋转(点P 对应点P ′),当AP 旋转至AP ′⊥AB 时,点B ,P ,P ′恰好在同一直线上,此时作P ′E ⊥AC 于点E .(1)求证:∠CBP =∠ABP ;(2)求证:AE =CP ; (3)当32CP PE =,BP ′=AB 的长【分析】(1)根据旋转的性质可得AP=AP′,根据等边对等角的性质可得∠APP′=∠AP′P ,再根据等角的余角相等证明即可;(2)过点P 作PD ⊥AB 于D ,根据角平分线上的点到角的两边的距离相等可得CP=DP ,然后求出∠P AD=∠AP′E ,从而证明△APD 和△P′AE 全等,根据全等三角形对应边相等可得AE=DP ,从而得证;(3)设CP=3k ,PE=2k ,表示出AE=CP=3k ,AP ′=AP=5k ,然后利用勾股定理列式求出P ′E=4k ,再证明△ABP ′和△EPP ′相似,根据相似三角形对应边成比例列式求出P ′A=12AB ,然后在Rt △ABP ′中,利用勾股定理列式求解即可. 【解】(1)∵AP′是AP 旋转得到,∴AP=AP ′. ∴∠APP′=∠AP′P . ∵∠C =90°,AP′⊥AB , ∴∠CBP +∠BPC =90°,∠ABP +∠AP′P又∵∠BPC =∠APP′,∴∠CBP =∠ABP . (2)如图5-3-1,过点P 作PD ⊥AB 于D . ∵∠CBP =∠ABP ,∠C =90°,∴CP=DP , ∵P′E ⊥AC ,∴∠EAP′+∠AP′E =90°. 又∵∠P AD +∠EAP′=90°,∴∠P AD =∠在△APD 和△P′AE 中,'''PAD AP EADP P EA AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APD ≌△P′AE (AAS ). ∴AE=DP . ∴AE=CP . (3)∵32CP PE =,∴设CP =3k ,PE =2k ,则AE=CP =3k ,AP ′=AP =3k +2k =5k . 在Rt △AEP′中,P′E 4k ,∵∠C =90°,P′E ⊥AC ,∴∠CBP +∠BPC =90°,∠EP′P +∠P′PE =90°, ∵∠BPC =∠EPP′(对顶角相等), ∴∠CBP =∠PP′E .∵∠CBP =∠ABP ,∴∠ABP =∠PP′E . 又∵∠BAP′=∠P′EP =90°,∴△ABP′∽△EPP′. ∴''AB P A P E PE =,即'42AB P A k k =,解得P′A =12AB . 在Rt △ABP′中,AB 2+P′A 2=BP′2,即AB 2+14AB 2=(2,解得AB =10. 【说明】本题考查了全等三角形的判定与性质,旋转的性质,角平分线的性质定理,勾股定理,相似三角形的判定与性质,在解题中可以发现,图形的全等或相似往往不是解决问题的最终目的,而是一种手段和途径,体现了图形的全等和相似的“工具性”.类似于本题这种“一题多问”的出题形式,应注意上下题之间的内在联系,把握住这种联系,就容易找到解题的突破口.如本题中较难的第(3)小题,利用(2)中的结论能很快的表示出AP′的长度,结合已知条件BP′=55,就容易想到用k 来表示出AB 的长度,最后利用勾股定理得出关于k 的方程,从而解决问题.例4 如图5-4,已知AB ⊥BD ,CD ⊥BD .(1)若AB =9,CD =4,BD =15,请问在BD 上是否存在P 点,使以P ,A ,B 三点为顶点的三角形与以P ,C ,D 三点为顶点的三角形相似?若存在,则有多少个这样的P 点,并求BP 的长;若不存在,请说明理由;(2) 若AB =m ,CD =n ,BD = l ,请问在m ,n ,l 满足什么关系时,存在以P ,A ,B 三点为顶点的三角形与以P ,C ,D 三点为顶点的三角形相似的一个P 点? 两个P 点? 三个P 点?【分析】由于问题中没有明确两个直角三角形的对应关系,因此每 小问应按两种对应关系来说明. 【解】(1)设BP =x ,则DP =15−x . 若△ABP ∽△CDP ,则AB BP CD DP =,即9415x x=-,解得13513x =. 若△ABP ∽△PDC ,则AB BP PD CD =,即9154x x =-,得方程:212360x x -+=.解得x =3或12. 所以BP =13513,3或12. (2)设BP =x ,则DP =l −x . 若△ABP ∽△CDP ,则AB BPCD DP =,即m n x l x =-,解得ml x m n =+. 若△ABP ∽△PDC ,则AB BP PD CD =,即m xl x n=-.得方程:20x lx mn -+=,24l mn ∆=-.当240l mn ∆=-<时,存在以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似的一个P 点;当240l mn ∆=-=时,存在以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似的两个P 点;当240l mn ∆=->时,存在以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似的三个P 点.【说明】三角形相似如果没有明确对应关系,需要分情形来讨论,这个知识点也是相似问题中常考内容之一,要会利用图形中的已知条件来排除不必要的分类情况.由于本题是两个直角三角形,所以对应关系有两种.由于数量关系的制约,本题有一种对应关系是始终存在的,另一种对应关系则需要通过一元二次方程的判别式来进行讨论.解题时注意数形结合、分类讨论、方程思想的应用.例5 如图5-5-1,矩形ABCD 中,∠ACB =30°,将一块直角三角板的直角顶点P 放在两对角线AC ,BD 的交点处,以点P 为旋转中心转动三角板,并保证三角板的两直角边分别于边AB ,BC 所在的直线相交,交点分别为E ,F .(1)当PE ⊥AB ,PF ⊥BC 时,如图5-5-1,则PEPF的值为 ; (2)现将三角板绕点P 逆时针旋转α(0°<α<60°)角,如图5-5-2,求PEPF的值; (3)在(2)的基础上继续旋转,当60°<α<90°,且使AP :PC =1:2时,如图5-5-3,PEPF的值是否变化?证明你的结论.【分析】(1)证明△APE ≌△PCF ,得PE=CF ;在Rt △PCF 中,解直角三角形求得PEPF的值; (2)如图5-5-4所示,作辅助线,构造直角三角形,证明△PME ∽△PNF ,并利用(1)的结论,求得PE PF的值;(3)如图5-5-5所示,作辅助线,构造直角三角形,首先证明△APM ∽△PCN ,求得PMPN的值;然后证明△PME ∽△PNF ,从而由PE PM PF PN =求得PE PF 的值.与(1)、(2)问相比较,PEPF的值发生了变化. 【解】(1)∵矩形ABCD ,∴AB ⊥BC ,P A=PC .∵PE ⊥AB ,BC ⊥AB ,∴PE ∥BC . ∴∠APE =∠PCF .∵PF ⊥BC ,AB ⊥BC ,∴PF ∥AB . ∴∠P AE =∠CPF . ∵在△APE 与△PCF 中,PAE CPF PA PC APE PCF ∠=∠⎧⎪=⎨⎪∠=∠⎩.∴△APE ≌△PCF (ASA ),∴PE=CF .在Rt △PCF 中,PF PF CF PE ==t a n 30°,∴PEPF(2)如图5-5-4,过点P 作PM ⊥AB 于点M ,PN ⊥BC 于点N ,则PM ⊥PN . ∵PM ⊥PN ,PE ⊥PF ,∴∠EPM=∠FPN .又∵∠PME =∠PNF =90°,∴△PME ∽△PNF .∴PE PM PF PN=. 由(1)知,PM PN∴PEPF(3)答:变化.如图5-5-5,过点P 作PM ⊥AB 于点M ,PN ⊥BC 于点N ,则PM ⊥PN ,PM ∥BC ,PN ∥AB . ∵PM ∥BC ,PN ∥AB ,∴∠APM =∠PCN ,∠P AM=∠CPN . ∴△APM ∽△PCN . ∴21==PC AP CN PM ,得CN =2PM . 