NF-kB p53 and warburg effect

合集下载

血清NF-κB和p53在急性冠脉综合征中表达的研究

血清NF-κB和p53在急性冠脉综合征中表达的研究

血清NF-κB和p53在急性冠脉综合征中表达的研究胡有东;李侠;徐培敬;陈颖【摘要】目的探讨核因子κB(NF-κB)和抑癌基因p53在急性冠脉综合征(ACS)发生、发展中的意义.方法采用酶联免疫法(ELISA)检测ACS患者72例和健康对照组65例血清中NF-κB和p53的表达水平.结果与对照组比较,实验组NF-κB和p53均升高,差异有统计学意义(P<0.05).结论 NF-κB和p53可能参与ACS的发生、发展.【期刊名称】《重庆医学》【年(卷),期】2012(041)034【总页数】2页(P3643-3644)【关键词】NF-κB;抑癌基因p53;冠状动脉疾病【作者】胡有东;李侠;徐培敬;陈颖【作者单位】徐州医学院附属淮安医院老年病科,江苏淮安,223002;徐州医学院附属淮安医院老年病科,江苏淮安,223002;徐州医学院附属淮安医院老年病科,江苏淮安,223002;徐州医学院附属淮安医院老年病科,江苏淮安,223002【正文语种】中文急性冠脉综合征(ACS)是心脏性猝死的最主要病因,由于ACS基本病理为动脉粥样硬化,近期研究表明mimecan基因在动脉粥样硬化病变中发挥着重要作用[1],而在mimecan基因的第1个内含子上有NF-κB和p53的结合位点,因此研究NF-κB和p53在动脉粥样硬化病变中的作用有着重要的意义。

1.1 一般资料选择2010年7月至2011年11月,淮安市第二人民医院老年科ACS患者共72例,其中男37例,女35例;年龄60~75岁,平均(66.31±6.58)岁。

同期健康体检者65例作为对照组,其中男33例,女32例;年龄60~73岁,平均(65.14±7.01)岁。

两组间在年龄、性别方面比较差异无统计学意义(P>0.05)。

所有ACS患者均符合的临床诊断标准[2],将ACS患者再分成不稳定心绞痛(UA)组,26例,其中男14例,女12例;年龄65~73岁,平均(64.23±6.20)岁。

