立体几何中的计算与位置关系
高中立体几何知识点总结

一、空间点、线、面的位置关系1.1 点与点•点的定义:空间中的任意一点。
•点的坐标表示:a⃗=(a x,a y,a z)。
1.2 直线与直线•直线的定义:无限延伸的平面内的所有点。
•直线的方程表示:r⃗=(x,y,z),其中Ax+By+Cz+D=0。
1.3 直线与平面•直线的平面方程表示:r⃗=(x,y,z),其中Ax+By+Cz+D=0。
•直线与平面的交点表示:设直线上的点为P(x0,y0,z0),则有Ax0+ By0+Cz0+D=0。
1.4 平面与平面•平面的定义:无限延伸的平面内的所有点。
•平面的方程表示:r⃗=(x,y,z),其中Ax+By+Cz+D=0。
1.5 平面与空间体•平面与空间体的交线表示:设空间体上的点为P(x0,y0,z0),则有Ax0+By0+Cz0+D=0。
二、空间几何体2.1 柱体•柱体的定义:底面为圆形或矩形,顶面与底面平行的空间几何体。
•柱体的体积公式:V=底面积×高。
2.2 锥体•锥体的定义:底面为圆形或三角形,顶点在底面内的空间几何体。
•锥体的体积公式:V=1底面积×高。
32.3 球体•球体的定义:所有点与球心等距的空间几何体。
•球体的体积公式:V=4πR3。
32.4 空间四边形•空间四边形的定义:四个顶点在空间中的四边形。
•空间四边形的面积公式:S=12|a⃗×b⃗⃗|,其中a⃗和b⃗⃗为四边形的两条对角线。
三、空间角的计算3.1 线线角•线线角的定义:两条直线之间的夹角。
•线线角的计算公式:θ=arccos(|a⃗⃗⋅b⃗⃗||a⃗⃗||b⃗⃗|),其中a⃗和b⃗⃗为两条直线的方向向量。
3.2 线面角•线面角的定义:直线与平面之间的夹角。
•线面角的计算公式:θ=arccos(|n⃗⃗⋅a⃗⃗||n⃗⃗||a⃗⃗|),其中n⃗⃗为平面的法向量,a⃗为直线的方向向量。
3.3 面面角•面面角的定义:两个平面之间的夹角。
•面面角的计算公式:θ=arccos(|n⃗⃗1⋅n⃗⃗2||n⃗⃗1||n⃗⃗2|),其中n⃗⃗1和n⃗⃗2为两个平面的法向量。
立体几何的基本概念、点线面位置关系及表面积、体积的计算小题综合2015-2024高考真题数学分项汇编

专题11立体几何的基本概念、点线面位置关系及表面积、体积的计算小题综合考点十年考情(2015-2024)命题趋势考点1点线面的位置关系及其判断(10年7考)2024·全国甲卷、2024·天津卷、2022·全国乙卷2021·浙江卷、2021·全国新Ⅱ卷、2019·全国卷2019·全国卷、2019·北京卷、2017·全国卷2016·浙江卷、2016·山东卷、2016·全国卷2015·浙江卷、2015·湖北卷、2015·广东卷2015·福建卷、2015·北京卷1.理解、掌握空间中点线面的位置关系及相关的图形和符号语言,熟练掌握平行关系的判定定理和性质定理及其应用,熟练掌握垂直关系的判定定理和性质定理及其应用,该内容是新高考卷的常考内容,需强化巩固复习.2.了解柱、锥、台体及简单组合体的结构特征及其相关性质,会运用柱体、锥体、台体等组合体的表面积和体积的计算公式求解相关问题,该内容是新高考卷的常考内容,一般给定柱、锥、台体及简单组合体,求对应的表面积与体积,需强化复习.考点2求几何体的体积(10年10考)2024·全国新Ⅰ卷、2024·天津卷、2024·全国甲卷2024·北京卷、2023·全国甲卷、2023·全国乙卷2023·全国新Ⅰ卷、2023·天津卷、2023·全国新Ⅰ卷2023·全国新Ⅱ卷、2022·天津卷、2022·全国甲卷2022·全国新Ⅰ卷、2022·全国新Ⅱ卷、2021·全国新Ⅱ卷2021·北京卷、2021·全国新Ⅰ卷、2020·海南卷2020·江苏卷、2019·江苏卷、2019·全国卷2019·天津卷、2018·江苏卷、2018·全国卷2018·天津卷、2018·天津卷、2017·全国卷2016·浙江卷、2015·上海卷、2015·江苏卷2015·全国卷、2015·山东卷、2015·山东卷考点3求几何体的侧面积、表面积(10年4考)2023·全国甲卷、2021·全国新Ⅰ卷、2021·全国甲卷2020·全国卷、2018·全国卷、2018·全国卷考点01点线面的位置关系及其判断1.(2024·全国甲卷·高考真题)设αβ、为两个平面,m n 、为两条直线,且m αβ= .下述四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则n α⊥或n β⊥③若//n α且//n β,则//m n ④若n 与α,β所成的角相等,则m n⊥其中所有真命题的编号是()A .①③B .②④C .①②③D .①③④2.(2024·天津·高考真题)若,m n 为两条不同的直线,α为一个平面,则下列结论中正确的是()A .若//m α,//n α,则m n ⊥B .若//,//m n αα,则//m n C .若//,αα⊥m n ,则m n⊥D .若//,αα⊥m n ,则m 与n 相交3.(2022·全国乙卷·高考真题)在正方体1111ABCD A B C D -中,E ,F 分别为,AB BC 的中点,则()A .平面1B EF ⊥平面1BDD B .平面1B EF ⊥平面1A BDC .平面1//B EF 平面1A ACD .平面1//B EF 平面11AC D4.(2021·浙江·高考真题)如图已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则()A .