在Rt △PCN 中,2PN PN CN PM ==t a n 30°,∴PMPN. ∵PM ⊥PN ,PE ⊥PF , ∴∠EPM =∠FPN . 又∵∠PME =∠PNF =90°,∴△PME ∽△PNF .∴PE PM PF PN ==. ∴PEPF 的值发生变化. 【说明】本题考查了相似三角形的判定与性质、矩形的性质、全等三角形的判定与性质、解直角三角形等知识点.本题三问的解题思路是一致的:都是通过直接作辅助线构造直角三角形,通过相似三角形或全等三角形转化为题(1)或类似于题(1)的问题,从而解决.对于此类从特殊到一般的思路设置问题情境的综合题,解题的思路往往是将一般情况转化为特殊情况来解决.因此,在分析和解决此类问题的过程中要善于从特殊情况中总结和归纳出解题的基本思路和方法,并应用于一般情形.要特别注意从特殊到一般和化归思想的应用.例6 如图5-6,在△ABC 中,∠B =45°,BC =5,高AD =4,矩形EFPQ 的一边QP 在BC 边上,E 、F 分别在AB 、AC 上,AD 交EF 于点H .(1)求证:AH EFAD BC=; (2)设EF=x ,当x 为何值时,矩形EFPQ 的面积最大?并求出最大面积;(3)当矩形EFPQ 的面积最大时,该矩形EFPQ 以每秒1个单位的速度沿射线DA 匀速向上运动(当矩形的边PQ 到达A 点时停止运动),设运动时间为t 秒,矩形EFPQ 与△ABC 重叠部分的面积为S ,求S 与t 的函数关系式,并写出t 的取值范围. 【分析】(1)由相似三角形,列出比例关系式,即可证明,或利用相似三角形对应高的比等于相似比也可解决; (2)首先求出矩形EFPQ 面积的表达式,然后利用二次函数求其最大面积; (3)本问是运动型问题,要点是弄清矩形EFPQ 的运动过程:(I)当0≤t ≤2时,如图5-7-1所示,此时重叠部分是一个矩形和一个梯形; (II)当2<t ≤4时,如图5-7-2所示,此时重叠部分是一个三角形. 【解】(1)∵矩形EFPQ ,∴EF ∥B C ,∴△AHF ∽△ADC . ∴AH AFAD AC=. ∵EF ∥BC ,∴△AEF ∽△ABC . ∴EF AF BC AC=. ∴AH EFAD BC =. (2)∵∠B =45°,∴BD=AD =4. ∴CD =BC −BD =5−4=1. ∵EF ∥BC ,∴△AEH ∽△ABD . ∴AH EHAD BD=. ∵EF ∥BC ,∴△AFH ∽△ACD . ∴AH HFAD CD=. ∴EH HF BD CD =,即41EH HF=. ∴EH=4HF . 已知EF=x ,则EH=45x . ∵∠B =45︒,∴EQ=BQ=BD −QD =BD −EH =4−45x . ∴S 矩形EFPQ =EF ·EQ =x ·(4−45x )=−45x 2+4x =−45(x −52)2+5. ∴当x=52时,矩形EFPQ 的面积最大,最大面积为5. (3)解:由(2)可知,当矩形EFPQ 的面积最大时,矩形的长为52,宽为4−45×52=2. (I)当0≤t ≤2时,如图5-5-1所示.word 格式-可编辑-感谢下载支持设矩形与AB 、AC 分别交于点K 、N ,与AD 分别交于点H 1,D 1. 此时DD 1=t ,H 1D 1=2,∴HD 1=HD -DD 1=2-t ,HH 1=H 1D 1-HD 1=t ,AH 1=∵KN ∥EF ,∴1AH KN EF AH =,即2522KN t -=,得KN =54S =S 梯形KNFE +S 矩形EFP 1Q 1=12(KN +EF )·HH 1+E F ·EQ 1=12 [54(2−t )+52]×t +52(2−t )=258t -+5. (II)当2<t ≤4时,如图5-5-2所示.设矩形与AB 、AC 分别交于点K 、N ,与AD 交于点D 此时DD 2=t ,AD 2=AD -DD 2=4-t ,∵KN ∥EF ,∴2AD KN EF AH =,即4522KN t -=,得KN =5S =S △AKN =12K N ·AD 2 =12 (5-54t )(4-t )=58t 2-5t +10.综上所述,S 与t 的函数关系式为:S =2255(085510(24)8t t t t t ⎧-+≤⎪⎪⎨⎪-+<≤⎪⎩.【说明】本题是相似三角形的判定和性质与二次函数的最值相结合的综合题.本题的(1)、(2)两小题改编自教材中的习题,因此在复习过程中,要注意教材中典型问题和基本图形的复习、归纳和延伸.第(3)小题这类题要注意自变量的取值范围.对于图形运动的问题,往往需要将图形的运动转换到图形的线段长度上,实现这一转换的主要途径常是通过图形的相似来实现.【复习建议】1.三角形的全等、相似是平面几何中的重要的内容,在中考中不论是基础题还是压轴题往往都要涉及到全等或相似的有关知识.事实上,许多中考题在教材中都能找到它的“源头”,有鉴于此,在进行复习时,应以教材为“纲”,紧扣教材.重视双基训练.要掌握典型的例题、习题,能对典型试题进行拆分和组合,引导学生学会从多角度、多侧面来分析解决典型试题,从中抽离出基本图形和基本规律方法;要结合三角形全等和相似的特点进行专项有针对性的训练,加大知识的横向与纵向联系,提高答题速度和质量,提高应变能力.要指导学生掌握解题方法,对例题、习题能举一反三,达到触类旁通;2.复习时要注意总结和归纳例题、习题中所体现的数学思想和方法,重视解题方法和解题策略的教学.涉及三角形全等、相似的问题中常用到的数学思想方法有:化归思想、函数与方程思想、数形结合思想、分类讨论思想等,这些思想方法在中考试题中都有体现.要注重培养学生用数学思想方法解决问题的意识,引导学生审题时要透过现象看本质,注意隐含条件的挖掘,学会将实际问题转化为数学问题,建立数学模型,从而解决问题;3.复习中要重视数学逻辑推理能力的训练和书写规范的训练,要及时纠正学生在解题时,出现的答题不规范,抓不住得分要点,思维不严谨等问题.避免学生出现题题会做,题题被扣分的现象.。

2014届中考总复习——等腰三角形与直角三角形

2014届中考总复习——等腰三角形与直角三角形

2014年中考总复习——等腰三角形与直角三角形知识点睛知识点一、等腰三角形1、定义:有两边的三角形叫做等腰三角形,其中的三角形叫做等边三角形2、等腰三角形的性质:⑴等腰三角形的两腰等腰三角形的两个底角简称为⑵等腰三角形的顶角平分线、互相重合,简称为⑶等腰三角形是轴对称图形,它有条对称轴,是3、等腰三角形的判定:⑴定义法:有两边相等的三角形是等腰三角形⑵有两相等的三角形是等腰三角形,简称【谈重点】1、等腰三角形的性质还有:等腰三角形两腰上的相等,两腰上的相等,两底角的平分线也相等 .2、因为等腰三角形腰和底角的特殊性,所以在题目中往常出现对边和角的讨论问题,讨论边时应注意保证,讨论角时应主要底角只被为角。

4、等边三角形的性质:⑴等边三角形的每个内角都都等于 .⑵等边三角形也是对称图形,它有条对称轴等边三角形的判定:⑴有三个角相等的三角形是等边三角形⑵有一个角是度的三角形是等边三角形【谈重点】 1、等边三角形具备等腰三角形的所有性质2、有一个角是直角的等腰三角形是三角形知识点二、线段的垂直平分线和角的平分线1、线段垂直平分线定义:一条线段且这条线段的直线叫做线段的垂直平分线2、性质:线段垂直平分线上的点到得距离相等3、判定:到一条线段两端点距离相等的点在4、角的平分线性质:角平分线上的点到的距离相等5、角的平分线判定:到角两边距离相等的点在【谈重点】1、线段的垂直平分可以看作是的点的集合,角平分线可以看作是的点的集合。

2、要能够用尺规作一条已知线段的垂直平分线和已知角的角平分线。