Warburg效应及其关键酶在口腔鳞状细胞癌治疗中作用的研究进展

Warburg效应及其关键酶在口腔鳞状细胞癌治疗中作用的研究进展

第59卷 第4期2023年08月青岛大学学报(医学版)J O U R N A LO FQ I N G D A O U N I V E R S I T Y (M E D I C A LS C I E N C E S)V o l .59,N o .4A u gu s t 2023[收稿日期]2022-08-06; [修订日期]2023-08-15[基金项目]青岛市医药卫生科研计划项目(2021-W J Z D 006)[第一作者]侯佳丽(1988-),女,硕士,主治医师㊂[通信作者]刘静(1974-),女,主治医师㊂E -m a i l :h o u x i a n k a o -9910@126.c o m㊂W a r b u r g 效应及其关键酶在口腔鳞状细胞癌治疗中作用的研究进展侯佳丽1,王钧正1,张鹏2,刘静1(1 青岛大学附属青岛市海慈医院口腔科,山东青岛 266033; 2 青岛大学附属青岛市市立医院口腔科)[摘要] 口腔鳞状细胞癌(O S C C )是口腔颌面部最常见的恶性肿瘤,具有侵袭性强㊁复发率高㊁预后差的特点㊂恶性肿瘤细胞最显著的能量代谢特点是即使在氧气供应充分的情况下,也主要由糖酵解而非氧化磷酸化获取能量,这种肿瘤细胞糖酵解异常活跃的现象称为W a r b u r g 效应㊂了解肿瘤葡萄糖代谢异常对O S C C 的临床治疗有重要意义㊂本文综述W a r b u r g 效应及糖酵解关键酶在OS C C 治疗中作用的研究进展,为O S C C 治疗提供新思路㊂[关键词] 口腔肿瘤;肿瘤,鳞状细胞;W a r b u r g 效应;糖酵解;综述[中图分类号] R 739.8 [文献标志码] A [文章编号] 2096-5532(2023)04-0621-04d o i :10.11712/j m s .2096-5532.2023.59.130[开放科学(资源服务)标识码(O S I D )][网络出版] h t t ps ://l i n k .c n k i .n e t /u r l i d /37.1517.R.20230925.0921.005;2023-09-25 16:10:15R E S E A R C HP R O G R E S SO N T H E R O L E O F W A R B U R G E F F E C T A N DI T S K E Y E N Z Y M E SI N T H E T R E A T M E N T O F O R A L S QU A M O U SC E L LC A R C I N O M A H O U J i a l i ,WA N GJ u n z h e n g ,Z HA N G P e n g ,L I U J i n g (D e p a r t m e n to fS t o m a t o l o g y ,Q i n g d a oU n i v e r s i t y A f f i l i a t e dH a i c iH o s p i t a l ,Q i n gd a o 266033,C h i n a )[A B S T R A C T ] O r a l s q u a m o u s ce l l c a r c i n o m a (O S C C )i s t h em o s t c o mm o nm a l i gn a n t t u m o r i n t h e o r a l a n dm a x i l l o f a c i a l r e -g i o n ,w h i c h i s c h a r a c t e r i z e d b y s t r o n g i n v a s i v e n e s s ,h i g h r e c u r r e n c e ,a n d p o o r p r o g n o s i s .M a l i g n a n t t u m o r c e l l s o b t a i n e n e r g y m a i n -l y t h r o u g h g l y c o l y s i s r a t h e r t h a no x i d a t i v e p h o s p h o r y l a t i o n ,e v e n i n a no x y g e n -s u f f i c i e n t e n v i r o n m e n t ,a n d t h i s p h e n o m e n o no f h y-p e r a c t i v e g l y c o l y s i s i n t u m o r c e l l s i s c a l l e d t h eW a r b u r g e f f e c t .T h e u n d e r s t a n d i n g o f a b n o r m a l gl u c o s em e t a b o l i s mo f t u m o r s i s o f g r e a t s i g n i f i c a n c e f o r t h e c l i n i c a l t r e a t m e n t o fO S C C .T h i s a r t i c l e r e v i e w s t h e l a t e s t u n d e r s t a n d i n g o f t h e r o l e o f t h eW a r b u r g ef f e c t a n dk e yg l y c o l y t i c e n z ym e s i n t h e t r e a t m e n t o fO S C C ,w i t h t h e a i mt o p r o v i d e n e wi d e a s f o r t h e t r e a t m e n t o fO S C C .[K E Y W O R D S ] m o u t hn e o p l a s m s ;n e o p l a s m s ,s q u a m o u s c e l l ;W a r b u r g e f f e c t ;g l y c o l ys i s ;r e v i e w 口腔鳞状细胞癌(O S C C )是口腔颌面部最常见的恶性肿瘤之一,占口腔癌的90%以上[1]㊂O S C C 好发于舌㊁牙龈㊁颊及上颌窦等部位,容易侵袭病变附近的腺体㊁肌肉及骨骼,早期淋巴结转移亦常见㊂目前临床上治疗O S C C 的主要手段有手术㊁放疗㊁化疗以及靶向治疗等,但O S C C 病人的5年生存率仍不足50%,病人预后不理想[2]㊂1920年,德国科学家O T T O WA R B U R G 发现,即使在氧供应充足可以将葡萄糖彻底氧化磷酸化的条件下,肿瘤细胞也主要通过糖酵解方式获取能量,即W a r b u r g 效应[3]㊂虽然W a r b u r g 效应曾受争议,但是基于肿瘤细胞糖代谢异常诞生的P E T -C T 在临床肿瘤诊断上的成功应用及相关理论的创新性进展,使W a r b u r