五年级几何体0的计算
2024年五年级数学上册全册完整课件苏教版

2024年五年级数学上册全册完整课件苏教版一、教学内容1. 小数的乘法和除法2. 多边形的面积3. 简易方程4. 概率初步5. 体积和体积单位二、教学目标1. 理解并掌握小数的乘法和除法运算规则。
2. 学会计算多边形的面积,并能应用于实际问题。
3. 掌握简易方程的解法,提高问题解决能力。
4. 理解概率的基本概念,能进行简单的概率计算。
5. 掌握体积和体积单位的概念,会进行相应的计算。
三、教学难点与重点1. 教学难点:小数的乘除法运算,多边形面积的计算,简易方程的解法。
2. 教学重点:小数乘除法的实际应用,多边形面积公式的推导,概率的基本概念。
四、教具与学具准备1. 教具:多媒体课件,挂图,计算器,多边形模型。
2. 学具:练习本,铅笔,尺子,剪刀,彩纸。
五、教学过程1. 实践情景引入:利用多媒体课件展示购物时小数乘除法的应用,让学生感受数学与生活的紧密联系。
2. 例题讲解:(1)小数的乘法和除法:通过例题讲解,让学生掌握小数乘除法的运算规则。
(2)多边形的面积:利用多边形模型和彩纸,引导学生推导多边形面积公式。
(3)简易方程:通过实际问题的引入,让学生学会解简易方程。
(4)概率初步:通过实验和游戏,让学生理解概率的基本概念。
(5)体积和体积单位:通过实际操作,让学生掌握体积的概念和计算方法。
3. 随堂练习:设计有针对性的练习题,让学生巩固所学知识。
六、板书设计1. 小数的乘法和除法运算规则。
2. 多边形面积的计算公式。
3. 简易方程的解法步骤。
4. 概率的基本概念。
5. 体积和体积单位的关系。
七、作业设计1. 作业题目:(1)小数乘除法练习题。
(2)计算多边形面积的题目。
(3)解简易方程的实际问题。
(4)概率计算题。
(5)体积计算题。
答案:见附件。
八、课后反思及拓展延伸2. 拓展延伸:(1)组织学生进行小数乘除法竞赛,提高运算速度和准确性。
(2)让学生收集生活中的多边形物体,计算其面积,体会数学的实用性。
人教版小学五年级数学上册讲解

人教版小学五年级数学上册讲解五年级数学是小学学习生活中不可或缺的要素,它不仅丰富孩子们学习生活,也培养孩子们认真负责、求实创新的思维能力。
人教版小学五年级数学上册,融合了现代教育理论和经典教材内容,全面提升学生数学知识和能力,培养孩子们独立思考、系统总结、全面检验的能力。
本文将对人教版小学五年级数学上册教材进行详细讲解,以期达到让更多的孩子深入了解五年级数学的目的。
人教版小学五年级数学上册包含5个单元:数的概念、数的运算、图形与几何、数量关系及其变化以及应用题。
其中,数的概念单元主要讲解小学生对于数概念的认识,包括正负数、整数、负数、有理数等概念的深入理解;数的运算单元主要讲解加减乘除四则运算,以及理解等式的意义;图形与几何单元主要围绕正多边形、几何体等图形的认识;数量关系及其变化单元主要讲解二元一次方程的求解;应用题单元主要讲解多种类型的应用题求解,以培养孩子们应用数学解决实际问题的能力。
首先,让我们来看看数的概念单元,这一单元主要讲解小学生对于数概念的认识,目的是为了让学生更加深刻地理解小学数学中所涉及到的各种概念,如正、负、整数、有理数等。
本单元重点讲解如何去理解和区分不同的数概念,并利用各种练习题强化学生的记忆。
除了呈现各种数的概念,还给出了一些有关计算的练习,帮助学生更加熟练地掌握基本的计算技巧。
其次,让我们来看看数的运算单元,本单元主要讲解如何去理解和操作四则运算,同时也引出了如何理解等式的概念。
本单元以具有实际意义的问题开头,更有利于唤起学生对于数学的兴趣;教材中还包括了一些有关计算的练习,以培养孩子们对于其运算过程的熟练掌握,并给出了等式计算的练习,让学生理解等式的特性,有效地去求解问题。
紧接着,让我们来看看图形与几何单元,本单元重点讲解正多边形以及几何体,详细地介绍了各种图形的特点,以及几何体的参数计算等内容。
教材中给出了大量的示例图,以及具有实际意义的问题,让学生更加全面地掌握有关几何图形的知识,并且体会到图形和几何体的形象感受。
五年级数学下册几何形体周长、面积、体积计算公式大全

五年级数学下册