1、勾股定理和它的逆定理勾股定理:若一个直角三角形的两直角边为a、b斜边为c则a、b、c 满足逆定理:若一个三角形的三边a、b、c满足则这个三角形是直角三角形2、直角三角形的性质除勾股定理外,直角三角形还有如下性质:⑴直角三角形两锐角⑵直角三角形斜边的中线等于⑶在直角三角形中如果有一个锐角是300,那么它所对边是边的一半3、直角三角形的判定:除勾股定理的逆定理外,直角三角形还有如下判定方法:⑴定义法有一个角是的三角形是直角三角形⑵有两个角的三角形是直角三角形⑶如果一个三角形一边上的中线等于这边的这个三角形是直角三角形重点考点解析考点一:角的平分线例1 (2013•丽水)如图,在Rt△ABC中,∠A=Rt∠,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC 的面积是.对应训练1.(2013•泉州)如图,∠AOB=70°,QC⊥OA于C,QD⊥OB于D,若QC=QD,则∠AOQ= °.考点二:线段垂直平分线例2 (2013•义乌市)如图,AD⊥BC于点D,D为BC的中点,连接AB,∠ABC的平分线交AD于点O,连结OC,若∠AOC=125°,则∠ABC= .对应训练2.(2013•天门)如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cm B.3cm C.2cm D.1cm考点三:等腰三角形性质的运用例3 (2013•武汉)在△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是( )A.18°B.24°C.30°D.36°对应训练3.(2013•云南)如图,已知AB∥CD,AB=AC,∠ABC=68°,则∠ACD= .考点四:等边三角形的判定与性质例4 (2013•黔西南州)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 度.对应训练4.(2013•黄冈)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE= .考点五:三角形中位线定理度数为()A.50°B.60°C.70°D.80°对应训练5.(2013•厦门)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 厘米.考点六:直角三角形例6 (2013•衢州)将一个有45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A.3cm B.6cm C.32cm D.62cm对应训练6.(2013•重庆)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()A.2 B.23C.33+1D.3 +1考点七:勾股定理例7 (2013•扬州)矩形的两邻边长的差为2,对角线长为4,则矩形的面积为.对应训练7.(2013•莆田)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是.【中考在线】一、选择题1.(2013•成都)如图,在△ABC中,∠B=∠C,AB=5,则AC的长为()A.2 B.3 C.4 D.52.(2013•南充)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是()A.70°B.55°C.50°D.40°3.(2013•淮安)若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为( )A.5 B.7 C.5或7 D.64.(2013•长沙)下列各图中,∠1大于∠2的是()A.B.C.D.5.(2013•宜昌)如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是()A.8 B.6 C.4 D.22014届中考总复习——等腰三角形与直角三角形A.∠B=48°B.∠AED=66°C.∠A=84°D.∠B+∠C=96°7.(2013•遂宁)如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是()①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.1 B.2 C.3 D.48.(2013•铁岭)如果三角形的两边长分别是方程x2-8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是()A.5.5 B.5 C.4.5 D.49.(2013•柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为()A.157B.125C.207D.21510.(2013•德宏州)在Rt△ABC中,∠C=90°,AB=10.若以点C为圆心,CB为半径的圆恰好经过AB的中点D,则AC=( )A.5 B.52C.53D.611.(2013•大庆)正三角形△ABC的边长为3,依次在边AB、BC、CA上取点A1、B1、C1,使AA1=BB1=CC1=1,则△A1B1C1的面积是()A 3B33C.94D.9312.(2013•鄂州)如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=230.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=( )13.(2013•枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.1314.(2013•淄博)如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为()A.32B.52C.3 D.415.(2013•威海)如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A.∠C=2∠AB.BD平分∠ABCC.S△BCD=S△BODD.点D为线段AC的黄金分割点16.(2013•莱芜)在平面直角坐标系中,O为坐标原点,点A的坐标为(1,3),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()二、填空题17.(2013•徐州)若等腰三角形的顶角为80°,则它的底角度数为( )18.(2013•白银)等腰三角形的周长为16,其一边长为6,则另两边为.19.(2013•广州)点P在线段AB的垂直平分线上,PA=7,则PB= .20.(2013•长沙)如图,BD是∠ABC的平分线,P为BD上的一点,PE⊥BA于点E,PE=4cm,则点P到边BC 的距离为 cm.21.(2013•宿迁)如图,为测量位于一水塘旁的两点A、B间的距离,在地面上确定点O,分别取OA、OB的中点C、D,量得CD=20m,则A、B之间的距离是 m.22.(2013•漳州)如图,正方形ODBC中,OC=1,OA=OB,则数轴上点A表示的数是.23.(2013•泰州)如图,△ABC中,AB+AC=6cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为cm.24.(2013•资阳)在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=60°,AC=10,则AB= .25.(2013•吉林)如图,在平面直角坐标系中,点A,B的坐标分别为(—6,0)、(0,8).以点A为圆心,以AB长为半径画弧,交x正半轴于点C,则点C的坐标为.知AE=5,tan∠AED=34,则BE+CE= .27.(2013•无锡)如图,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC= °.28.(2013•哈尔滨)在△ABC中,AB=22,BC=1,∠ABC=45°,以AB为一边作等腰直角三角形ABD,使∠ABD=90°,连接CD,则线段CD的长为.29.(2013•烟台)如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE 的周长为.30.(2013•烟台)如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.三、解答题31.(2013•湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.32.(2013•永州)如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.33.(2013•威海)操作发现,将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF的长直角边DE重合.问题解决,将图①中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上,AC与BD交于点O,连接CD,如图②.(1)求证:△CDO是等腰三角形;(2)若DF=8,求AD的长.。