g效应在肿瘤发生发展及治疗中的深入研究再次受到重视[4-5]㊂本文对诱导W a r b u r g 效应的分子机制以及W a r b u r g效应中关键酶的作用机制研究进展进行综述,以期为O S C C 的精准靶向治疗提供思路㊂1 W a r b u r g 效应与肿瘤细胞能量代谢特点与正常细胞相比,肿瘤细胞能量代谢发生重编程从而导致糖酵解增强㊂肿瘤一直被认为是脱离正常生长状态的细胞疯狂增长性疾病,需要摄取更多的能量满足自我分化㊁高度活跃的生物行为,细胞能量失调是肿瘤十大特征之一[6]㊂恶性肿瘤细胞首选产能率低的糖酵解供能,主要因为糖酵解可提供肿瘤快速生长合成物质所需的大分子,糖酵解中间产物烟酰胺腺嘌呤二核苷酸磷酸(N A D P H )㊁乙酰辅酶A ㊁核糖和一些非必需氨基酸可被肿瘤细胞用作合成核苷酸㊁脂质和蛋白质的原料[7]㊂1.1 诱发W a r b u r g 效应的分子调控机制肿瘤细胞糖酵解代谢活跃的机制较为复杂,目前尚不明确㊂认为与低氧微环境㊁原癌基因激活和抑癌基因失活㊁糖酵解酶异常表达和线粒体氧化磷酸化功能损害等有关㊂1.1.1 低氧诱导因子(H I F )激活促进肿瘤细胞糖酵解 低氧是肿瘤细胞普遍存在的状态,低氧会刺激H I F 的基因表达㊂H I F 是糖酵解的基本调节因子,可上调90%糖酵解酶的活性,也可抑制线粒体对丙酮酸的利用[8]㊂H I F -1是肿瘤微环境中主要的能量代谢调节因子,H I F -1可结合到原癌基因c -m y c 的启动子区刺激c -m y c 的表达,c -m y c 又能促进糖酵解第一限速步骤中葡萄糖转运蛋白(G L U T )的表达从而促进W a r b u r g 效应[9]㊂c -m yc 基因过表达后可以导致乳酸脱氢酶A (L D H -A )的合成增多,L D H -A 催化丙酮酸生成乳酸,使肿瘤微环境呈酸性[10]㊂酸性微环境激活组织蛋白酶和基质金属蛋白酶(MM P s),它们可通过促进细胞外基质(E C M )的降解而促进肿瘤细胞的侵袭和迁移,MM P 2和Copyright ©博看网. All Rights Reserved.622青岛大学学报(医学版)59卷MM P9可通过特异性降解肿瘤细胞外基质成分及调节细胞黏附,参与新生血管形成而促进肿瘤的侵袭迁移[11]㊂1.1.2癌基因活化和抑癌基因失活癌基因活化及抑癌基因失活是驱动肿瘤细胞能量代谢模式转变发生W a r b u r g效应的内在因素㊂许多癌基因㊁抑癌基因的异常表达都可引起葡萄糖摄取和糖酵解水平的改变,其中包括m y c㊁A k t㊁P53㊁P T E N等[12]㊂癌基因m y c的编码产物是一种广泛存在的转录因子,可诱导糖酵解过程中己糖激酶2(H K2)㊁L D H-A 等大部分酶的表达,还可刺激H I F-1的表达从而促进W a r-b u r g效应[13]㊂肿瘤抑制蛋白P53在调节线粒体有氧氧化和糖酵解方式之间的平衡中发挥重要作用㊂P53失活可促进W a r b u r g效应,其原因是多方面的㊂正常情况下,P53可通过下调葡萄糖转运蛋白基因G L U T1㊁G L U T3㊁G L U T4的表达减少葡萄糖的摄取[14],P53还可通过诱导糖酵解抑制基因T P53诱导的糖酵解和凋亡调控子(T I G A R)的表达,上调线粒体呼吸链复合体Ⅳ亚单位细胞色素C氧化合成酶2 (S C O2)的表达,从而抑制W a r b u r g效应,促进线粒体氧化磷酸化[15]㊂T I G A R通过去磷酸化降低果糖-2,6-二磷酸(F-2, 6-B P)的含量抑制糖酵解,6-磷酸果糖激酶1(P F K-1)催化6-磷酸果糖(F6P)形成1,6-二磷酸果糖(F-1,6-B P)是糖酵解的主要限速步骤,而F-2,6-B P是P F K-1的激活剂,可调节糖酵解[16]㊂1.1.3其他因素线粒体D N A变异㊁电子传递链功能障碍引起线粒体氧化磷酸化功能损伤导致活性氧(R O S)积聚,从而损害线粒体功能,促进W a r b u r g效应的发生㊂但也有研究认为,肿瘤细胞糖酵解是由于糖酵解抑制了线粒体氧化磷酸化而非线粒体不可逆损伤所致,抑制肿瘤细胞糖酵解则可恢复线粒体的氧化磷酸化[17]㊂P I3K/A k t信号通路广泛存在于细胞中,通过调节蛋白质合成㊁细胞周期㊁能量代谢等多种途径发挥广泛的生物学功能㊂从黑种草籽中提取的化合物百里香醌通过调控P I3K/A k t/H K2信号通路抑制W a r-b u r g效应,进而抑制结直肠癌细胞H C T116和S W480的增殖和侵袭[18]㊂1.2 W a r b u r g效应中的关键酶调控W a r b u r g效应的关键酶主要有己糖激酶(H K)㊁磷酸果糖激酶㊁丙酮酸激酶(P K),其中研究较多且比较深入的为己糖激酶2(H K2)㊁M2型丙酮酸激酶(P KM2)㊂1.2.1 H K 作为糖酵解第一步的关键酶,H K不可逆地催化葡萄糖磷酸化为葡萄糖-6-磷酸(G-6-P),G-6-P是磷酸戊糖途径的起始物质,可生成N A D P H维持谷胱甘肽的还原状态,而还原型谷胱甘肽是体内重要的抗氧化剂㊂H K有4种同工酶(H K1㊁H K2㊁H K3和H K4),其中H K2在正常人体中分布极少,仅在脂肪和骨骼肌中少量表达,但高表达于O S C C等诸多肿瘤中[19]㊂在外界刺激或应激作用下,H K2从细胞质定位到线粒体而发挥作用,但H K1对这些刺激的敏感性却较低[20]㊂H K2的N端和C端均有催化活性,因此H K2使葡萄糖的磷酸化速率翻倍,而H K1㊁H K3只有C端才具备催化活性㊂H K2可通过N端与线粒体外膜表面的电压依赖性阴离子通道蛋白(V D A C)结合形成H K-V D A C复合体,此复合体不仅可以降低细胞色素C的释放抑制线粒体途径诱导的细胞凋亡,而且可通过削弱G-6-P的负反馈抑制作用促进糖酵解过程[21]㊂1.2.2 P K P K是催化糖酵解最后一步的关键酶,有4种同工酶(P KM1㊁P KM2㊁P K L㊁P K R),在恶性肿瘤的发生过程中P KM2表达上调取代了原有组织特异性的P KM1㊁P K L㊁P K R,因此一些科学家将P KM2称为肿瘤特异性P K[22]㊂P KM2有二聚体和四聚体两种形式,P KM2二聚体含量高但活性低,进入细胞核可作为转录因子激活H I F-1α等促进糖酵解和细胞生长,但P KM1不能调节H I F-1α活性[23]㊂当P KM2为四聚体状态时与其底物磷酸烯醇式丙酮酸具有较强的亲和力,因此具有较高的丙酮酸激酶活性,催化更多的磷酸烯醇式丙酮酸生成丙酮酸进而产生能量[24]㊂F-1,6-B P 是葡萄糖代谢的中间产物,可以与P KM2可逆性结合并稳定P KM2四聚体状态,被认为是P KM2的激活剂[25]㊂2W a r b u r g效应在O S C C中的作用O S C C是一类异质性疾病,肿瘤细胞在进化过程中因环境压力及生长状态而发生重编程以适应生长环境的变化㊂P I3K/A k t/m T O R信号通路㊁H I F㊁P53等信号通路或因子以及糖酵解关键酶参与肿瘤细胞W a r b u r g效应的调控㊂2.1 W a r b u r g效应信号通路在O S C C治疗中的作用B7H3(C D276)是B族免疫共刺激和共抑制家族成员㊂有研究表明,B7H3可通过激活P I3K/A k t/m T O R信号通路上调H I F-α的表达,H I F-1α可以通过促进其下游靶蛋白G L U T1㊁磷酸果糖激酶-2/果糖-2,6-二磷酸酶3(P