计算机算法设计与分析第9

合集下载

计算机算法试题(含答案)

计算机算法试题(含答案)

计算机算法试题(含答案)算法设计与分析试卷一、填空题(20分,每空2分)1、算法的性质包括输入、输出、___、有限性。

2、动态规划算法的基本思想就将待求问题_____、先求解子问题,然后从这些子问题的解得到原问题的解。

3、设计动态规划算法的4个步骤:(1)找出____,并刻画其结构特征。

(2)_______。

(3)_______。

(4)根据计算最优值得到的信息,_______。

4、流水作业调度问题的johnson算法:(1)令N1=___,N2={i|ai>=bj};(2)将N1中作业依ai的___。

5、对于流水作业高度问题,必存在一个最优调度π,使得作业π(i)和π(i+1)满足Johnson不等式_____。

6、最优二叉搜索树即是___的二叉搜索树。

二、综合题(50分)1、当(a1,a2,a3,a4,a5,a6)=(-2,11,-4,13,-5,-2)时,最大子段和为∑ak(2<=k<=4)____(5分)2、由流水作业调度问题的最优子结构性质可知,T(N,0)=______(5分)3、最大子段和问题的简单算法(10分)int maxsum(int n,int *a,int & bestj){intsum=0;for (int i=1;i<=n;i++)for (int j=i;j<=n;j++)int thissum=0;for(int k=i;k<=j;k++)_____;if(thissum>sum){sum=thissum;______;bestj=j;}} return sum;}4、设计最优二叉搜索树问题的动态规划算法OptimalBinarysearchTree (15分)Void OptimalBinarysearchTree(int a,int n,int * * m, int* * w){for(int i=0;i<=n;i++) {w[i+1][i]=a[i]; m[i+1][i]=____;}for(int r=0;r<n;r++)< p="">for(int i=1;i<=n-r;i++){int j=i+r;w[i][j]=w[i][j-1]+a[j]+b[j];m[i][j]=______;s[i][j]=i;for(int k=i+1;k<=j;k++){int t=m[i][k-1]+m[k+1][j];if(_____) {m[i][j]=t; s[i][j]=k;}}m[i][j]=t; s[i][j]=k;}}5、设n=4, (a1,a2,a3,a4)=(3,4,8,10), (b1,b2,b3,b4)=(6,2,9,15) 用两种方法求4个作业的最优调度方案并计算其最优值(15分)三、简答题(30分)1、将所给定序列a[1:n]分为长度相等的两段a[1:n/2]和a[n/2+1:n],分别求出这两段的最大子段和,则a[1:n]的最大子段和有哪三种情形(10分)答:2、由0——1背包问题的最优子结构性质,可以对m(i,j)建立怎样的递归式 (10分)3、0——1背包求最优值的步骤分为哪几步(10分)参考答案:填空题:确定性分解成若干个子问题最优解的性质递归地定义最优值以自底向上的方式计算出最优值构造最优解 {i|ai<="" p="">依bi的非增序排序min{bπ(i),aπ(i+1)}≥min{bπ(i+1),aπ(i)}最小平均查找长度综合题:20 min{ai+T(N-{i},bi)}(1=<i<=n) 0="" besti="i" m[i+1][j]="" p="" t<m[i][j]<="" thissum+="a[k]">法一:min(ai,bj)<=min(aj,bi)因为 min(a1,b2)<=min(a2,b1)所以1→2 (先1后2)由 min(a1,b3)<=min(a3,b1)得1→3 (先1后3)同理可得:最后为1→3→4→2法二:johnson算法思想N1={1,3,4} N2={2}N11={1,3,4} N12={2}所以N11→N12得:1→3→4→2简答题:1 、(1)a[1:n]的最大子段和与a[1:n/2]的最大子段和相同。

算法设计与分析知到章节答案智慧树2023年天津大学

算法设计与分析知到章节答案智慧树2023年天津大学

算法设计与分析知到章节测试答案智慧树2023年最新天津大学第一章测试1.下列关于效率的说法正确的是()。

参考答案:提高程序效率的根本途径在于选择良好的设计方法,数据结构与算法;效率主要指处理机时间和存储器容量两个方面;效率是一个性能要求,其目标应该在需求分析时给出2.算法的时间复杂度取决于()。