2014年中考数学二轮精品复习试卷(三角形)含答案解析

2014年中考数学二轮精品复习试卷(三角形)含答案解析

2014年中考数学二轮精品复习试卷:三角形1、(2013年四川南充3分)下列图形中,∠2>∠1的是【】A.B.C.则D.2、如图,在△ABC中,∠B=∠C,AB=5,则AC的长为【】A.2 B.3 C.4 D.53、下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是A.1,2,6 B.2,2,4 C.1,2,3 D.2,3,44、四边形的内角和的度数为A.180°B.270°C.360°D.540°5、下列各组线段的长为边,能组成三角形的是A.2cm,3cm,4cm B.2cm,3cm,5cmC.2cm,5cm,10cm D.8cm,4cm,4cm6、如图,含30°角的直角三角尺DEF放置在△ABC上,30°角的顶点D在边AB上,DE⊥AB.若∠B为锐角,BC∥DF,则∠B的大小为A.30° B.45° C.60°D.75°7、等腰三角形的一个角是80°,则它顶角的度数是A.80°B.80°或20°C.80°或50°D.20°8、在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为A.B.C.D.9、(2013年四川资阳3分)一个正多边形的每个外角都等于36°,那么它是【】A.正六边形B.正八边形C.正十边形D.正十二边形10、(2013年四川南充3分)如图,△ABC中,AB=AC,∠B=70°,则∠A的度数是【】A.70°B.55°C.50°D.40°11、(2013年广东梅州3分)若一个多边形的内角和小于其外角和,则这个多边形的边数是【】A.3 B.4 C.5 D.612、已知△ABC的各边长度分别为3cm,4cm,5cm,则连结各边中点的三角形的周长为A.2cm B.7cm C.5cm D.6cm13、如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C 的度数为A.50°B.60°C.70°D.80°14、如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为A.B.C.3 D.415、如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为A.20 B.18 C.14 D.1316、如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E 以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t <6),连接DE,当△BDE是直角三角形时,t的值为A.2 B.2.5或3.5 C.3.5或4.5 D.2或3.5或4.517、如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD 于点O,连结AO,下列结论不正确的是【】A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC18、如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a 且AM+MN+NB的长度和最短,则此时AM+NB=A.6 B.8 C.10 D.1219、(2013年四川资阳3分)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是【】A.48 B.60 C.76 D.8020、(2013年四川攀枝花3分)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC 绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=【】A.30°B.35°C.40°D.50°二、填空题()21、一个六边形的内角和是 .22、如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC的长为米。

备战2014年数学中考————全等三角形(sss,aas,asa)

备战2014年数学中考————全等三角形(sss,aas,asa)

第一章:全等三角形的判定知识概要全等三角形定义:能够完全重合的两个三角形是全等三角形性质:对应边相等,对应角相等全等三角形的判定1:_________相等的两个三角形全等.简写成“________”或“SSS ” 几何符号语言:在ABC ∆和DEF ∆中∵⎪⎩⎪⎨⎧===DF AC EF BC DE AB∴ABC ∆≌DEF ∆(SSS )全等三角形的判定2:两边和它们的_____对应相等的两个三角形全等.简写为“______”或“SAS ”几何符号语言:在ABC ∆和DEF ∆中∵⎪⎩⎪⎨⎧=∠=∠=EF BC E B DE AB∴ABC ∆≌DEF ∆(SAS )全等三角形的判定3:有_____和其夹边对应相等的两个三角形全等.简写成“______”或“ASA ”全等三角形的判定4:有______和_______对应相等的两个三角形全等.简写成“角角边”或“AAS ”几何符号语言:在ABC ∆和DEF ∆中∵⎪⎩⎪⎨⎧∠=∠=∠=∠E B DE AB D A∴ABC ∆≌DEF ∆(ASA )或:在ABC ∆和DEF ∆中∵⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC E B D A∴ABC ∆≌DEF ∆(AAS )当堂练习1.下列说法正确的是( )A .全等三角形是指形状相同的两个三角形B .全等三角形的周长和面积分别相等C .全等三角形是指面积相等的两个三角形D .所有等边三角形都全等.2.如图,在ABC ∆中,AC AB =,D 为BC 的中点,则下列结论中:①ABD ∆≌ACD ∆;②C B ∠=∠;③AD 平分BAC ∠;④BC AD ⊥,其中正确的个数为( )A .1个B .2个C .3个D .4个3.如图,点B 、E 、C 、F 在同一直线上,CF BE =,DE AB =,DF AC =. 求证:D EGC ∠=∠课后练习1.在ABC ∆和111C B A ∆中,已知11B A AB =,11C B BC =,则补充条件____________,可得到ABC ∆≌111C B A ∆.2.如图,CD AB =,DE BF =,E 、F 是AC 上两点,且CF AE =.欲证D B ∠=∠,可先运用等式的性质证明AF =________,再用“SSS ”证明________≌_________•得到结论.3.如图,已知CD AB =,BD AC =,求证:D A ∠=∠.