直线1A D 与直线1DB 垂直,直线//MN 平面ABCD B .直线1A D 与直线1D B 平行,直线MN ⊥平面11BDD BC .直线1AD 与直线1D B 相交,直线//MN 平面ABCD D .直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B 5.(2021·全国新Ⅱ卷·高考真题)(多选)如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足MN OP ⊥的是()A .B .C .D .6.(2019·全国·高考真题)如图,点N 为正方形ABCD 的中心,ECD ∆为正三角形,平面ECD ⊥平面,ABCD M是线段ED 的中点,则A .BM EN =,且直线,BM EN 是相交直线B .BM EN ≠,且直线,BM EN 是相交直线C .BM EN =,且直线,BM EN 是异面直线D .BM EN ≠,且直线,BM EN 是异面直线7.(2019·全国·高考真题)设α,β为两个平面,则//αβ的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.(2019·北京·高考真题)已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:.9.(2017·全国·高考真题)(多选)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是()A .B .C .D .10.(2016·浙江·高考真题)已知互相垂直的平面αβ,交于直线l.若直线m ,n 满足m ∥α,n ⊥β,则A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n11.(2016·山东·高考真题)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件12.(2016·全国·高考真题)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β.(2)如果m ⊥α,n ∥α,那么m ⊥n .(3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)13.(2015·浙江·高考真题)设α,β是两个不同的平面,l ,m 是两条不同的直线,且l ⊂α,m β⊂A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若//l β,则//αβD .若//αβ,则//l m14.(2015·湖北·高考真题)12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件15.(2015·广东·高考真题)若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是A .l 与1l ,2l 都相交B .l 与1l ,2l 都不相交C .l 至少与1l ,2l 中的一条相交D .l 至多与1l ,2l 中的一条相交16.(2015·福建·高考真题)若,l m 是两条不同的直线,m 垂直于平面α,则“l m ⊥”是“//l α”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件17.(2015·北京·高考真题)设α,β是两个不同的平面,m 是直线且m α⊂.“m β ”是“αβ ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件考点02求几何体的体积1.(2024·全国新Ⅰ卷·高考真题)圆锥的体积为()A .B .C .D .2.(2024·天津·高考真题)一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为()A B .142+C .2D .142-3.(2024·全国甲卷·高考真题)已知圆台甲、乙的上底面半径均为1r ,下底面半径均为2r ,圆台的母线长分别为()212r r -,()213r r -,则圆台甲与乙的体积之比为.4.(2024·北京·高考真题)汉代刘歆设计的“铜嘉量”是龠、合、升、斗、斛五量合一的标准量器,其中升量器、斗量器、斛量器的形状均可视为圆柱.若升、斗、斛量器的容积成公比为10的等比数列,底面直径依次为65mm,325mm,325mm ,且斛量器的高为230mm ,则斗量器的高为mm ,升量器的高为mm .5.(2023·全国甲卷·高考真题)在三棱锥-P ABC 中,ABC 是边长为2的等边三角形,2,PA PB PC ===则该棱锥的体积为()A .1B C .2D .36.(2023·全国乙卷·高考真题)已知圆锥POO 为底面圆心,PA ,PB 为圆锥的母线,120AOB ∠=︒,若PAB )A .πBC .3πD .7.(2023·全国新Ⅰ卷·高考真题)下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有()A .直径为0.99m 的球体B .所有棱长均为1.4m 的四面体C .底面直径为0.01m ,高为1.8m 的圆柱体D .底面直径为1.2m ,高为0.01m 的圆柱体8.