F K F B3)的表达而促进糖酵解,从而促进O S C C细胞的增殖㊁侵袭和转移[26]㊂核心生物钟基因中的周期基因1(P E R1)在多种肿瘤的形成中发挥重要作用,G O N G等[27]研究发现,P E R1在O S C C组织中呈低表达,P E R1可与活化蛋白激酶C受体1(R A C K1)及P I3K结合形成复合体,调控P I3K/A k t信号通路抑制糖酵解,进而抑制O S C C细胞的增殖和侵袭㊂二甲双胍可通过激活AM P K㊁抑制m T O R及H I F-1α,抑制多种肿瘤的生长㊂HA R A D A等[28]通过体内及体外实验发现,二甲双胍联合5-氟尿嘧啶抑制O S C C组织H I F-1α㊁m T O R㊁A k t1表达效果较单用二甲双胍或5-氟尿嘧啶更显著,进而抑制W a r b u r g效应使O S C C细胞的生长受阻㊂MA O等[29]研究表明,蛋白二硫化物异构酶A6(P D I A6)在人O S C C组织中高表达,P D I A6可以促进人O S C C组织S C C9细胞以及C a l27细胞葡萄糖的摄取㊁乳酸生成及A T P产量升高,通过W a r b u r g效应促进O S C C细胞的生长侵袭㊂2.2 W a r b u r g效应关键酶在O S C C治疗中的作用2.2.1 H K2相关研究表明,在4种H K同工酶中,H K2与恶性肿瘤的关系最为密切,其在人体多种肿瘤组织㊁肿瘤模型中高表达[30]㊂L I等[31]通过体内和体外实验证明,丹参酮ⅡA可抑制A k t磷酸化,并能促进c-m y c和E3泛素连接酶F B W7的相互作用,抑制H K2的活性进而抑制O S C C细胞Copyright©博看网. All Rights Reserved.4期侯佳丽,等.W a r b u r g效应及其关键酶在口腔鳞状细胞癌治疗中作用的研究进展623系C A L27㊁S C C15㊁S C C9细胞的增殖生长;同时,H K2与线粒体结合是维持细胞生存的必要条件,丹参酮ⅡA作用于O S C C细胞后可激活A k t/c-m y c/H K2信号轴,抑制H K2活性进而促进O S C C细胞的凋亡㊂还有研究表明,去泛素化酶泛素特异性肽酶13(U S P13)可上调P T E N蛋白表达㊁抑制A k t磷酸化,通过P T E N/P I3K/A k t信号轴下调G L U T1和H K2的表达,进而抑制W a r b u r g效应,最终抑制人舌鳞癌细胞C A L27㊁人口腔鳞癌细胞H S C4㊁人舌鳞癌细胞S C C15的生长;此外,U S P13还可抑制无胸腺裸鼠O S C C移植瘤的生长[32]㊂m i R N A是一类非编码R N A,可以通过调节基因表达并在多种肿瘤的生物进程中发挥重要作用㊂S U N等[33]研究表明,m i R N A-143可以与H K2非编码区一个保守的结合位点结合抑制H K2的活性,进而抑制W a r b u r g效应,最终抑制O S C C细胞的生长侵袭和葡萄糖摄取㊂上皮-间充质细胞转化(E M T)与恶性肿瘤细胞的浸润㊁转移和耐药性息息相关,有研究通过体内和体外实验表明,核糖体结合蛋白2(R P N2)通过诱发喉鳞状细胞癌T U212细胞R O S的产生上调H K2的表达,激活P I3K/A k t信号通路,促进E M T进而促进喉鳞状细胞癌的侵袭转移㊂2.2.2 P KM2 P K为进化保守的代谢酶,在肿瘤发生过程中组织特异性P K L㊁P K R及P KM1被P KM2取代,P KM2在O S C C等诸多恶性肿瘤组织中异常表达,通过促进W a r-b u r g效应进而促进恶性肿瘤的增殖和侵袭㊂P KM2是癌变组织中主要形式的P K,被认为是肿瘤治疗的潜在靶点㊂WA N G等[34]通过注射二羟甲基丁酸(D M B A)方法建立仓鼠O S C C模型研究显示,P KM2在正常黏膜上皮低表达,而在异型增生及肿瘤样组织中高表达;该研究对111例O S C C 病人病变组织进行病理学分析发现,P KM2与病人整体生存率呈负相关㊂P A R K等[35]通过对两种永生性口腔角质细胞I HO K-P和I HO K-S转染H P V16E6/E7基因模拟O S C C 成癌过程,同时对O S C C细胞Y D10B细胞系和人O S C C组织标本进行研究发现,P KM2核转位后可以促进转录调节因子-1(E T S-1)的表达,进而促进MM P9的表达,最终增强O S C C细胞的侵袭性,并且与O S C C病人的不良预后呈正相关㊂L U O等[36]对125例口腔舌鳞状细胞癌病人的肿瘤组织及邻近组织免疫组化分析显示,P KM2在O S C C组织中高表达且与肿瘤T NM分期密切相关,P KM2是O S C C预后评估的独立危险因素㊂一项对正常口腔黏膜组织及头颈鳞癌标本研究结果显示,头颈鳞癌组织中P KM2和C D276的表达水平较正常口腔黏膜组织高,P KM2可以通过提高免疫检查点C D276的表达参与肿瘤免疫调控使头颈鳞癌细胞产生免疫抑制,P KM2和C D276的表达水平与头颈鳞癌T NM分期相关,而与病人性别㊁年龄和病理分级无相关性㊂3小结与展望O S C C等恶性肿瘤细胞的能量供应方式不同于正常细胞,肿瘤细胞增殖及侵袭过程需要大量能量和大分子物质,而W a r b u r g效应为此提供了物质和能量支持㊂肿瘤细胞摄取能量的方式在很大程度上依赖高水平表达的糖酵解酶,糖酵解关键酶H K2㊁P KM2等在O S C C等恶性肿瘤中表达增高且与不良预后呈正相关㊂这些高表达的酶可作为肿瘤治疗的靶点㊂由于肿瘤的异质性和微环境的差别,单一糖酵解酶靶向治疗可能不及多个糖酵解酶靶向联合治疗效果好㊂随着细胞和分子生物学技术及新的糖酵解酶抑制剂的发现和深入研究,O S C C等恶性肿瘤基于能量代谢的靶向治疗将会迈上新台阶㊂[参考文献][1]A L MA N G U S H A,P I R I N E N M,Y O U S S E F O,e ta l.R i s ks t r a t i f i c a t i o n i no r a l s q u a m o u s c e l l c a r c i n o m au s i n g s t a g i n g o f t h e e i g h t h A m e r i c a nJ o i n tC o mm i t t e eo n C a n c e r:s y s t e m a t i c r e v i e wa n d m e t a-a n a l y s i s[J].H e a d&N e c k,2020,42(10): 3002-3017.[2]C H A T Z I S T E F A N O UI,L U B E KJ,MA R K O U K,e t a l.T h er o l e o f n e c kd i s s e c t i o n a n d p o s t o p e r a t i v e a d j u v a n t r a d i o t h e r a p yi nc N0p a t i e n t sw i t hP N I-p o s i t i v es q u a m o u sc e l l c a r c i n o m ao ft h e o r a l c a v i t y[J].O r a lO n c o l o g y,2014,50(8):753-758.