参考答案:问题的规模;待处理数据的初态3.计算机算法指的是()。

参考答案:解决问题的有限运算序列4.归并排序法的时间复杂度和空间复杂度分别是()。

参考答案:O(nlog2n);O(n)5.将长度分别为m,n的两个单链表合并为一个单链表的时间复杂度为O(m+n)。

()参考答案:错6.用渐进表示法分析算法复杂度的增长趋势。

()参考答案:对7.算法分析的两个主要方面是时间复杂度和空间复杂度的分析。

()参考答案:对8.某算法所需时间由以下方程表示,求出该算法时间复杂度()。

参考答案:O(nlog2n)9.下列代码的时间复杂度是()。

参考答案:O(log2N)10.下列算法为在数组A[0,...,n-1]中找出最大值和最小值的元素,其平均比较次数为()。

参考答案:3n/2-3/2第二章测试1.可用Master方法求解的递归方程的形式为()。

参考答案:T(n)=aT(n/b)+f(n) , a≥1, b>1, 为整数, f(n)>0.2.参考答案:对3.假定,, 递归方程的解是. ( )参考答案:对4.假设数组A包含n个不同的元素,需要从数组A中找出n/2个元素,要求所找的n/2个元素的中点元素也是数组A的中点元素。

针对该问题的任何算法需要的时间复杂度的下限必为。

( )参考答案:错5.使用Master方法求解递归方程的解为().参考答案:6.考虑包含n个二维坐标点的集合S,其中n为偶数,且所有坐标点中的均不相同。

一条竖直的直线若能把S集合分成左右两部分坐标点个数相同的子集合,则称直线L为集合S的一条分界线。

若给定集合S,则可在时间内找到这条分界线L。

计算机算法设计和分析习题及答案解析

计算机算法设计和分析习题及答案解析

计算机算法设计和分析习题及答案解析This manuscript was revised on November 28, 2020《计算机算法设计与分析》习题及答案一.选择题1、二分搜索算法是利用( A )实现的算法。

A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是( A )。

A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是(A )的一搜索方式。

A、分支界限法B、动态规划法C、贪心法D、回溯法4. 回溯法解旅行售货员问题时的解空间树是( A )。

A、子集树B、排列树C、深度优先生成树D、广度优先生成树5.下列算法中通常以自底向上的方式求解最优解的是(B )。

A、备忘录法B、动态规划法C、贪心法D、回溯法6、衡量一个算法好坏的标准是( C )。

A 运行速度快B 占用空间少C 时间复杂度低D 代码短7、以下不可以使用分治法求解的是( D )。

A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题8. 实现循环赛日程表利用的算法是(A )。

A、分治策略B、动态规划法C、贪心法D、回溯法9.下面不是分支界限法搜索方式的是(D )。

A、广度优先B、最小耗费优先C、最大效益优先D、深度优先10.下列算法中通常以深度优先方式系统搜索问题解的是(D )。

A、备忘录法B、动态规划法C、贪心法D、回溯法11.备忘录方法是那种算法的变形。

( B )A、分治法B、动态规划法C、贪心法D、回溯法12.哈夫曼编码的贪心算法所需的计算时间为(B )。

A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)13.分支限界法解最大团问题时,活结点表的组织形式是(B )。

A、最小堆B、最大堆C、栈D、数组14.最长公共子序列算法利用的算法是(B)。

A、分支界限法B、动态规划法C、贪心法D、回溯法15.实现棋盘覆盖算法利用的算法是(A )。

A、分治法B、动态规划法C、贪心法D、回溯法16.下面是贪心算法的基本要素的是(C )。

计算机算法设计与分析(第5版)