(2023·天津·高考真题)在三棱锥-P ABC 中,点M,N 分别在棱PC,PB 上,且13PM PC =,23PN PB =,则三棱锥P AMN -和三棱锥-P ABC 的体积之比为()A .19B .29C .13D .499.(2023·全国新Ⅰ卷·高考真题)在正四棱台1111ABCD A B C D -中,1112,1,AB A B AA ===积为.10.(2023·全国新Ⅱ卷·高考真题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为.11.(2022·天津·高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为()A .23B .24C .26D .2712.(2022·全国甲卷·高考真题)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙()A B .C D13.(2022·全国新Ⅰ卷·高考真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m . 2.65≈)()A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯14.(2022·全国新Ⅱ卷·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则()A .322V V =B .31V V =C .312V V V =+D .3123V V =15.(2021·全国新Ⅱ卷·高考真题)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A .20+B .C .563D 16.(2021·北京·高考真题)某一时间段内,从天空降落到地面上的雨水,未经蒸发、渗漏、流失而在水平面上积聚的深度,称为这个时段的降雨量(单位:mm ).24h 降雨量的等级划分如下:等级24h 降雨量(精确到0.1)…………小雨0.1~9.9中雨10.0~24.9大雨25.0~49.9暴雨50.0~99.9…………在综合实践活动中,某小组自制了一个底面直径为200mm ,高为300mm 的圆锥形雨量器.若一次降雨过程中,该雨量器收集的24h 的雨水高度是150mm (如图所示),则这24h 降雨量的等级是A .小雨B .中雨C .大雨D .暴雨17.(2021·全国新Ⅰ卷·高考真题)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 18.(2020·海南·高考真题)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为19.(2020·江苏·高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半径为0.5cm ,则此六角螺帽毛坯的体积是cm 3.20.(2019·江苏·高考真题)如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是.21.(2019·全国·高考真题)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为30.9/g cm ,不考虑打印损耗,制作该模型所需原料的质量为g .22.(2019·天津·高考真题)若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.23.(2018·江苏·高考真题)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.24.(2018·全国·高考真题)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为8,则该圆锥的体积为.25.(2018·天津·高考真题)已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为.26.(2018·天津·高考真题)如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱锥A 1–BB 1D 1D 的体积为.27.(2017·全国·高考真题)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为.28.(2016·浙江·高考真题)如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是.29.(2015·上海·高考真题)若正三棱柱的所有棱长均为a ,且其体积为3,则=a .30.(2015·江苏·高考真题)现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.31.(2015·全国·高考真题)(2015新课标全国I 理科)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A .14斛B .22斛C .36斛D .66斛32.(2015·山东·高考真题)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为A .23πB .23πC .22πD .42π33.(2015·山东·高考真题)在梯形ABCD 中,90ABC ∠=︒,//AD BC ,222BC AD AB ===.