[3]B O N O N IG,MA S O N IS,D IB U S S O L O V,e t a l.H i s t o r i c a lp e r s p e c t i v e o f t u m o r g l y c o l y s i s:a c e n t u r y w i t hO t t o W a r b u r g [J].S e m i n a r s i nC a n c e rB i o l o g y,2022,86(P t2):325-333.[4]C H A N G X Y,L I U XC,WA N G HZ,e t a l.G l y c o l y s i s i n t h ep r o g r e s s i o no f p a n c r e a t i c c a n c e r[J].A m e r i c a nJ o u r n a l o fC a n-c e rR e s e a r c h,2022,12(2):861-872.[5]Z H O U Y,G U O YZ,T AM K Y.T a r g e t i n gg l u c o s em e t a b o-l i s mt od e v e l o p a n t i c a n c e r t r e a t m e n t sa n dt h e r a p e u t i c p a t e n t s [J].E x p e r t O p i n i o no n T h e r a p e u t i cP a t e n t s,2022,32(4): 441-453.[6]H A N A H A N D,W E I N B E R G R A.H a l l m a r k so f c a n c e r:t h en e x t g e n e r a t i o n[J].C e l l,2011,144(5):646-674. [7]F A N TJ,S U NG H,S U NXD,e t a l.T u m o r e n e r g y m e t a b o-l i s ma n d p o t e n t i a l o f3-b r o m o p y r u v a t e a s a n i n h i b i t o r o f a e r o-b ic g l y c o l y s i s:i m p l i c a t i o n s i nt u m o rt r e a t m e n t[J].C a n c e r s,2019,11(3):317.[8]N A G A O A,K O B A Y A S H IM,K O Y A S US,e t a l.H I F-1-d e-p e n d e n t r e p r o g r a mm i n g o f g l u c o s em e t a b o l i c p a t h w a y o f c a n-c e r c e l l s a nd i t s t he r a p e u t i c s i g n if i c a n c e[J].I n t e r n a t i o n a l J o u r-n a l o fM o l e c u l a r S c i e n c e s,2019,20(2):238.[9]HU A N GY W,C H E NZC,L U T,e t a l.H I F-1αs w i t c h e s t h ef u n c t i o n a l i t y o fT G F-βs ig n a l i n g v i ach a n gi n g t h e p a r t n e r so fs m a d s t od r i v e g l u c o s em e t a b o l i c r e p r o g r a mm i n g i nn o n-s m a l lc e l l l u n g c a n c e r[J].J o u r n a l o f E x p e r i m e n t a l&C l i n i c a l C a n c e rR e s e a r c h,2021,40(1):398.[10]D U T T AP,P E R E Z M R,L E EJ,e t a l.C o m b i n i n g h y p e r p o-l a r i z e dr e a l-t i m em e t a b o l i c i m a g i n g a n dNM Rs p e c t r o s c o p y t oi d e n t i f y m e t a b o l i c b i o m a r k e r s i n p a n c r e a t i c c a n c e r[J].J o u r n a lo f P r o t e o m eR e s e a r c h,2019,18(7):2826-2834. [11]B O E D T K J E RE,P E D E R S E NSF.T h e a c i d i c t u m o rm i c r o e n-v i r o n m e n t a s a d r i v e r o f c a n c e r[J].A n n u a lR e v i e wo fP h y s i o-l o g y,2020,82:103-126.Copyright©博看网. All Rights Reserved.624青岛大学学报(医学版)59卷[12]V A U P E LP,MU L T H O F FG.T h eW a r b u r g e f f e c t:h i s t o r i c a ld o g m ave r s u s c u r r e n t r a t i o n a l e[J].A d v a n c e s i nE x p e r i m e n t a lM e d i c i n e a n dB i o l o g y,2021,1269:169-177.[13]G O E T Z MA NES,P R O C HOWN I KEV.T h e r o l e f o rm y c i nc o o rd i n a t i n gg l y c o l y s i s,o x i d a t i ve p h o s p h o r y l a t i o n,g l u t a m i-n o l y s i s,a n d f a t t y a c i dm e t a b o l i s m i n n o r m a l a n d n e o p l a s t i c t i s-s u e s[J].F r o n t i e r s i nE n d o c r i n o l o g y,2018,9:129. [14]K AWA U C H IK,A R A K IK,T O B I UM E K,e t a l.p53r e g u-l a t e s g l u c o s em e t a b o l i s mt h r o u g h a n I K K-N F-k a p p a B p a t h w a ya n di n h ib i t sc e l lt r a n s f o r m a t i o n[J].N a t u r e C e l l B i o l o g y,2008,10(5):611-618.