典型例题及讲解如图,D 是ABC ∆中边BC 的中点,ACD ABD ∠=∠,且AC AB =.求证:⑴ABD ∆≌ACD ∆ ⑵EC EB =当堂练习1.如图,下列条件中能使ABD ∆≌ACD ∆的是( )A .AC AB =,C B ∠=∠ B .AC AB =,ADC ADB ∠=∠C .AC AB =,CAD BAD ∠=∠ D .CD BD =,CAD BAD ∠=∠2.如图,线段AB 、CD 互相平分交于点O ,则下列结论错误的是( )A .BC AD =B .DC ∠=∠ C .BC AD // D .OB OC =3.如图,已知BC AD //,BC AD =.求证:ADC ∆≌CBA ∆课后练习1.已知两边及其中一边的对角,作三角形,下列说法中正确的是( )A .能作唯一的一个三角形B .最多能作两个三角形C .不能作出确定的三角形D .以上说法都不对2.如图,已知1∠=∠B ,CF BE =,要使ABC ∆≌DEF ∆,下面所添的条件正确的是( )A .DF AC =B .EF BC = C .EF AC =D .DE AB =3.如图,在ABC ∆中,AC AB =,点E 、F 是中线AD 上的两点,则图中可证明为全等的三角形有( )A . 3对B .4对C .5对D .6对4.如图,点A 、E 、B 、D 在同一直线上,DE AB =,DF AC =,DF AC //. ⑴求证:ABC ∆≌DEF ∆⑵你还可以得到的结论是 (写出一个即可)典型例题及讲解如图,CE AE =,CE AE ⊥,︒=∠=∠90B D求证:DB AB CD =+当堂练习1.如图,ABC ∆和DEF ∆中,下列能判定ABC ∆≌DEF ∆的是( )A .DF AC =,EF BC =,D A ∠=∠B .E B ∠=∠,FC ∠=∠,DF AC =C .D A ∠=∠,E B ∠=∠,F C ∠=∠ D .E B ∠=∠,F C ∠=∠,DE AC =1题 2题 3题2.如图,BC AD =,BD AC =,则图中全等三角形有( )A .1对B .2对C .3对D .4对3.如图,AB CD ⊥于D ,AC BE ⊥于E ,AO 平分BAC ∠,则图中全等三角形有( )A .1对B .2对C .3对D .4对4.如图,21∠=∠,AD AB =,若想使ABC ∆≌ADE ∆,则需增加一个条件,你增加的条件为: .并加以证明.5.如图,已知21∠=∠,43∠=∠ 求证:BE BD =课后练习1.已知B A AB ''=,A A '∠=∠,B B '∠=∠,则ABC ∆≌C B A '''∆的根据是( )A .SASB .SSAC .ASAD .AAS2.ABC ∆和DEF ∆中,DE AB =,E B ∠=∠,要使ABC ∆≌DEF ∆ ,则下列补充的条件中错误的是( )A .DF AC =B .EF BC = C .D A ∠=∠ D .F C ∠=∠3.如图,AD 平分BAC ∠,AC AB =,则图中全等三角形的对数是( )A .2对B .3对C .4对D .5对4.如图,已知CD AB //,欲证明AOB ∆≌COD ∆,可补充条件________.(填写一个适合的条件即可)5.如图,AC AB ⊥,CD BD ⊥,21∠=∠,欲得到CE BE =,•可先利用_______,证明ABC ∆≌DCB ∆,得到______=______,再根据___________•证明________•≌________,即可得到CE BE =.6.如图,AE AC =,E C ∠=∠,21∠=∠.求证:ABC ∆≌ADE ∆.课堂总结:通过这节课的学习你学到什么?说说看!1.证明两个三角形全等有几种方法?如何正确选择和应用这些方法?2.全等三角形性质可以用来证明哪些问题?举例说明.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形A级基础题1.(2013年湖南衡阳)如图4-2-14,∠1=100°,∠C=70°,则∠A的大小是()A.10°B.20°C.30°D.80°图4-2-14图4-2-15图4-2-16 2.(2013年湖北宜昌)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.1,2,6 B.2,2,4 C. 1,2,3 D. 2,3,43.(2013年湖南长沙)下列各图中,∠1大于∠2的是()A B C D4.(2013年陕西)如图4-2-15,在四边形ABCD中,AB=AD,CB=CD,若连接AC,BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对5.(2011年四川绵阳)王师傅用四根木条钉成一个四边形木架,如图4-2-16.要使这个木架不变形,他至少还要再钉上几根木条()A.0根B.1根C.2根D.3根6.(2012年山东德州)不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.三角形的中位线7.(2013年辽宁铁岭)如图4-2-17,在△ABC和△DEC中,已知AB=DE,还需要添加两个条件才能使△ABC≌△DEC,不能添加的一组是()A.BC=EC,∠B=∠E B.BC=EC, AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D图4-2-17图4-2-188.(2012年山东济宁)用直尺和圆规作一个角的平分线的示意图如图4-2-18,则能说明∠AOC=∠BOC的依据是()A.SSS B.ASA C.AAS D.角平分线上的点到角两边的距离相等9.(2013年广西柳州)如图4-2-19,△ABC≌△DEF,请根据图中提供的信息,写出x =________图4-2-19 图4-2-2010. (2013年浙江义乌)如图4-2-20,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是____________.11.(2013年湖南邵阳)将一副三角板拼成如图4-2-21所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.图4-2-2112.(2013年山东菏泽)如图4-2-22,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连接AE,DE,DC.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.图4-2-22B级中等题13.(2012年黑龙江)如图4-2-23,在四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是() A.15°B.20°C.25°D.30°图4-2-23 图4-2-2414.(2012年黑龙江绥化)如图4-2-24所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B,D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为________(提示:∠EAD+∠F AB=90°).C级拔尖题15.(2013年山东东营) (1)如图4-2-25(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D,E.证明:DE=BD+CE;(2)如图4-2-25(2),将(1)中的条件改为:在△ABC中,AB=AC,点D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE =BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由;(3) 拓展与应用:如图4-2-25(3),点D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.