将梯形ABCD 绕AD 所在直线旋转一周而形成的曲面所围成的几何体的体积为A .23πB .43πC .53πD .2π考点03求几何体的侧面积、表面积1.(2023·全国甲卷·高考真题)已知四棱锥P ABCD -的底面是边长为4的正方形,3,45PC PD PCA ==∠=︒,则PBC 的面积为()A .B .C .D .2.(2021·全国新Ⅰ卷·高考真题),其侧面展开图为一个半圆,则该圆锥的母线长为()A .2B .C .4D .3.(2021·全国甲卷·高考真题)已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为.4.(2020·全国·高考真题)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A B C D 5.(2018·全国·高考真题)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .B .12πC .D .10π6.(2018·全国·高考真题)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为,则该圆锥的侧面积为.。
高一立体几何题型及解题方法

高一立体几何题型及解题方法
高一立体几何是数学中的一个重要部分,也是高中数学中难度较大的内容之一。
下面介绍一些高一立体几何的题型及解题方法。
1. 空间向量题型
空间向量题型是高一立体几何中比较基础的题型,需要掌握空间向量的基本概念和运算规律。
解题时需要根据向量的定义和性质,运用向量加法、数乘等基本运算法则,求解向量的模长、方向余弦等相关量。
2. 空间几何体积题型
空间几何体积题型是高一立体几何中比较常见的题型,需要掌握各种几何体的面积和体积公式,并能够灵活运用这些公式进行计算。
解题时需要注意几何体的立体图形,确定所求的体积或面积,再根据公式进行计算。
3. 立体图形的相似题型
立体图形的相似题型需要掌握几何体的相似性质和基本比例关系,能够根据相似性质推导出几何体的相关量。
解题时需要注意几何体的相似条件,确定所求的比例关系,再根据比例关系求解相关量。
4. 空间几何位置关系题型
空间几何位置关系题型需要掌握空间中点、线、面的位置关系及相关性质。
解题时需要注意点、线、面的位置关系,确定所求的相关量,再根据相关性质进行计算。
总之,高一立体几何的题型比较多,需要学生具备扎实的基础知
识和灵活的解题思路,加强对几何图形和空间位置关系的理解和掌握,才能顺利解决高一立体几何的各种题型。
高中数学知识点总结立体几何中的直线与平面的位置关系之直线与平面的夹角

高中数学知识点总结立体几何中的直线与平面的位置关系之直线与平面的夹角直线与平面的夹角是立体几何中的重要概念之一。
它描述了直线与平面之间的相对位置关系,对于解决立体几何中的问题具有重要的指导意义。
本文将对高中数学中立体几何中直线与平面的夹角进行总结,并解释其相关概念和性质。
一、直线与平面的交点及夹角的定义在立体几何中,直线与平面的相交情况主要有三种,即直线在平面内、直线与平面相交于一点、直线与平面平行。
这些情况都涉及到直线与平面的夹角。
1. 直线在平面内当直线完全位于平面内时,直线与平面的夹角为0°。
这表示直线与平面的方向完全一致,没有倾斜。
2. 直线与平面相交于一点当直线与平面在一点相交时,可以定义出直线与平面的夹角。
夹角的度数介于0°到90°之间。
夹角的大小取决于直线在平面上的倾斜程度,倾斜越大,夹角越大。
3. 直线与平面平行当直线与平面平行时,它们之间没有交点,因此无法定义直线与平面的夹角。
但是,我们可以将夹角定义为零度,以保持夹角概念的完整性。
二、直线与平面夹角的性质在理解直线与平面的夹角的基本定义之后,我们可以进一步了解其相关性质和应用。
1. 夹角的度数与两者的倾斜程度有关直线与平面夹角的度数取决于直线在平面上的倾斜程度。
当直线垂直于平面时,夹角为90°;当直线与平面平行时,夹角为0°。
夹角的大小和方向可以通过解析几何等方法进行精确计算。
2. 夹角的度数可以表示两者之间的关系夹角的度数可以表示直线与平面之间的相对位置关系。
例如,当夹角为90°时,表示直线垂直于平面,可以用于判断垂直线段或垂直面的性质。
夹角为0°或呈现其他度数时,可以表示直线与平面的平行性或不平行性。
三、直线与平面夹角的应用举例直线与平面的夹角概念在实际问题中有广泛的应用,以下是其中的几个例子:1. 判断线段与平面的相对位置通过计算线段与平面的夹角,可以判断线段是否垂直于平面,从而判断两者的相对位置关系。
上海高二立体几何知识点

上海高二立体几何知识点一、概述立体几何是数学中研究空间内各种几何体的形状、大小、位置等性质的一门学科。
上海高二立体几何知识点是指上海高二学生需要掌握的与立体几何相关的重要知识点。
本文将为大家介绍上海高二立体几何的核心概念、公式以及解题方法等内容。
二、立体几何的基本概念和性质2.1空间几何体的分类空间几何体主要包括点、线、面以及体。
其中,点是空间的最基本的元素,线是由无数个点构成的,面是由无数个线构成的,体是由无数个面构成的。
2.2空间几何体的性质不同的空间几何体具有不同的特征和性质。
例如,平面内的点与点之间可以通过直线相连,而在空间内则需要使用线段。
此外,空间几何体还具有对称性、轴对称性、等距性等重要性质。
三、立体几何的重要知识点3.1立体的表面积和体积计算计算立体的表面积和体积是立体几何中的基本问题。