[15]L I U J,L I U Z X,WU Q N,e ta l.L o n g n o n c o d i n g R N AA G P G r e g u l a t e s P F K F B3-m e d i a t e d t u m o r g l y c o l y t i cr e p r o-g r a mm i n g[J].N a t u r eC o mm u n i c a t i o n s,2020,11(1):1507.[16]Y U L L,WU M,Z HU G Y,e ta l.E m e r g i n g r o l e so f t h et u m o r s u p p r e s s o r p53i nm e t a b o l i s m[J].F r o n t i e r s i nC e l l a n dD e v e l o p m e n t a l B i o l o g y,2021,9:762742.[17]C H E N CL,L I N C Y,K U N G HJ.T a r g e t i n g m i t o c h o n d r i a lO X P H O Sa n d t h e i r r e g u l a t o r y s i g n a l s i n p r o s t a t ec a n c e r s[J].I n t e r n a t i o n a l J o u r n a lo f M o l e c u l a rS c i e n c e s,2021,22(24):13435.[18]K A R I M S,B U R Z A N G IAS,A HMA D A,e t a l.P I3K-A K Tp a t h w a y m o d u l a t i o n b y t h y m o q u i n o n el i m i t st u m o r g r o w t ha n d g l y c o l y t i cm e t ab o l i s m i nc o l o r e c t a l c a n c e r[J].I n t e r n a t i o n a lJ o u r n a l o fM o l e c u l a r S c i e n c e s,2022,23(4):2305. [19]Y AMA D A T,U C H I D A M,KWA N G-L E EK,e t a l.C o r r e l a-t i o no f m e t a b o l i s m/h y p o x i a m a r k e r sa n df l u o r o d e o x y g l u c o s e u p t a k e i no r a ls q u a m o u sc e l lc a r c i n o m a s[J].O r a lS u r g e r y, O r a lM e d i c i n e,O r a l P a t h o l o g y a n dO r a lR a d i o l o g y,2012,113(4):464-471.[20]J O H NS,W E I S S JN,R I B A L E TB.S u b c e l l u l a r l o c a l i z a t i o n o fh e x o k i n a s e sⅠa n dⅡd i r e c t s t h em e t a b o l i c f a t e o f g l u c o s e[J].P L o SO n e,2011,6(3):e17674.[21]S O N GJN,L IY,S O N GJM,e t a l.M a n g i f e r i n p r o t e c t sm i-t o c h o n d r i a l f u n c t i o nb yp r e s e r v i n g m i t o c h o n d r i a lh e x o k i n a s e-Ⅱi nv e s s e l e n d o t h e l i a l c e l l s[J].B i o c h i m i c a e t B i o p h y s i c aA c t a(B B A)-M o l e c u l a rB a s i so fD i s e a s e,2017,1863(7):1829-1839.[22]Z H A N GZ,D E N GXY,L I U YD,e t a l.P KM2,f u n c t i o n a n de x p r e s s i o na n d r e g u l a t i o n[J].C e l l&B i o s c i e n c e,2019,9:52.[23]L U O W B,HU H X,C HA N G R,e t a l.P y r u v a t ek i n a s eM2i s aP H D3-s t i m u l a t e d c o a c t i v a t o r f o r h y p o x i a-i n d u c i b l e f a c t o r1[J].C e l l,2011,145(5):732-744.[24]L E E Y B,M I NJK,K I M JG,e ta l.M u l t i p l e f u n c t i o n so fp y r u v a t ek i n a s eM2i nv a r i o u s c e l l t y p e s[J].J o u r n a l o f C e l l u l a r P h y s i o l o g y,2022,237(1):128-148.[25]P A N Y H,WA N G W,HU A N GS,e t a l.B e t a-e l e m e n e i n h i-b i t s b r e a s tc a n c e rm e t a s t a s i s t h r o u g hb l o c k i n gp y r u v a t e k i n a s eM2d i m e r i z a t i o n a n d n u c l e a r t r a n s l o c a t i o n[J].J o u r n a l o f C e l l u-l a r a n d M o l e c u l a rM e d i c i n e,2019,23(10):6846-6858. [26]L I ZG,L I UJY,Q U EL,e t a l.T h e i mm u n o r e g u l a t o r yp r o-t e i nB7-H3p r o m o t e s a e r o b i c g l y c o l y s i s i no r a l s q u a m o u s c a r c i-n o m a v i aP I3K/A k t/m T O R p a t h w a y[J].J o u r n a lo fC a n c e r, 2019,10(23):5770-5784.