【周长、面积、体积】计算公式大全
面积公式
正方形的面积=边长×边长S=a×a=a²
长方形的面积=长×宽S=a×b
三角形的面积=底×高÷2S=a×h÷2
平行四边形的面积=底×高S=a×h
梯形的面积=(上底+下底)×高÷2S=(a+b)×h÷2
圆的面积=半径×半径×πS=πr²
圆柱的侧面积=底面周长×高S=ch=πdh=2πrh
S=ch+2s=2πrh+2πr²圆柱的表面积=底面周长×高+两头的
圆的面积
体积公式
长方体的体积=底面积×高=长×宽×
V=abh
高
正方体的体积=棱长×棱长×棱长V=aaa=a³
圆柱的体积=底面积×高V=Sh
圆锥的体积=底面积×高+3V=Sh/3
周长公式
长方形周长=(长+宽)×2C=2(a+b)
正方形周长=边长×4C=4a
圆的周长=圆周率×直径C=πd=2πr
半圆的周长=圆周长的一半+直径C=πr+d=πr+2r。
苏教版五年级数学知识点总结

苏教版五年级数学知识点总结一、数的认识与应用1. 数的认识与数的读法- 了解整数的概念,正数、负数的定义及相互关系- 掌握数码读法和数词读法,能熟练读写整数、小数和分数- 熟悉百、十、个位的读法和表示方法- 能将数按大小顺序排列- 能够在数线上表示数的位置2. 数中的奇偶性- 理解奇数和偶数的概念- 能判断一个数是奇数还是偶数3. 数的性质- 了解数的相反数和绝对值的概念- 能够判断数的大小关系- 理解数的分数形式和小数形式的相互转化- 能够对数进行估算和近似4. 数的应用- 能将数应用到日常生活中,如身高、体重等的测量二、小数1. 小数的定义与认识- 理解小数的概念,了解小数的意义- 会读写小数,熟悉小数点的位置和使用方法2. 小数的比较与排序- 掌握小数的大小比较方法- 能够将一组小数按大小排序3. 小数的加减运算- 掌握小数的加减法运算方法- 能够进行简单的小数加减法运算4. 小数的乘除运算- 理解小数的乘法运算- 熟悉小数的乘法运算规则- 了解小数的除法运算,能够进行小数的除法运算5. 小数与百分数之间的转化- 掌握小数与百分数之间的转化方法- 能够将小数转化为百分数,或将百分数转化为小数6. 学会使用小数进行实际问题解答- 能够运用小数解决生活中的实际问题三、分数1. 分数的认识- 理解分数的含义,了解分数的意义和表示方法- 能够将物体的部分与整体、图形的部分与整体用分数表示2. 分数的简化与扩展- 掌握分数的简化和扩展方法- 能够将一个分数化为最简形式,或将最简分数扩展为相等的分数3. 分数的比较与排序- 掌握分数的大小比较方法- 能够将一组分数按大小排序4. 分数的加法与减法- 掌握分数的加减法运算方法- 能够进行简单的分数加减法运算5. 分数的乘法与除法- 理解分数的乘法运算- 熟悉分数的乘法运算规则- 了解分数的除法运算,能够进行分数的除法运算6. 学会使用分数进行实际问题解答- 能够运用分数解决生活中的实际问题四、整数1. 整数的认识与应用- 理解整数的概念和意义- 能够在数线上表示整数的位置- 掌握整数的读法和书写方法2. 整数间的加法与减法运算- 理解整数的加法和减法运算规则,掌握运算法则- 能够进行整数的加减法运算,包括正数相加、负数相加、正数相减、负数相减等情况3. 整数的乘法与除法运算- 掌握整数的乘法和除法运算规则- 能够进行整数的乘除法运算,包括正数相乘、负数相乘、正数相除、负数相除等情况4. 整数的应用- 能够将整数应用到生活中的实际问题中,如温度变化、海拔高度等五、图形的认识与应用1. 图形与常见物体形状的关系- 理解图形与物体形状之间的对应关系,能够根据图形名称画出相应形状2. 直角、直线- 了解直角和直线的概念,能够根据题意画出具有直角的图形- 能够根据给定直线段的长度判断两点间是否垂直或平行3. 角的认识与度量- 了解角的概念,掌握角的命名和记号方法- 能够判断角的大小,如锐角、直角、钝角4. 三角形- 了解三角形的概念,掌握三角形的分类和命名方法- 能够根据给定条件画出特殊的三角形,如等边三角形、等腰三角形和直角三角形等5. 四边形- 了解四边形的概念,掌握四边形的分类和命名方法- 能够根据给定条件画出特殊的四边形,如矩形、正方形、菱形和平行四边形等6. 园的认识与运用- 了解圆的概念,掌握圆的性质和命名方法- 能够计算圆的面积和周长7. 体的认识与应用- 了解各种常见的几何体,如立方体、长方体、球体等- 掌握这些几何体的性质、面积和体积的计算方法。