计算机算法设计与分析(第5版)
该教材采用面向对象的C++语言作为算法描述手段,在保持C++优点的同时,尽量使算法描述简明、清晰。每 章的章首为学习要点提示,章末配有难易适度的习题,分为算法分析题和算法实现题两部分,以强化实践环节 。
作者简介
王晓东:男,1957年生,山东人,福建工程学院副院长,教授,博士生导师,福建省计算机学会理事长。主 讲课程:算法与数据结构、算法设计与分析、文献阅读与选题报告 。
目录
(注:目录排版顺序为从左列至右列 )
教学资源
《计算机算法设计与分析(第5版)》有配套教材——《计算机算法设计与分析习题解答(第5版)》 。
教材特色
《计算机算法设计与分析(第5版)》修正了第4版中发现的一些错误,并将各章的习题分为算法分析题和算 法实现题两部分,增加了算法实践性内容,增加了有关串和序列的算法内容。
《计算机算法设计与分析(第5版)》由王晓东担任主编;傅清祥教授、吴英杰教授、傅仰耿博士和朱达欣教 授参加了该教材有关章节的讨论,对该教材内容及各章节的编排提出了意见;田俊教授审阅了全书。该教材在编 写过程中,得到了全国高等学校计算机专业教学指导委员会的支持。福州大学“211工程”计算机与信息工程重 点学科实验室和福建工程学院为该教材的写作提供了设备和工作环境 。
该教材各章的论述中,首先介绍一种算法设计策略的基本思想,然后从解决计算机科学和应用中的实际问题 入手,描述几个算法。同时对每个算法所需的时间和空间进行分析,使读者既能学到一些常用的算法,也能通过 对算法设计策略的反复应用,牢固掌握这些算法设计的基本策略。该教材选择某些问题,通过对解同一问题的不 同算法的比较,使读者体会到每种算法的设计要点。
2018年8月,该教材由电子工业出版社出版 。

算法分析与设计概论

算法分析与设计概论

9
How to Study Algorithm?
“Sometimes we have experiences, and sometimes not. Therefore, the better way is to learn more."
10
1.1 算法与程序
算法:是满足下述性质的指令序列。
输 入:有零个或多个外部量作为算法的输入。 输 出:算法产生至少一个量作为输出。 确定性:组成算法的每条指令清晰、无歧义。 有限性:算法中每条指令的执行次数有限,执行 每条指令的时间也有限。
1) 第一种解法:
输入:所购买的三种鸡的总数目n 输出:满足问题的解的数目k,公鸡,母鸡,小鸡的只数g[ ],m[ ],s[ ] 1. void chicken_question(int n,int &k,int g[ ],int m[ ],int s[ ]) 2. { int a,b,c; 4. k = 0; 5. for (a=0;a<=n;a++) 6. for (b=0;b<=n;b++) 7. for (c=0;c<=n;c++) { 8. if ((a+b+c==n)&&(5*a+3*b+c/3==n)&&(c%3==0)) { 9. g[k] = a; 10. m[k] = b; 11. s[k] = c; 12. k++; 13. }}}
矩阵。
数组 T:表示售货员的路线,依次存放旅行路线中的城 市编号。
售货员的每一条路线,对应于城市编号的一个排列。
n 个城市共有 n! 个排列,采用穷举法逐一计算每一条路线的费 用,从中找出费用最小的路线,便可求出问题的解。

算法设计与分析历年期末试题整理_含答案_

算法设计与分析历年期末试题整理_含答案_

《算法设计与分析》历年期末试题整理(含答案)(1)用计算机求解问题的步骤:1、问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现7、程序调试8、结果整理文档编制(2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程(3)算法的三要素1、操作2、控制结构3、数据结构算法具有以下5 个属性:有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。

确定性:算法中每一条指令必须有确切的含义。

不存在二义性。

只有一个入口和一个出口可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。

输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。

输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。

算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解;健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。

效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。

一般这两者与问题的规模有关。

经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。

利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。

在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

二、建立迭代关系式。

所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。

迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。

三、对迭代过程进行控制。

在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。

不能让迭代过程无休止地重复执行下去。

《算法设计与分析》(全)

《算法设计与分析》(全)
巢湖学院计算机科学与技术系
1.1、算法与程序
程序:是算法用某种程序设计语言的具体实现。 程序可以不满足算法的性质(4)。 例如操作系统,是一个在无限循环中执行的程序, 因而不是一个算法。 操作系统的各种任务可看成是单独的问题,每一个 问题由操作系统中的一个子程序通过特定的算法来实 现。该子程序得到输出结果后便终止。
渐近分析记号的若干性质
(1)传递性: ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= O(g(n)), g(n)= O (h(n)) f(n)= O (h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); ➢ f(n)= o(g(n)), g(n)= o(h(n)) f(n)= o(h(n)); ➢ f(n)= (g(n)), g(n)= (h(n)) f(n)= (h(n)); (2)反身性: ➢ f(n)= (f(n));f(n)= O(f(n));f(n)= (f(n)). (3)对称性: ➢ f(n)= (g(n)) g(n)= (f(n)) . (4)互对称性: ➢ f(n)= O(g(n)) g(n)= (f(n)) ; ➢ f(n)= o(g(n)) g(n)= (f(n)) ;
巢湖学院计算机科学与技术系
渐近分析记号的若干性质
规则O(f(n))+O(g(n)) = O(max{f(n),g(n)}) 的证明: ➢ 对于任意f1(n) O(f(n)) ,存在正常数c1和自然数n1,使得对
所有n n1,有f1(n) c1f(n) 。 ➢ 类似地,对于任意g1(n) O(g(n)) ,存在正常数c2和自然数
巢湖学院计算机科学与技术系
第1章 算法引论