图4-2-25三角形1.C 2.D 3.D 4.C 5.B 6.C 7.C 8.A 9.2010.AB =AC 或AD =AE 或BD =CE 或BE =CD (写出一个即可) 11.解:(1)由三角板的性质可知: ∠D =30°,∠3=45°,∠DCE =90°.∵CF 平分∠DCE ,∴∠1=∠2=12∠DCE =45°.∴∠1=∠3,∴CF ∥AB .(2)由三角形内角和可得∠DFC =180°-∠1-∠D =180°-45°-30°=105°. 12.(1)证明:∵∠ABC =90°,∴∠DBE =180°-∠ABC =90°. ∴∠ABE =∠CBD .在△ABE 和△CBD 中, ⎩⎪⎨⎪⎧AB =CB ,∠ABE =∠CBD ,BE =BD ,∴△ABE ≌△CBD (SAS).(2)解:∵AB =CB ,∠ABC =90°,∴△ABC 是等腰直角三角形.∴∠ECA =45°. ∵∠CAE =30°,∠BEA =∠ECA +∠EAC , ∴∠BEA =45°+30°=75°.由①知∠BDC =∠BEA ,∴∠BDC =75°. 13.D 14.1315.证明:(1)∵BD ⊥直线m ,CE ⊥直线m , ∴∠BDA =∠CEA =90°. ∵∠BAC =90°,∴∠BAD +∠CAE =90°. ∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD . 又AB =AC ,∴△ADB ≌△CEA .∴AE =BD ,AD =CE .∴DE =AE +AD =BD +CE . (2)成立.∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠CAE =180°-α. ∴∠DBA =∠CAE .∵∠BDA =∠AEC =α,AB =AC ,∴△ADB ≌△CEA .∴AE =BD ,AD =CE . ∴DE =AE +AD =BD +CE . (3)由(2)知,△ADB ≌△CEA , 则BD =AE ,∠DBA =∠EAC .∵△ABF 和△ACF 均为等边三角形, ∴∠ABF =∠CAF =60°.∴∠DBA +∠ABF =∠EAC +∠CAF . ∴∠DBF =∠EAF .∵BF =AF ,BD =AE ,∴△DBF ≌△EAF . ∴DF =EF ,∠BFD =∠AFE .∴∠DFE =∠DF A +∠AFE =∠DF A +∠BFD =60°. ∴△DEF 为等边三角形.等腰三角形与直角三角形A级基础题1.(2013年新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为() A.12 B.15 C.12或15 D.182.(2013年湖北武汉)如图4-2-36,在△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°图4-2-363.(2010年广东深圳)如图4-2-37,在△ABC中,AC=AD=BD,∠DAC=80°,则∠B 的度数是()A.40°B.35°C.25°D.20°图4-2-37图4-2-38图4-2-39 4.(2013年山东德州)如图4-2-38,AB∥CD,点E在BC上,且CD=CE,∠D=74°,则∠B的度数为()A. 68°B.32° C. 22°D.16°5.(2013年山东滨州)在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长为________.6.(2013年山东泰安)如图4-2-39,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE 交AC于点E,交BC的延长线于点F,若∠F=30°,DE=1,则BE的长是________.7.(2012年吉林)如图4-2-40,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A 为圆心,AC长为半径画弧,交AB于点D,则BD=________.图4-2-40图4-2-41图4-2-42 8.(2011年江苏无锡)如图4-2-41,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB,BC,CA的中点,若CD=5 cm,则EF=________ cm.9.(2013年福建莆田)图4-2-42是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积分别为2,5,1,2.则最大的正方形E的面积是________.10.(2013年湖北荆门)如图4-2-43(1),在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)若BE的延长线交AC于点F,且BF⊥AC,垂足为F,如图4-2-43(2),∠BAC=45°,原题设其他条件不变.求证:△AEF≌△BCF.图4-2-43B级中等题11.(2013年浙江绍兴)如图4-2-44所示的钢架中,焊上等长的13根钢条来加固钢架.若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是__________.图4-2-44 图4-2-4512.(2013年湖北襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图4-2-45所示的直角梯形,则原直角三角形纸片的斜边长是______________.13.(2013年辽宁沈阳)如图4-2-46,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC 于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=2,求AD的长.图4-2-46C级拔尖题14.(2013年江西)某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:[操作发现]在等腰三角形ABC 中,AB =AC ,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,如图4-2-47(1),其中DF ⊥AB 于点F ,EG ⊥AC 于点G ,M 是BC 的中点,连接MD 和ME ,则下列结论:①AF =AG =12AB ;②MD =ME ;③整个图形是轴对称图形;④∠DAB =∠DMB .其中正确的是____________(填序号即可).[数学思考]在任意△ABC 中,分别以AB 和AC 为斜边,向△ABC 的外侧作等腰直角三角形,如图4-2-47(2),M 是BC 的中点,连接MD 和ME ,则MD 和ME 具有怎样的数量和位置关系?请给出证明过程.[类比探索]在任意△ABC 中,仍分别以AB 和AC 为斜边,向△ABC 的内侧作等腰直角三角形,如图4-2-47(3),M 是BC 的中点,连接MD 和ME ,试判断△MED 的形状. 答:____________________.(1) (2) (3)图4-2-47等腰三角形与直角三角形1.B 2.A 3.C 4.B5.2 6 6.27.28.59.1010.证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠CAE.在△ABE和△ACE中,AB=AC,∠BAE=∠CAE,AE=AE,∴△ABE≌△ACE(SAS).∴BE=CE.(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形.∴AF=BF.由(1)知AD⊥BC,∴∠EAF=∠CBF.