人教版小学数学五年级下册1-7单元各单元知识点思维导图

五下第二单元因数与倍数因数与倍数2,3,5的倍数特征质数和合数含义:因数倍数找因数的方法表示因数A.列乘法算式B.列除法算式A.列举法B.集合法找倍数的方法表示倍数因数的特征倍数的特征如果a÷b=c(a,b,c是非0自然数),那么a是b,c的倍数,b,c是a的因数。
A.一个数的因数是有限的B.最小的因数是1,最大的因数是本身A.列乘法算式B.列除法算式A.列举法B.集合法A.一个数的倍数是无限的B.最小的倍数是本身,没有最大的倍数2的倍数特征5的倍数特征3的倍数特征A.末位是0,2,4,6,8的数都是2的倍数B.奇数与偶数偶数是2的倍数(包括0)奇数不是2的倍数末位是0或5的数都是5的倍数各个数位数字之和是3的倍数质数合数1既不是质数也不是合数A.一个数除了1和它本身没有其他因数一个数除了1和它本身还有其他因数B.最小的质数是2C.100以内的质数2357和11,13后面是17,19,23,29;31,37,41;43,47,53;59,61,6771,73,79;83,89,97奇偶性探究五下第三单元长方体和正方体1.长方体和正方体的认识2.长方体和正方体的表面积3.长方体和正方体体积棱长之和A.长方体:4x(长+宽+高)B.正方体:12x棱长长方体的侧面展开图(1)长方体(2)正方体(长x宽+长x高+宽x高)x26x棱长x棱长2x(ab+ah+bh)(1)体积含义:物体所占的空间大小(2)体积单位:立方厘米,立方分米,立方米(3)体积计算公式A.长方体B.正方体长x宽x高棱长x棱长x棱长abh4.容积和容积单位5.求不规则物体的体积(1)含义:容器所能容纳物体的体积(2)容积单位:升L,毫升ml(3)进率:1L=1000ml1L=1立方分米1ml=1立方厘米底面积x高底面积x高(1)等积变形法(2)排水法把不规则的物体转变成规则的计算排水的体积正方体的侧面展开图平方数的总结人教版小数五下第四单元分数的意义和性质1.分数的意义2.真分数和假分数3.分数的基本性质4.约分5.通分6.分数与小数的互化(1)单位“1”的意义(2)分数的意义一些物体可以看成一个整体A.把单位“1”平均分成若干份,表示其中的一份,或者几份。
(完整版)五年级立体几何拓展----三视图专属奥数讲义

学科教师辅导讲义班级:年 级: 五年级 辅导科目:小学思维学科教师:上课时间授课主题 立体几何拓展----三视图一.三视图在观察物体的时候,我们往往可以从不同的角度进行观察.角度不同,看到的风景就会不同.比如:我们可以从正面看,上面看,左面看,看到的图形分别称为正视图,俯视图和左视图.并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是知识图谱错题回顾三视图知识精讲相同的.对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积. 二.正方体的展开图我们采用不同的剪开方法,共可以得到下面11种展开图.三.长方体的展开图观察上图可以发现,长方体的展开图由6个长方形组成,相对面的面积相等,即上面=下面=长×宽,左面=右面=宽×高,前面=后面=长×高. 四.判断图形折叠后能否围成长方体或正方体的方法.判断一个图形折叠后能否围成正方体或长方体,首先,要依据它们各自展开图的特点判断;其次,可以运用空间想象或实际操作进一步判断.重难点:展开图、三视图及三视图求个数和表面积.上 后 前右左下 展开后由上、下、左、右、前、后六个正方形面组成,这六个正方形面的面积都相等.高宽长右面左面 后面下面 前面 上面三点剖析题模精选题模一:展开图与对立面例1.1.1 一个正方体的六个面上分别写着A ,B ,C ,D ,E ,F 六个字母.请你根据图中的三种摆放情况,判断每个字母的对面是______________,______________,______________【答案】 B 与D 相对,E 与A 相对,C 与F 相对 【解析】 由于正方体的6个面上写了6个不同的字母,那么每个字母在正方体的面上只能出现1次,如果2个字母在相邻的面上出现,那么它们一定不能相对.