根据不同立体的特征,具体的计算公式有所不同。
例如,计算正方体的表面积可以使用公式:$S=6a^2$,其中$a$表示边长。
计算长方体的体积可以使用公式:$V=l wh$,其中$l$、$w$和$h$分别表示长、宽和高。
3.2空间固体与投影空间固体的投影是指将立体物体在某个平面上的投影图形。
在计算空间固体的投影时,需要考虑物体与投影面的相对位置关系。
例如,计算柱体在水平面上的投影可以使用公式:$S=\p ir^2$,其中$r$表示柱体的半径。
3.3空间几何体的位置关系在立体几何中,空间几何体的位置关系通常包括在平面内的位置关系和在空间内的位置关系两个方面。
对于在平面内的位置关系,常见的问题包括如何判断两条直线的平行性以及如何判断两条直线的垂直性。
在空间内的位置关系问题中,常见的问题包括如何判断两个平面的平行性以及如何判断两个平面的垂直性。
3.4空间几何体的相似性空间几何体的相似性是指两个或多个几何体在形状上具有相似的特征。
根据相似性理论,我们可以通过已知几何体的一些特征来推导出未知几何体的特征。
例如,如果两个几何体的对应边成比例,且对应角相等,则可判定两个几何体相似。
高考数学中的空间立体几何问题解析

高考数学中的空间立体几何问题解析在高考数学中,空间立体几何是考试中出现频率比较高的一类题型。
空间立体几何的基础是空间坐标系和三维图形的构造,主要包括点、线、面、体及其相互关系的研究,其中点之间的位置关系是空间立体几何的核心。
在考场上要想熟练地解决这些问题,需要掌握一定的思维方法和解题技巧。
一、空间立体几何的基础1. 空间直角坐标系:空间直角坐标系是立体坐标系的一种,它把三维空间分成了三个相互垂直的坐标轴:x轴、y轴和z轴。
在立体坐标系中,一个点的位置用三个有序实数来表示,这三个实数分别代表这个点到三条坐标轴的距离。
2. 点、线、面、体:点是空间最基本的要素,它是一个没有大小的点。
线是两个点间最短距离的轨迹,其长度可以用两点间的距离表示。
面是三个或三个以上不共线的点所决定的平面。
体是由若干个平面围成的空间几何图形,常见的体有球、立方体、棱锥等。
3. 空间几何图形的构造:空间几何图形的构造是解决空间立体几何问题的第一步,这需要我们根据题目所描述的条件,构造出相应的点、线、面、体。
二、重要的空间直线和平面1. 方向余弦:空间直线的方向可以用方向余弦来表示。
方向余弦是指由一条直线的方向向量在坐标轴上的投影所组成的数列。
如一条直线的方向向量为(a,b,c),则它在x轴、y轴、z轴上的方向余弦分别为a、b、c。
2. 平面的解析式:平面方程的解析式就是由平面上的一点和该平面的法向量所组成的方程。
常见的平面方程包括一般式、点法式、两点式和截距式。
3. 空间直线的位置关系:空间直线有共面、平行和相交等三种位置关系。
两条直线共面的条件是它们的方向向量能够表示出一个平面。
三、空间几何图形的计算1. 空间几何图形的面积和体积:空间几何图形的面积和体积是解决空间立体几何问题的关键。
求一些固定图形的面积和体积可以用公式解决,如正方体的面积和体积、正三角形的面积、球体的表面积和体积等等。
2. 点到线段的距离:点到线段的距离是解决空间立体几何问题的常见问题,它可以用勾股定理和向量相乘来求解。
立体几何的最值问题

立体几何最值问题立体几何是数学中的一个重要分支,它研究的是空间图形的性质和数量关系。
在立体几何中,我们经常遇到最值问题,即寻找某个量的最大值或最小值。
本文将介绍立体几何中最值问题的几个方面:1.立体几何位置关系立体几何中的位置关系是指空间中点、线、面之间的相对位置。
解决位置关系问题需要运用空间想象和逻辑推理。
在立体几何中最值问题中,位置关系往往与距离、角度等问题交织在一起,需要综合考虑多种因素。
2.立体几何中的距离立体几何中的距离是指空间中两点之间的直线距离,或者是点与线、线与面之间的距离。
在解决最值问题时,我们需要考虑如何利用距离公式来计算最短路径、最大距离等。
3.立体几何中的体积立体几何中的体积是指空间中封闭图形的体积,或者是两个平面图形之间的距离。
计算体积需要运用体积公式,而解决最大或最小面积问题则需要考虑如何调整图形的形状和大小。
4.立体几何中的最短路径立体几何中的最短路径问题是指寻找空间中两点之间的最短距离。
解决这类问题需要运用距离公式和几何定理,有时还需要借助对称、旋转等技巧。
5.立体几何中的最大/最小面积立体几何中的最大/最小面积问题通常涉及到平面图形在空间中的展开和折叠。
解决这类问题需要运用面积公式和平面几何定理,同时要注意图形的对称性和边长之间的关系。
6.立体几何中的角度问题立体几何中的角度问题是指空间中两条直线或两个平面之间的夹角。
解决这类问题需要运用角度公式和空间向量,同时要注意图形的对称性和边长之间的关系。
7.立体几何中的轨迹问题立体几何中的轨迹问题是指一个点或一条线在空间中按照一定规律移动所形成的轨迹。
解决这类问题需要运用轨迹方程和运动学原理,同时要注意轨迹的形状和大小随时间的变化情况。
高中数学立体几何经典常考题型