[27]G O N GXB,T A N G H,Y A N GK.P E R1s u p p r e s s e s g l y c o l y s i sa n d c e l l p r o l i f e r a t i o ni no r a l s q u a m o u sc e l l c a r c i n o m av i at h eP E R1/R A C K1/P I3Ks i g n a l i n g c o m p l e x[J].C e l lD e a t h&D i-s e a s e,2021,12:276.[28]H A R A D A K,F E R D O U ST,HA R A D A T,e t a l.M e t f o r m i ni n c o m b i n a t i o nw i t h5-f l u o r o u r a c i l s u p p r e s s e s t u m o r g r o w t hb yi n h i b i t i n g t h eW a r b u r g e f f e c t i nh u m a no r a l s q u a m o u s c e l l c a r-c i n o m a[J].I n t e r n a t i o n a l J o u r n a lo fO n c o l o g y,2016,49(1):276-284.[29]MA OL,WU X W,G O N GZP,e t a l.P D I A6c o n t r i b u t e s t oa e r ob ic g l y c o l y s i s a nd c a n ce r p r o g r e s s i o n i no r a l s q u a m o u s c e l lc a r c i n o m a[J].W o r l dJ o u r n a lo fS u r g i c a lO n c o l o g y,2021,19(1):88.[30]WO L FA,A G N I HO T R I S,M I C A L L E FJ,e t a l.H e x o k i n a s e2i sak e y m e d i a t o ro f a e r o b i c g l y c o l y s i sa n d p r o m o t e s t u m o rg r o w t h i nh u m a n g l i o b l a s t o m am u l t i f o r m e[J].T h e J o u r n a l o fE x p e r i m e n t a lM e d i c i n e,2011,208(2):313-326.[31]L IM,G A OF,Z H A O Q,e t a l.T a n s h i n o n eⅡAi n h i b i t s o r a ls q u a m o u s c e l l c a r c i n o m a v i a r e d u c i n g A k t-c-M y c s i g n a l i n g-m e-d i a te d a e r o b i c g l y c o l y s i s[J].C e l lD e a t h&D i s e a s e,2020,11(5):381.[32]Q U Z,Z H A N G R,S U M,e ta l.U S P13s e r v e sa sat u m o rs u p p r e s s o r v i a t h eP T E N/A K T p a t h w a y i no r a l s q u a m o u s c e l lc a r c i n o m a[J].C a n c e r M a n a g e m e n ta nd Re s e a r c h,2019,11:9175-9183.[33]S U N X H,Z H A N G L.m i c r o R N A-143s u p p r e s s e so r a l s q u a-m o u s c e l l c a r c i n o m a c e l l g r o w t h,i n v a s i o n a n d g l u c o s em e t a b o-l i s mt h r o u g ht a r g e t i n g h e x o k i n a s e2[J].B i o s c i e n c eR e p o r t s, 2017,37(3):B S R20160404.[34]WA N G YL,Z H A N GX M,Z H A N GYC,e t a l.O v e r e x p r e s-s i o no f p y r u v a t ek i n a s e M2a s s o c i a t e sw i t ha g g r e s s i v ec l i n i c o-p a t h o l o g i c a l f e a t u r e sa n du n f a v o r a b l e p r o g n o s i s i no r a ls q u a-m o u s c e l l c a r c i n o m a[J].C a n c e rB i o l o g y&T h e r a p y,2015,16(6):839-845.[35]P A R K YJ,K I MJY,L E EDY,e t a l.P KM2e n h a n c e s c a n c e ri n v a s i o nv i aE T S-1-d e p e n d e n t i n d u c t i o no fm a t r i x m e t a l l o p r o-t e i n a s e i no r a l s q u a m o u sc e l l c a r c i n o m ac e l l s[J].P L o S O n e, 2019,14(5):e0216661.[36]L U OJ,Z H A N G L,G U O LJ,e t a l.P KM2r e g u l a t e s p r o l i-f e r a t i o n a n d a p o p t o s i st h r o ug hth e Hi p p o p a t h w a y i n o r a lt o n g u e s q u a m o u s c e l l c a r c i n o m a[J].O n c o l o g y L e t t e r s,2021, 21(6):461.(本文编辑黄建乡)Copyright©博看网. All Rights Reserved.。