第一步,先看前2种摆放情况:在这2种摆放情况中,只有字母B 出现了2次,那么由第一种摆放可知,B 不与A 相对,也不与F 相对;由第二种摆放可知,B 不与C 相对,也不与E 相对.那么在所有的字母中,B 只能与D 相对.第二步,再看后2种摆放情况:在这2种摆放情况中,只有字母E 出现了2次,那么由第二种摆放可知,E 不与B 相对,也不与C 相对;由第三种摆放可知,E 不与D 相对,也不与F 相对.那么在所有的字母中,E 只能与A 相对.正方体有三个对面,因B 与D 相对,E 与A 相对,那么第三组对面上一定是C 与F 相对.例1.1.2 图中的四个正方体标字母的方式是完全相同的,请你利用图中已知的信息,判断A 、B 、C 的对面分别标的是哪个字母?【答案】 A 的对面标有D ,B 的对面标有F ,C 的对面标有E【解析】 由已知条件,标有C ,D 的两个面不能相对,那么或A 的对面标有D ,或B 的对面标有D .如果标有D ,A 的两个面相对,那么“标有C ,D 的两个面不能相对”,“标有E ,A 的两个面也不能相对”这两个条件都可以满足.注意到当D 在朝右的面,E 在朝上的面时,F 在朝前的面上,那么只能是标有E ,C 的两个面相对,而标有F ,B 的两个面相对.经检验,这种情况满足题目要求.如果标有D ,B 的两个面相对,那么由于标有E ,A 的两个面也不能相对,于是标有A 的对面就是标有F 的面,而标有C 的对面就是标有E 的面.此时D 在朝后的面上,E 在朝左的面上,F 在朝下的面上.我们把六面体旋转,把D 转到朝右的面,并把E 转到朝上的面,BFA EBC FED A BCD CCEAEF D此时朝前的面上标的是A ,而朝后的面上标的是F ,与题意不符.综上所述,满足题意的答案只有一个:A 的对面标有D ,B 的对面标有F ,C 的对面标有E .例1.1.3 如图,第1个方格内放着一个正方体木块,木块六个面上分别写着ABCDEF 六个字母.其中A 与D 相对,B 与E 相对,C 与F 相对.现在将木块标有字母A 的那个面朝上,标有字母D 的那个面朝下放在第1个方格内,然后让木块按照箭头指向,沿着图中方格滚动,当木块滚到21格时,木块向上的面上写的是哪个字母?【答案】 字母A【解析】 发现木块向左滚4格后,各个面上标的字母与初始时的情况完全一致.那么木块朝其它方向滚时也有类似的情况,即木块向任意方向连滚4格,它的各个面上标的字母不变. 所以木块向左滚4格到第5格时,各个面上标的字母与在第1格时的情况完全一致.再向下滚4格到第9格,再向右滚4格到第13格,再向下滚4格到第17格,最后向左滚4格到第21格,每次都是朝同一方向滚4格,因此在第5格,第9格,第13格,第17格,第21格木块向上的面上总是写的字母A .例1.1.4 如图,在一个正方体的表面上写着1~6这6个自然数,并且1对着4,2对着5,3对着6.现在将正方体的一些棱剪开,使它的表面展开图如图所示.如果只知道1和2所在的面,那么6应该在哪个面上(写出字母代号)?【答案】 A【解析】 对于立方体展开图,我们可以把任一个面当作底面,把它还原成立方体的表面.如图1,观察虚线圈住的部分,可以发现写有1,A ,B 的三个面两两相邻;再观察图2的虚线圈住的部分,发现写有A ,B ,C 的三个面也两两相邻.此时,写有1的面与A 面,B 面都相邻,C 面也与A 面,B 面都相邻,因此写有1的面与C 面相对,即C 面上写的是4.1 AB C 2D 3 121A B C 2D1A B C 2D1与C 相对,C 面上写的是421 5920 19观察图3中的虚线圈住的部分,容易看出写有2的面与B 面相对,因此B 面上写的是5.则立方体展开图就如图4所示.还剩下A 面与D 面上的数字没有确定,这两个面上分别写有3和6.由于写有1的面,写有5的面与A 面两两相邻,把这三个面还原到立方体中.在图2所示的立方体中,5与2相对,在立方体朝左的侧面上;1在朝前的侧面上.在展开图中以写有1的面为朝前的侧面,A 面为下底面,则写有5的面恰好在朝左的侧面上.