高中数学(一)立体几何经典常考题型题型一:空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC 中,∠ABC =π4,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平面ABC ,2DA =2AO =PO ,且DA ∥PO.(1)求证:平面PBD ⊥平面COD ;(2)求直线PD 与平面BDC 所成角的正弦值.(1)证明∵OB =OC ,又∵∠ABC =π4,∴∠OCB =π4,∴∠BOC =π2.∴CO ⊥AB.又PO ⊥平面ABC ,OC ⊂平面ABC ,∴PO ⊥OC.又∵PO ,AB ⊂平面PAB ,PO ∩AB =O ,∴CO ⊥平面PAB ,即CO ⊥平面PDB.又CO ⊂平面COD ,∴平面PDB ⊥平面COD.(2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),∴PD→=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).设平面BDC 的一个法向量为n =(x ,y ,z ),∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0, 令y =1,则x =1,z =3,∴n =(1,1,3).设PD 与平面BDC 所成的角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD →·n |PD →||n| =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211.【类题通法】利用向量求空间角的步骤第一步:建立空间直角坐标系.第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标.第四步:计算向量的夹角(或函数值).第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【变式训练】如图所示,在多面体A 1B 1D 1DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F .(1)证明:EF ∥B 1C .(2)求二面角E -A 1D B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ⊂面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB→,AD →,AA1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1. 设平面A 1DE 的一个法向量n 1=(r 1,s 1,t 1),而该面上向量A1E →=⎝ ⎛⎭⎪⎫12,12,0,A1D →=(0,1,-1),由n 1⊥A1E→, n 1⊥A1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r1+12s1=0,s1-t1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设平面A 1B 1CD 的一个法向量n 2=(r 2,s 2,t 2),而该面上向量A1B1→=(1,0,0),A1D →=(0,1,-1),由此同理可得n 2=(0,1,1).所以结合图形知二面角E -A 1D B 1的余弦值为|n1·n2||n1|·|n2|=23×2=63. 题型二:立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AM AP 的值;若不存在,说明理由.(1)证明 因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD ,所以AB ⊥平面PAD ,所以AB ⊥PD.又PA ⊥PD ,AB ∩PA =A ,所以PD ⊥平面PAB.(2)解 取AD 的中点O ,连接PO ,CO.因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD ,所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO.因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2.所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33.(3)解 设M 是棱PA 上一点,则存在λ∈0,1],使得AM →=λAP →.因此点M (0,1-λ,λ),BM →=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14.所以在棱PA上存在点M,使得BM∥平面PCD,此时AMAP=14.【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【变式训练】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,∠PAD=45°,E为PA的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D的余弦值;若不存在,请说明理由.(1)证明取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN=BC2-CN2=102-82=6,∴AB=12,而E,M分别为PA,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∴EM∥CD且EM=CD,四边形CDEM为平行四边形,∴DE∥CM.∵CM⊂平面PBC,DE⊄平面PBC,∴DE∥平面BPC.