第9课 体验算法控制 教学设计

第9课 体验算法控制 教学设计

第9课体验算法控制教学设计一、引言在当今信息时代,计算机科学和编程教育受到越来越多的重视。

而作为计算机科学中基础且重要的一环,算法控制更是备受瞩目。

本文将围绕第9课体验算法控制这一教学设计主题展开深入探讨,旨在为读者提供一些有益的思考和启发。

二、算法控制的概念解析算法控制是计算机科学中的一个重要概念,它指的是通过编程语言对计算机进行指令控制,使之按照预定的算法执行特定的任务。

在教学中,体验算法控制旨在让学生了解并掌握如何利用代码编写算法,实现对计算机的控制和指导。

三、深度和广度分析1. 算法控制的基本原理在教学中,需要首先向学生介绍算法控制的基本原理,包括顺序执行、条件执行和循环执行等概念。

通过实际案例和代码演示,让学生深入理解这些基本原理,并能够灵活运用于实际编程中。

2. 不同编程语言的算法控制应用在教学设计中,可以引导学生了解和比较不同编程语言在算法控制上的应用。

Python、Java和C语言等,它们在算法控制方面的特点和应用场景各有不同,通过比较分析可以帮助学生更全面地理解算法控制的本质。

3. 算法控制在实际问题中的应用通过实际问题的案例分析,可以帮助学生将算法控制理论与实际应用相结合。

通过模拟生活中的问题情境,教学设计可以让学生编写代码实现解决问题的算法控制,从而培养他们的实际应用能力和创新思维。

4. 算法控制的发展趋势和挑战教学设计还可涉及到算法控制的发展趋势和未来挑战。

随着人工智能、大数据等新技术的发展,算法控制所面临的挑战和应对策略也将成为教学的一部分,帮助学生更好地把握行业动态。

四、总结与展望通过对第9课体验算法控制这一教学设计主题的深度和广度分析,我们不仅将理论知识传授给学生,更重要的是培养他们的逻辑思维、创新能力和问题解决能力。

我们也应该关注教学设计的创新和改进,结合学生的实际情况和学习特点,不断完善教学内容和方法。

希望学生们能够在体验算法控制的过程中,感受到计算机科学的魅力,并为未来的发展奠定坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不管是在均匀耗费标准下,还是在对数耗费标准下,RAM 程序和RASP程序的复杂性只差一个常数因子。在一个计算模型下 T(n)时间内完成的输入-输出映射可在另一个计算模型下模拟, 并在kT(n)时间内完成。其中k是一个常数因子。空间复杂性的情 况也是类似的。
6
9.1.3 图灵机
7
9.1.3 图灵机