此时写有1的面,写有5的面都对齐了,而原立方体中下底面写有数字6,因此A 面上就是6.例1.1.5 下图是正方体,四边形APQC 是表示用平面截正方体的截面,截面的线表现在展开图的哪里呢?把大致的图形在右面展开图里画出来.【答案】 见解析【解析】 截线在展开图中如图所示:例1.1.6 右图是一个立体图形的平面展开图,图中的每个小方格都是边长为1的正方形.现在将其沿实线...折叠,还原成原来的立体图形,那么立体图形的体积等于_________. 图3 1A B 4 2D2与B 相对, B 面上写的是5图41 A 54 2DBPEAD CB GHQFAEDCB HGFA . 3B . 4C . 5D . 6 【答案】B【解析】 根据实线还原,体积为4. 题模二:三视图求表面积例1.2.1 下图是由5个相同的正方体木块搭成的,从上面看到的图形是( ).A . A 图B . B 图C . C 图D . D 图【答案】C【解析】 5个在原图均已看到,易知C 符合要求.例1.2.2 右图是由18个棱长为1cm 的小正方形拼成的立体图形,它的表面积是( )平方厘米.A . 44B . 46C . 48D . 50【答案】C【解析】 从正面、左面、上面分别可看见8、7、9块,故表面积为()21879248cm ⨯++⨯=.例1.2.3 右图中的一些积木是由16块棱长为2cm 的正方体堆成的,它的表面积是________2cm .【答案】 200D .B .C .A .【解析】 从前到后的3面依次有2块、5块、7块,因此还剩162572---=块,为可看见的1块与其下方的1块.由此易知正视图、俯视图、左视图分别能看到7块、9块、8块,此外离我们最近的2块有两个面从6个方向均无法看到,综上共可看到()7982250++⨯+=个面,表面积为22250200cm ⨯=.例 1.2.4 图中的立体是由大小相同的若干单位正方体积木搭成的.这样的积木一共有多少【答案】 37;三视图如下图所示;102【解析】 将此图分为从左到右的5层,分别有16、9、5、6、1块,故共有16956137++++=块.三视图见答案,分别可看见17、15、16块,其中左视图有3块“被遮挡”,因此表面积为()17151632102+++⨯=⎡⎤⎣⎦.例1.2.5 图中的立体图形由11个棱长为1的立方块搭成,这个立体图形的表面积为_______.【答案】34【解析】 按一定的顺序,从不同的角度来看这个立体图形的表面的面积. 题模三:已知三视图反推个数例1.3.1 这个图形最少是由( )个正方体整齐堆放而成的.正视图 俯视图 左视图A.12B.13C.14D.15【答案】B【解析】从上面看下去,最少需要:122412113++++++=.例1.3.2此图是某几何体从正面和左面看到的图形.若该几何体是由若干个棱长为1的正方体垒成的,则这个几何体的体积最小是________.【答案】6【解析】根据正视图,理论上最少需要6块.而6块可以构造出来,例如,其俯视图如下图所示.因此,体积最小为3166⨯=.例 1.3.3一个立体图形,从前面,上面,右边三个方向看到的图形都如图所示,是一个样的,那么该立体图形最多由__________块小立方体组成.【答案】23【解析】按由上到下逐层分析,各层的小立方体数目分别不超过1个、4个、8个、10个,所以该立体图形最多由23个小立方体组成.例 1.3.4有一些大小相同的正方形木块堆成一堆,从上往下看是图3-1,从前往后看是图3-2,从左往右看是图3-3,那么这堆木块最多有多少块?最少有多少块?1412212从正面看从左面看【答案】16,13【解析】43416+⨯=块,424113+⨯+=块.这堆木块最多有16块,最少有13块.例1.3.5地上有一堆小立方体,从上面看时如图1所示,从前面看时如图2所示,从左边看时如图3所示.这一堆立方体一共有几个?如果每个小立方体的棱长为1厘米,那么这堆立方体所堆成的立体图形表面积为多少平方厘米?【答案】10个;42平方厘米【解析】采用在俯视图上标数的方法来求解,只要知道俯视图上的每格有几块小立方体,就可以很轻松的得到这堆立方体所形成的立体图形的样子.首先从俯视图很容易看出,有3个格子里是没有小立方体的,而其他6个格子里至少有一个小立方体.