在△AEF和△BCF中,AF=BF,∠AFE=∠BFC=90°,∠EAF=∠CBF,∴△AEF≌△BCF.11.12°解析:设∠A=x.∵AP1=P1P2=P2P3=…=P13P14=P14A,∴∠A=∠AP2P1=∠AP13P14=x.∴∠P2P1P3=∠P13P14P12=2x,∴∠P3P2P4=∠P12P13P11=3x,…,∠P7P6P8=∠P8P9P7=7x,∴∠AP7P8=7x,∠AP8P7=7x,在△AP7P8中,∠A+∠AP7P8+∠AP8P7=180°,即x+7x+7x=180°,∴x=12°.即∠A=12°.12.2 13或6 2解析:如图17(1),以点B为直角顶点,BD为斜边上的中线.在Rt△ABD中,可得BD=13,∴原直角三角形纸片的斜边EF的长是2 13;如图17(2),以点A为直角顶点,AC为斜边上的中线,在Rt△ABC中,可得AC=3 2,∴原直角三角形纸片的斜边EF的长是6 2.(1) (2)图1713.(1)证明:∵AD⊥BC,∠BAD=45°,∴∠ABD=∠BAD=45°.∴AD=BD.∵AD⊥BC,BE⊥AC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE.又∵∠CDA=∠BDF=90°,∴△ADC≌△BDF(ASA).∴AC=BF.∵AB=BC,BE⊥AC,∴AE=EC,即AC=2AE,∴BF=2AE.(2)解:∵△ADC≌△BDF,∴DF=CD= 2.∴在Rt△CDF中,CF=DF2+CD2=2.∵BE⊥AC,AE=EC,∴AF=FC=2.∴AD=AF+DF=2+ 2.14.解:[操作发现]①②③④[数学思考]MD=ME,MD⊥ME.证明如下:图18①MD=ME.如图18,分别取AB,AC的中点F,G,连接DF,MF,MG,EG,∵M 是BC 的中点,∴MF ∥AC ,MF =12AC .又∵EG 是等腰直角三角形AEC 斜边上的中线,∴EG ⊥AC ,且EG =12AC .∴MF =EG .同理可证DF =MG . ∵MF ∥AC ,∴∠MF A +∠BAC =180°.同理可得∠MGA +∠BAC =180°. ∴∠MF A =∠MGA .又∵EG ⊥AC ,∴∠EGA =90°. 同理可得∠DF A =90°.∴∠MF A +∠DF A =∠MGA +∠EGA ,即∠DFM =∠MGE .又MF =EG ,DF =MG , ∴△DFM ≌△MGE (SAS).∴MD =ME . ②MD ⊥ME .如图18,设MD 与AB 交于点H , ∵AB ∥MG ,∴∠DHA =∠DMG . 又∵∠DHA =∠FDM +∠DFH , 即∠DHA =∠FDM +90°.∵∠DMG =∠DME +∠GME ,∴∠DME =90°. 即MD ⊥ME .[类比探究]等腰直角三角形解直角三角形A 级 基础题1.(2013年四川乐山)如图6-5-12,在直角坐标系中,P 是第一象限内的点,其坐标是(3,m ),且OP 与x 轴正半轴的夹角α的正切值是43,则sin α的值为( )A.45B. 54C. 35D.53图6-5-12 图6-5-13 图6-5-14 图6-5-152.河堤横断面如图6-5-13,堤高BC =5米,迎水坡AB 的坡比是1∶3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( )A .5 3米B .10米C .15米D .10 3米 3.(2013年湖北孝感)式子2cos 30°-tan 45°-(1-tan 60°)2的值是( ) A. 2 3-2 B .0 C. 2 3 D .2 4.(2013年浙江衢州)如图6-5-14,将一个有45°角的三角板的直角顶点放在一张宽为3cm 的矩形纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,则三角板最大边的长为( )A .3 cm B. 6 cm C .3 2 cm D .6 2 cm 5.(2013年四川雅安)如图6-5-15, AB 是⊙O 的直径,C ,D 是 ⊙O 上的点, ∠CDB=30°,过点C 作⊙O 的切线交 AB 的延长线于 E, 则 sin ∠E 的值为( )A.12B.32C.22D.33 6.(2013年山西)如图6-5-16,某地修建高速公路,要从B 地向C 地修一座隧道(B ,C在同一水平面上),为了测量B ,C 两地之间的距离,某工程师乘坐热气球从C 地出发,垂直上升100 m 到达A 处,在A 处观察B 地的俯角为30°,则BC 两地之间的距离为( )A .100 3 mB .50 2 mC .50 3 m D.100 33m图6-5-16 图6-5-177.(2013年浙江衢州) 如图6-5-17,小敏同学想测量一棵大树的高度.她站在B 处仰望树顶,测得仰角为30°,再往大树的方向前进4 m ,测得仰角为60°,已知小敏同学身高(AB )为1.6 m ,则这棵树的高度为(结果精确到0.1 m ,≈1.73)( )A .3.5 mB .3.6 mC .4.3 mD .5.1 m 8.(2012年江苏常州)若∠α=60°,则∠α的余角为__________,cos α的值为 ________.9.(2013年贵州安顺)在Rt △ABC 中,∠C =90°,tan A =43,BC =8,则△ABC 的面积为________________.10.(2013年云南曲靖)如图6-5-18,在直角梯形ABCD 中,AD ∥BC ,∠B =90°∠C =θ,AD =2,BC =4,则AB =______(用含θ的三角函数式表示).图6-5-18 图6-5-1911.(2013年湖北荆州)如图6-5-19,在高度是21米的小山A 处测得建筑物CD 顶部C处的仰角为30°,底部D 处的俯角为45°,则这个建筑物的高度CD =__________米(结果可保留根号).12.(2013年浙江宁波)天封塔历史悠久,是宁波著名的文化古迹,如图6-5-20,从位于天封塔的观测点C 测得两建筑物底部A ,B 的俯角分别为45°和60°,若此观测点离地面的高度CD 为51米,A ,B 两点在CD 的两侧,且点A ,D ,B 在同一水平直线上,求A ,B 之间的距离(结果保留根号).图6-5-20B 级 中等题13.(2012年山东济南)如图6-5-21,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为( )图6-5-21A.13B.12C.22D .3 14.(2013年辽宁锦州)如图6-5-22,某公园入口处有一斜坡AB ,坡角为12°,AB 长为3 m .施工队准备将斜坡建成三级台阶,台阶高度均为h cm ,深度均为30 cm ,设台阶的起点为C .(1)求AC 的长度;(2)每级台阶的高度h . (参考数据:sin12°≈0.207 9,cos12°≈0.978 1,tan12°≈0.212 6,结果都精确到0.1 cm)图6-5-22C 级 拔尖题15.如图6-5-23,某防洪指挥部发现长江边一处长600米,高10米,背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD )急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:沿背水坡面用土石进行加固,并使上底加宽2米,加固后背水坡EF 的坡比i =1∶3.(1)求加固后坝底增加的宽度AF (结果保留根号);(2)求完成这项工程需要土石多少米3(结果取3≈1.732)?图6-5-23解直角三角形1.A 2.A 3.B 4.D 5.A 6.A 7.D8.30° 129.24 10.2tan θ 11.7 3+2112.解:由题意,得∠ECA =45°,∠FCB =60°, ∵EF ∥AB ,∴∠CAD =∠ECA =45°,∠CBD =∠FCB =60°. ∵∠ADC =∠CDB =90°,且在Rt △CDB 中,tan ∠CBD =CD BD ,∴BD =51tan60°=17 3米.