2
9.1.1 随机存取机RAM
1、RAM的结构
3
9.1.1 随机存取机RAM
2、RAM程序
一个RAM程序定义了从输入带到输出带的一个映射。可以对 这种映射关系作2种不同的解释。
解释一:把RAM程序看成是计算一个函数 若一个RAM程序P总是从输入带前n个方格中读入n个整数 x1,x2,…,xn,并且在输出带的第一个方格上输出一个整数y 后停机,那么就说程序P计算了函数f(x1,x2,…,xn)=y 解释二:把RAM程序当作一个语言接受器。 将字符串S=a1a2…an放在输入带上。在输入带的第一个方 格中放入符号a1,第二个方格中放入符号a2,…,第n个方格中 放入符号an。然后在第n+1个方格中放入0,作为输入串的结束标 志符。如果一个RAM程序P读了字符串S及结束标志符0后,在输出 带的第一格输出一个1并停机,就说程序P接受字符串S。
k带图灵机可形式化地描述为一个7元组(Q,T,I,δ,b,q0,qf),其中:
(1)Q是有限个状态的集合。 (2)T是有限个带符号的集合。 (3)I是输入符号的集合,IT。(4)b是唯一的空白符,b∈T-I。 (5)q0是初始状态。 (6)qf是终止(或接受)状态。 (7)δ是移动函数。它是从QTk的某一子集映射到Q (T{L,R,S})k的函数。
4
9.1.1 随机存取机RAM
3、 RAM程序的耗费标准
标准一:均匀耗费标准 在均匀耗费标准下,每条RAM指令需要一个单位时间;每 个寄存器占用一个单位空间。以后除特别注明,RAM程序的复杂 性将按照均匀耗费标准衡量。 标准二:对数耗费标准 对数耗费标准是基于这样的假定,即执行一条指令的耗费 与以二进制表示的指令的操作数长度成比例。在RAM计算模型下, 假定一个寄存器可存放一个任意大小的整数。因此若设l(i)是整 数i所占的二进制位数,则 log | i | i 0
8
9.1.3 图灵机
与RAM模型类似,图灵机既可作为语言接受器,也可作为 计算函数的装置。 图灵机M的时间复杂性T(n)是它处理所有长度为n的输入所 需的最大计算步数。如果对某个长度为n的输入,图灵机不停机, T(n)对这个n值无定义。 图灵机的空间复杂性S(n)是它处理所有长度为n的输入时, 在k条带上所使用过的方格数的总和。如果某个读写头无限地向 右移动而不停机,S(n)也无定义。
l (i ) 1 i0
5
9.1.2 随机存取存储程序机RASP
1、RASP的结构
RASP的整体结构类似于RAM,所不同的是RASP的程序是存 储在寄存器中的。每条RASP指令占据2个连续的寄存器。第一个 寄存器存放操作码的编码,第二个寄存器存放地址。RASP指令用 整数进行编码。
2、RASP程序的复杂性



10
9.2.1 非确定性图灵机
在图灵机计算模型中,移动函数δ是单值的,即对于QTk 中的每一个值,当它属于δ的定义域时,Q(T{L,R,S})k中只 有唯一的值与之对应,称这种图灵机为确定性图灵机,简记为 DTM(Deterministic Turing Machine)。
非确定性图灵机( NDTM ):一个k带的非确定性图灵机M 是一个7元组:(Q,T,I,δ,b,q0,qf)。与确定性图灵机不同 的是非确定性图灵机允许移动函数δ具有不确定性,即对于QTk 中的每一个值(q;x1,x2,…,xk),当它属于δ的定义域时, Q(T{L,R,S})k中有唯一的一个子集δ(q;x1,x2,…,xk)与之对 应。可以在δ(q;x1,x2,…,xk)中随意选定一个值作为它的函数值。

算模型 理解非确定性图灵机的概念 理解P类与NP类语言的概念 理解NP完全问题的概念 理解近似算法的性能比及多项式时间近似格式的概念 通过范例学习NP完全问题的近似算法 (1)顶点覆盖问题; (2)旅行售货员问题; (3)集合覆盖问题; (4)子集和问题。
1
9.1 计算模型

在进行问题的计算复杂性分析之前,首先必须建立求解问题所用的计算模型,包 括定义该计算模型中所用的基本运算。 建立计算模型的目的是为了使问题的计算复杂性分析有一个共同的客观尺度。 3个基本计算模型: 随机存取机RAM(Random Access Machine); 随机存取存储程序机RASP(Random Access Stored Program Machine) 图灵机(Turing Machine)。 这3个计算模型在计算能力上是等价的,但在计算速度上是不同的。
9
9.2 P类与NP类问题

一般地说,将可由多项式时间算法求解的问题看作是易处理的问题,而将需要超 多项式时间才能求解的问题看作是难处理的问题。 有许多问题,从表面上看似乎并不比排序或图的搜索等问题更困难,然而至今人 们还没有找到解决这些问题的多项式时间算法,也没有人能够证明这些问题需要 超多项式时间下界。 在图灵机计算模型下,这类问题的计算复杂性至今未知。 为了研究这类问题的计算复杂性,人们提出了另一个能力更强的计算模型,即非 确定性图灵机计算模型,简记为NDTM(Nondeterministic Turing Machine)。 在非确定性图灵机计算模型下,许多问题可以在多项式时间内求解。
根据有限状态控制器的当前状态及每个读写头读到的带符号,图灵机的一个计算 步可实现下面3个操作之一或全部。 (1)改变有限状态控制器中的状态。 (2)清除当前读写头下的方格中原有带符号并写上新的带符号。 (3)独立地将任何一个或所有读写头,向左移动一个方格(L)或向右移动一个方格(R) 或停在当前单元不动(S)。
相关文档
最新文档