如下图,将所得信息填入俯视图中.结合俯视图和主视图,不难看出,有两格只有1块小立方体.将所得信息填入俯视图中.同样的,结合俯视图和左视图,又可以知道有一格只有1块小立方体.将所得信息填入俯视图中.图1 图2 图3从前面看1001我们来继续考虑,左视图中最左边一排有2块小立方体,所以俯视图左上角处有2块小立方体.将所得信息填入俯视图中.同理,主视图最右边一排有2块小立方体,所以俯视图最右边中间处有2块小立方体.将所得信息填入俯视图中.不难看出,俯视图中最后剩下的那块有3个小立方体,所以俯视图中每格的小立方体数如下:于是这一堆立方体一共有21321110+++++=个. 接着很容易得到这个立体图形的样子,如下图.上下各能看到6个面,前后各能看到6个面,左右各能看到6个面,同时注意到立体图形的中间共有6个会互相遮挡的面,所以表面积是()2666642⨯+++=平方厘米.从左边看1 0 0 012 1 0 0 012 1 0 0 2 0 112 1 03 0 2 011随练1.1将一正方体纸盒沿右图所示的粗实线剪开,展开成平面图,其展开图的形状为().A.A图B.B图C.C图D.D图【答案】B【解析】竖向只剪了1刀,故前、后、左、右四个面应在一条线上,排除A、D.易知上、下两面不在一条线上,排除C,故选B.随练1.2水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如下图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面.则“祝”、“你”、“前”分别表示正方体的________________________.【答案】后面、上面、左面【解析】易知你、程相对,前、锦相对,祝、似相对,因此“祝”、“你”、“前”分别表示正方体的后面、上面、左面.随练1.3小明把五颗完全相同的骰子拼摆成一排(如图),那么这五颗骰子底面上的点数之和是__________.【答案】16【解析】根据已知推出(4,5)(1,3)(2,6)互为对立面,所以这五颗骰子底面上的点数之和是6152216++++=.随练1.4右图是由八个相同的小正方体组成而成的几何体,则从正面观察,得到的平面图随堂练习形是__________.序号)【答案】 ②【解析】 从正面看到图②,从上面看到图①,从右面看到图③.所以正确答案是图②.随练1.5 由棱长为1的正方体搭成如图所示的图形,共有__________个正方体,它的表面积是__________.【答案】 10;34【解析】 第一层有8个,第二层有2个,共10个.其三视图分别能看到4、5、8个,故表面积为()11458234⨯⨯++⨯=.随练1.6 如图,有9个边长为1米的正方体,如图所示堆成一个立体图形.该立体图形的表面积等于__________平方米.【答案】 38【解析】 利用三视图.从前面、右面、上面看依次如图所示.所以该立体图形的表面积是()26672138++⨯⨯=平方米.随练1.7 如图6,用若干个棱长为1的小正方体堆成一个大的几何体,这个几何体的表面积(含底面积)是__________.① ② ③ ④【答案】90【解析】根据三视图,大的几何体的表面积等于正视图面积+俯视图面积+右视图面积的2倍,所以是()2++⨯⨯=.1415162190随练 1.8用棱长是1厘米的小立方体拼成如图所示的立体图形,这个图形的表面积是__________平方厘米.【答案】46平方厘米【解析】如图1,从立体图形上方和下方看去,看到的都是9块小正方形.面积是9平方厘米.图1图2从四个侧面看去,看到的是图2形式的7块小正方形,面积是7平方厘米.所以立体图形的表面积为927446⨯+⨯=平方厘米.随练1.9把若干个棱长为1厘米的小正方体木块搭成一个图形,从上面和前面看到的都是如图所示的情形,这个图形最多需要__________个这样的小正方体,最少需要__________个这样的小正方体.【答案】9;7【解析】由从上方看到的结果可知第一层必有5个,且第二层至多5个;由从前面看到的结果可知共有2层,且第二层至少2个.再结合两个视图可知第二层至多4个.综上,最多9个,最少7个.