(2)解 由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D -xyz ,则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8).假设AB 上存在一点F 使CF ⊥BD ,设点F 坐标为(8,t ,0),则CF→=(8,t -6,0),DB →=(8,12,0), 由CF →·DB →=0得t =23. 又平面DPC 的一个法向量为m =(1,0,0),设平面FPC 的法向量为n =(x ,y ,z ).又PC →=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0. 由⎩⎪⎨⎪⎧n ·PC →=0,n ·FC →=0,得⎩⎪⎨⎪⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y ,不妨令y =12,有n =(8,12,9).则cos 〈n ,m 〉=n ·m |n||m|=81×82+122+92=817. 又由图可知,该二面角为锐二面角,故二面角F -PC -D 的余弦值为817.题型三:立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ;(2)求二面角B -D ′A -C 的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD .又由AE =CF 得AE AD =CF CD ,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB2-AO2=4.由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH .又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF→的方向为x 轴正方向,建立空间直角坐标系H -xyz . 则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量,则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎨⎧3x1-4y1=0,3x1+y1+3z1=0, 所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量,则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎨⎧6x2=0,3x2+y2+3z2=0, 所以可取n =(0,-3,1).于是cos 〈m ,n 〉=m ·n |m||n|=-1450×10=-7525. sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【变式训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.(1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC ,从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC .(2)解 由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0, 得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A1C →=⎝ ⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n1·BC →=0,n1·A1C →=0,得⎩⎨⎧-x1+y1=0,y1-z1=0,取n 1=(1,1,1); ⎩⎪⎨⎪⎧n2·CD →=0,n2·A1C →=0,得⎩⎨⎧x2=0,y2-z2=0,取n 2=(0,1,1), 从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
考点整合
1.四棱柱、直四棱柱、正四棱柱、正方体、平行六面体、直平 行六面体、长方体之间的关系.
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
2.用斜二测画法画出的水平放置的平面图形直观图的面积是 原图形面积的 42倍.
3.几何体的摆放位置不同,其三视图也不同,需要注意长对正, 高平齐,宽相等.
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
A.14斛
B. 22斛
C.36斛
D. 66斛
解析 由题意知:米堆的底面半径为136(尺),体积
V=13×14πR2·h=3290(立方尺).所以堆放的米大约
为9×3210.62≈22(斛). 答案 B
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
真题感悟 1.(2015·浙江卷)某几何体的三视图如图所示
(单位:cm),则该几何体的体积是( C )
A.8 cm3
B.12 cm3
32 C. 3
cm3
40 D. 3
cm3
解析 该几何体是棱长为 2 cm 的正方体与一
底面边长为 2 cm 的正方形,高为 2 cm 的正四
棱锥组成的组合体,V=2×2×2+13×2×2×2=332(cm3).
故选 C.