∵AD =CD =51米,∴AB =AD +BD =(51+17 3)米.答:A ,B 之间的距离为(51+17 3)米. 13.A14.解:(1)如图61,构造Rt △ABD . ∴AD =AB ·cos A =300×cos12°≈300×0.978 1=293.43. ∴AC =AD -CD =293.43-2×30≈233.4(cm). 答:AC 的长度约为233.4 cm. (2)在Rt △ABD 中,BD =AB ·sin A =300×sin12°≈300×0.207 9=62.37.∴h =13BD =13×62.37≈20.8(cm).答:每级台阶的高度h 约为20.8cm.图6115.解:(1)作EM ⊥BF 于M ,DN ⊥BF 于N (如图62),则MN =DE =2米,EM =DN =10米,在Rt △AND 中AN =DN =10米.∵i =EM FM =13,∴FM =10 3米.∴AF =FM +MN -AN =(10 3-8)(米).图62(2)∵S 梯形ADEF =(DE +AF )·DN2=(50 3-30)(米2),∴(50 3—30)×600≈33 960(米3).答:完成这项工程需要土石约33 960米3.图形的相似A 级 基础题1.下列各组线段(单位:cm)中,是成比例线段的为( ) A .1,2,3,4 B .1,2,2,4 C .3,5,9,13 D .1,2,2,3 2.(2013年北京)如图6-4-14,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得BE =20 m ,EC =10 m ,CD =20 m ,则河的宽度AB =( )A. 60 mB. 40 mC. 30 mD. 20 m图6-4-14 图6-4-153.(2013年上海)如图6-4-15,已知在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC上的点,DE ∥BC ,EF ∥AB ,且AD ∶DB =3∶5,那么CF ∶CB =( )A. 5∶8 B .3∶8 C .3∶5 D .2∶54.若两个相似三角形的面积之比为1∶16,则它们的周长之比为( ) A .1∶2 B .1∶4 C .1∶5 D .1∶16 5.(2013年江苏无锡)如图6-4-16,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于O ,AD =1,BC =4,则△AOD 与△BOC 的面积之比等于( )A.12B.14C.18D.116图6-4-16 图6-4-176.(2013年山东威海)如图6-4-17,在△ABC 中,∠A =36°,AB =AC ,AB 的垂直平分线OD 交AB 于点O ,交AC 于点D ,连接BD .下列结论错误的是( )A .∠C =2∠AB .BD 平分∠ABCC .S △BCD =S △BOD D .点D 为线段AC 的黄金分割点7.下列说法中:①所有的等腰三角形都相似;②所有的正三角形都相似;③所有的正方形都相似;④所有的矩形都相似.其中说法正确的序号是________________.8.(2013年四川雅安)如图6-4-18, 在▱ABCD ,E 在AB 上,CE ,DB 交于F ,若AE ∶BE =4∶3,且BF =2,则DF =________.图6-4-18 图6-4-199.(2013年江苏泰州)如图6-4-19,在平面直角坐标系xOy 中,点A ,B 的坐标分别为(3,0),(2,-3),△AB ′O ′是△ABO 关于点A 的位似图形,且O ′的坐标为(-1,0),则点B ′的坐标为________.10.(2012年湖南株洲)如图6-4-20,在矩形ABCD 中,AB =6,BC =8,沿直线MN 对折,使A ,C 重合,直线MN 交AC 于点O .(1)求证:△COM ∽△CBA ; (2)求线段OM 的长度.图6-4-20B级中等题11.(2013年山东淄博)在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线.如图6-4-21,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC 的相似线最多有__________条.图6-4-2112.如图6-4-22,大江的同一侧有A,B两个工厂,它们都有垂直于江边的小路,AD,BE的长度分别为3千米和2千米,且两条小路之间的距离为5千米.现要在江边建一个供水站向A,B两厂送水,欲使供水管路最短,则供水站应建在距E处多远的位置?图6-4-2213.(2012年湖南株洲)如图6-4-23,在△ABC中,∠C=90°,BC=5米,AC=12米.点M在线段CA上,从C向A运动,速度为1米/秒;同时点N在线段AB上,从A向B运动,速度为2米/秒,运动时间为t秒.(1)当t为何值时,∠AMN=∠ANM;(2)当t为何值时,△AMN的面积最大?并求出这个最大值.图6-4-23C级拔尖题14.(2013年山东滨州)某高中学校为高一新生设计的学生板凳的正面视图如图6-4-24.其中BA=CD,BC=20 cm,BC,EF平行于地面AD且到地面AD的距离分别为40 cm,8 cm,为使板凳两腿底端A,D之间的距离为50 cm,那么横梁EF应为多长(材质及其厚度等暂忽略不计)?图形的相似1.B 2.B 3.A 4.B 5.D 6.C 7.②③ 8.143 解析:AB ∥CD ⇒△BEF ∽△DCF ⇒BE CD =BF DF ,又∵AE BE =43,∴BE AB =37,即BE CD =37,则有37=2DF ,DF =143.9.⎝⎛⎭⎫53,-4 10.(1)证明:∵A 与C 关于直线MN 对称, ∴AC ⊥MN .∴∠COM =90°. 在矩形ABCD 中,∠B =90°,∴∠COM =∠B . 又∵∠ACB =∠MCO , ∴△COM ∽△CBA .(2)解:∵在Rt △CBA 中,AB =6,BC =8, ∴AC =10,∴OC =5. ∵△COM ∽△CBA , ∴OC CB =OM AB ,OM =154. 11.312.解:如图55,作出点B 关于江边的对称点C ,连接AC ,则BF +F A =CF +F A =CA . 根据两点之间线段最短,可知当供水站在点F 处时,供水管路最短. ∵△ADF ∽△CEF ,∴设EF =x ,则FD =5-x , 根据相似三角形的性质,得 EF FD =CE AD ,即x 5-x =23,解得x =2. 故供水站应建在距E 点2千米处.图5513.解:(1)由题意,得AM =12-t ,AN =2t . ∵∠AMN =∠ANM ,∴AM =AN ,从而12-t =2t , 解得t =4秒.∴当t 为4秒时,∠AMN =∠ANM .(2)如图56,过点N 作NH ⊥AC 于点H , ∴∠NHA =∠C =90°.∵∠A 是公共角,∴△NHA ∽△BCA . ∴AN AB =NH BC ,即2t 13=NH 5,∴NH =10t 13. 从而有S △AMN =12(12-t )·10t 13=-513t 2+6013t ,∴当t =6时,S 有最大值为18013.图56 图5714.解:如图57,过点C作CM∥AB,交EF,AD于N,M,作CP⊥AD,交EF,AD 于Q,P.由题意,得四边形ABCM是平行四边形,∴EN=AM=BC=20 cm.∴MD=AD-AM=50-20=30(cm).由题意知CP=40 cm,PQ=8 cm,∴CQ=32 cm.∵EF∥AD,∴△CNF∽△CMD.∴NFMD=CQCP,即NF30=3240.解得NF=24 cm.∴EF=EN+NF=20+24=44(cm).答:横梁EF应为44 cm.。

相关文档
最新文档