作业1一个数学玩具的包装盒是正方体,其表面展开图如下.现在每方格内都填上相应的数字.已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是_____________.【答案】3,1,2【解析】正方体的平面展开图中,相对面之间一定隔着一个正方形,所以在此正方体上与“A”相对的面上的数是“0”.与“B”相对的面上的数是“2”.与“C”相对的面上的数是“1”.所以A、B、C内的三个数字依次是3,1,2.作业2把1至6各一个分别写在正方形的六个面上,每个面只写一个数字,且1与4相对,2与5相对,3与6相对,从某个角度看到的三个面上的数字如图(a)所示,从另一个角度看到的三个面如图(b)所示,那么图(b)中的“?”代表的数字是___________.A.2B.3C.4D.5【答案】A【解析】如图,4对面是1,所以在图a中把4翻到底面,顶部变成了1,如图b,而5C 2B 0A 1自我总结课后作业对面是2,所以当6转到正面时,5在左侧,右侧自然是2了,故答案是2..作业3下图由一个正五边形,五个长方形,五个等边三角形组成,它是一个立体图形的平面展开图,那么这个立体图形有__________条棱.【答案】20【解析】此立体图形,示意图如上:共20条棱.作业4用若干个棱长为1cm的小正方体码放成如图所示的立体,则这个立体的表面积(含下底面面积)等于___________2cm.【答案】60【解析】根据三视图,我们可知,此立体图形的前面与后面,左面与右面,上面与下面的表面积分别相等.所以我们只要知道前面有11个正方形,右面有8个正方形,上面有11个面,就可求出它露在外面的面共计()11811260++⨯=个正方形,所以它的表面积是2260160cm⨯=.作业5如图,把19个边长为1厘米正方体重叠起来堆成如图所示的立方体,这个立方体的表面积是______平方厘米.【答案】54【解析】从上下左右前后六个方向看,分别可以看到9、9、8、8、10、10个小正方形面,所以总的表面积为54平方厘米.作业6图中的立体是由大小相同的若干单位正方体积木搭成的.这样的积木一共有多少块?画出它的三视图,表面积是多少?【答案】30;三视图如下图所示;76【解析】将此图分为从左到右的4层,分别有11、7、5、7块,故共有1175730+++=块.三视图见答案,分别可看见13、12、11块,其中左视图有2块“被遮挡”,因此表面积为()1312112276+++⨯=⎡⎤⎣⎦.作业7由若干个相同的正方体木块搭成的立体,从正面和左面看到的图形都是右图,搭这样的立体,最少用()个这样的木块.A.4B.5C.6D.8【答案】A【解析】按如图方式摆放即可.正视图俯视图左视图作业8由若干个棱长为1的正方体堆成的立体图形,其正视图、俯视图和左视图如下所示,请问这个立体图形体积是________.正视图俯视图左视图【答案】5【解析】由正视图和左视图可知共两层,且顶层只有1块,由俯视图可知底层有4块,故共有5块,体积为5.作业9一仓库里堆放着若干个完全相同的正方体货箱,这堆货箱的三视图如图所示,这堆真方体货箱共有______________个.【答案】9【解析】俯视图确定基座,分析每块上的高度.。
人教版小学五年级下册数学《图形与几何(2)》天天练

1.下面4个几何体都是由棱长1cm的小正方体摆成的。
①
②
③
④
(1)下面是小明从左面看到的图形,它们分别对应的是哪个几何体?
(填序号)
(④)
( ①)
( ③)
(② )
(2)几何体①、②、③、④的体积依次是( 6 )cm³、( 11 )cm³、 ( 11 )cm³、( 17 )cm³。 (3)如果要把几何体①②③④分别继续补搭成一个正方体,则几何体① 至少还需要( 2 )个小正方体;几何体②至少还需要(114)个小正方 体;几何体③至少还需要( 53)个小正方体;几何体④至少还需要 ( 10 )个小正方体。
图二:(40-5)×(20-000(cm³)
答:可以像图一、图二、图三那样制作,做成的小铁盒
的容积分别是1500cm³、1750cm³和2000cm³。
4.一个长方体,把它的高减少5cm,正好是一个正方体,表面 积减少120cm²。原来长方体的体积是多少?