Hale Waihona Puke 真题感悟·考点整合热点聚焦·题型突破
归纳总结·思维升华
2.(2015·重庆卷)某几何体的三视图如图所示,则该几何体 的体积为( )
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
A.13+π
B.23+π
C.13+2π
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
热点一 空间几何体的表面积和体积的求解 [微题型1] 以三视图为载体求几何体的表面积 【例1-1】 (2015·安徽卷)一个四面体的三视图如图所示,
则该四面体的表面积是( )
A.1+ 3
B.2+ 3 C.1+2 2
D.2 2
真题感悟·考点整合
热点聚焦·题型突破
第1讲 立体几何中的计算与位置关系
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
高考定位 立体几何中的计算主要考查空间几何体与三视图 相结合的几何体的表面积和体积,是历年高考的必考内容, 多为选择题或填空题;空间线面位置关系(包括平行与垂直)的 判断与证明也是历年高考的必考内容,多出现在立体几何解 答题中的第(1)问.
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
[微题型 2] 以三视图为载体求几何体的体积 【例 1-2】 (2015·郑州模拟)已知一个几何体的三视图如图
所示,则该几何体的体积为( )
(4+π) 3
A.
3
(4+π) 3
C.
6
(4+π) 3
B.
2
D.(4+π) 3
真题感悟·考点整合
热点聚焦·题型突破
4.空间几何体的两组常用公式 (1)柱体、锥体、台体的侧面积公式: ①S 柱侧=ch(c 为底面周长,h 为高); ②S 锥侧=12ch′(c 为底面周长,h′为斜高); ③S 台侧=12(c+c′)h′(c′,c 分别为上下底面的周长,h′为斜高); ④S 球表=4πR2(R 为球的半径).
真题感悟·考点整合
(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
6.直线、平面垂直的判定及其性质
(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m, l⊥n⇒l⊥α.
(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.
(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β. (4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a ⊥β.
热点聚焦·题型突破
归纳总结·思维升华
(2)柱体、锥体和球的体积公式: ①V 柱体=Sh(S 为底面面积,h 为高); ②V 锥体=13Sh(S 为底面面积,h 为高); ③V 球=43πR3.
5.直线、平面平行的判定及其性质
(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α. (2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b. (3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α, b∥α⇒α∥β.
归纳总结·思维升华
解析 由空间几何体的三视图可得 该空间几何体的直观图,如图, ∴该四面体的表面积为
S 表=2×12×2×1+2× 43×( 2)2=2+ 3,故选 B. 答案 B 探究提高 (1)若以三视图的形式给出,解题的关键是对 给出的三视图进行分析,从中发现几何体中各元素间的位 置关系及数量关系,得到几何体的直观图,然后根据条件 求解.(2)多面体的表面积是各个面的面积之和,组合体的 表面积应注意重合部分的处理.
D.23+2π
解析 这是一个三棱锥与半个圆柱的组合体,
V=12π×12×2+13×12×1×2×1=π+13,选 A. 答案 A
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
3.(2015·全国Ⅰ卷)《九章算术》是我国古代内 容极为丰富的数学名著,书中有如下问题: “今有委米依垣内角,下周八尺,高五尺, 问:积及为米几何?”其意思为:“在屋内 墙角处堆放米(如图,米堆为一个圆锥的四分之一),米 堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和 堆放的米各为多少?”已知1斛米的体积约为1.62立方尺, 圆周率约为3,估算出堆放的米约有( )
4.(2015·全国Ⅱ卷)已知A,B是球O的球面上两点,
∠AOB=90°,C为该球面上的动点,若三棱
锥O-ABC体积的最大值为36,则球O的表面积
为( )
A.36π B.64π
C.144π
D.256π
真题感悟·考点整合
热点聚焦·题型突破
归纳总结·思维升华
解析 如图,要使三棱锥 O-ABC 即 C-OAB 的体积 最大,当且仅当点 C 到平面 OAB 的距离,即三 棱锥 C-OAB 底面 OAB 上的高最大,其最大值为 球 O 的半径 R,则 VO-ABC 最大为13×12S△OAB×R =13×12×R2×R=16R3=36,所以 R=6,得 S 球 O=4πR2 =4π×62=144π,选 C.