2.画出箭头绕点O旋转90°后的图形。(只画轮廓线)
3.用一张长40cm、宽20cm的长方形铁皮制作一个高5cm的无盖小铁盒。画
一画,可以怎样制作?做成的小铁盒的容积是多少?(铁皮的厚度忽略
不计,接缝处焊起来)
40
40
5
5
5
5
5
5
5
5
5555
20 20 20
图一
图二
图三 40
图一:(40-5×2)×(20-5×2)×5=1500(cm³)
一到五年级数学公式人教版

一到五年级数学公式人教版一年级1. 数的加减:自然数的加减法定律:a + b = b + a,a + (b + c) = (a + b) + c,a + 0 = a,a – 0 = a。
2. 数的乘除:自然数的乘除法定律:a × b = b × a,a × (b × c) = (a × b) ×c,a × 1 = a,a ÷ 1 = a。
3. 尺寸:同种物体的长、宽、高、重量等尺寸比较,解决问题。
二年级1. 数的加减:整数的加减法定律:a + b = b + a,a + (b + c) = (a + b) + c,a + 0 = a,a – 0 = a,a + (-b) = a – b,a – (-b) = a + b。
2. 数的乘除:整数的乘法法定律:a × b = b × a,a × (b × c) = (a × b) × c,a × 0 = 0,a × (1) = a,a ÷ 1 = a,a ÷ (-1) = -a。
3. 尺寸:运用同种物体的长、宽、高、重量等尺寸的比较,解决问题。
三年级1. 数的加减:有理数的加减法定律:a + b = b + a,a + (b + c) = (a + b) + c,a + 0 = a,a – 0 = a,a + (-b) = a - b,a - (-b) = a + b。
2. 数的乘除:有理数的乘法法定律:a × b = b × a,a × (b × c) = (a × b) ×c,a × 0 = 0,a × (1) = a,a ÷ 1 = a,a ÷ (-1) = -a。
3. 尺寸:运用同种物体的长、宽、高、重量等尺寸的比较,在实际操作中,用几何体形状及它们之间的关系,来分析、解释和推理问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间与图形教师辅导讲义——立体图形的知识与应用知识要点
长方体、正方体、圆柱体、圆锥体的表面积及体积
1.表面积:物体表面面积的总和,叫做物体的表面积。
表面积通常用S表示。
常用面积单位是平方千米、平方米、平方分米、平方厘米。
2.体积:物体所占空间的大小,叫做物体的体积。
体积通常用V表示。
常用体积单位是立方米、立方分米、立方厘米。
3.容积:箱子、油桶、仓库等所能容纳物体的体积,叫做它们的容积或容量。
常用容积单位是升、毫升。
4.体积与容积单位之间的换算:1立方分米=l升,1立方厘米=l毫升。
5.体积和容积的异同点
容积的计算方法跟体积的计算方法相同,但要从容器的里面量长、宽、高,而计算体积要从物体的外面量长、宽、高。
计量体积用体积单位,计量容积除了用体积单位外,还可以用容积单位升和毫升。
6. 立体图形的表面积、侧面积和体积计算公式
精典题型分析
1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米,表面积是多少平
方厘米。
(单位:厘米)
练习:学校生物小组做了一个昆虫箱(如图)。
昆虫箱的上、下、左、右面是木板,
前、后面装纱网。
①制作这样一个昆虫箱,至少需要多少平方厘米的木板?
②制作这样一个昆虫箱,至少需要多少平方厘米的纱网?
2、在一个长15分米,宽12分米的长方体水箱中,有10分米深的水。
如果在水中沉入一个棱长为30厘米的正
方体铁块,那么,水箱中水深多少分米?
练习1:一个长方体的玻璃缸内有一些水,水面距离上沿0.6
分米(如图)。
准备在缸内放入一块体积是60立方分米
的假山石(假山石能全部浸在水中),水会溢出吗?如
果会溢出,溢出多少立方分米?
练习2:一个正方体玻璃容器,从里面量棱长是2dm。
向容器中倒入5.5L水,再把一个苹果放入水中,这时量得容器内的水深是15cm。
这个苹果的体积是多少?
3、有一个长方体容器(如下图),长30厘米、宽20厘米、高10厘米,里面的水
深6厘米。
如果把这个容器盖紧,再朝左竖超来,里面的水深应该是多少厘米?
练习:一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如下图.已知它的容积为26.4
π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米.瓶子倒放时,空余部分
的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?
4、能力拓展题。
下图由19个棱长是2厘米的小正方体重叠而成。
求这个立体图形的表面积。
课后作业:
1、一个棱长4dm的正方体钢坯的体积是()dm3,如果把它锻造成一个底面积是20dm2的长方体,这个长方体的高是()dm。
2、一段长方体木材长2米,把它横截成三段后,表面积增加了4平方分米,这段长方体木材原来的体积是
()立方分米。
3、右图是由棱长1厘米的正方体拼成的图形,它的表面积
是()㎝²,体积是()㎝³。
4、下面三个图形中,不是正方体表面展开图的是()。
A...
5、一个长方体被挖掉一小块(如图),下面说法完全正确的是()。
A.体积减少,表面积也减少。
B.体积减少,表面积增加。
C.体积减少,表面积不变。
7、右图是由棱长1厘米的小正方体拼成的,从前面看到的图形的
面积是()平方厘米。
8、从一个正方体木块上截下三个小正方体(如图),
留在原来大正方体上的截面面积是6平方厘米,
截下部分的体积是()立方厘米。
9、用一根铁丝焊接成一个长10厘米、宽3厘米、高2厘米的长方体框架,至少需要铁丝()厘米。
拓展计算:
1、学校要挖一个长方形状沙坑,长4米,宽2米,深0.4米,需要多少立方米的黄沙才能填满?
3、把两个表面积是24平方分米的立方体摆在一起,拼成一个长方体,那么这个长方体的体积和表面积各是多少?。