nf-kb信号通路的生物学效应

nf-kb信号通路的生物学效应

NF-κB信号通路在细胞生物学和免疫学中起着非常重要的作用,其主要的生物学效应包括:
1. 调节细胞增殖和分化:NF-κB信号通路可以通过激活或抑制某些基因的表达来调节细胞增殖和分化。

例如,NF-κB可以促进细胞增殖和细胞周期进展,同时也可以抑制细胞凋亡和分化。

2. 调节细胞凋亡:NF-κB信号通路可以通过调节细胞凋亡相关基因的表达来影响细胞凋亡。

例如,NF-κB可以抑制细胞凋亡蛋白Bcl-2的表达,从而促进细胞凋亡。

3. 调节炎症反应:NF-κB信号通路可以通过调节炎症相关基因的表达来影响炎症反应。

例如,NF-κB可以促进炎症介质的合成和释放,从而引起炎症反应。

4. 调节免疫反应:NF-κB信号通路可以通过调节免疫相关基因的表达来影响免疫反应。

例如,NF-κB可以促进免疫细胞的增殖和活化,同时也可以抑制免疫细胞的凋亡和分化。

5. 调节细胞周期和细胞凋亡:NF-κB信号通路还可以通过调节细胞周期和细胞凋亡相关基因的表达来影响这些过程。

例如,NF-κB可以促进细胞周期蛋白的合成和释放,从而影响细胞周期进程;同时也可以抑制细胞凋亡蛋白的表达,从而影响细胞凋亡。

总之,NF-κB信号通路在细胞生物学和免疫学中扮演着重要的调节作用,其失调可能导致多种疾病的发生和发展。

Warburg效应在瘢痕疙瘩中的作用研究进展

Warburg效应在瘢痕疙瘩中的作用研究进展

Warburg效应在瘢痕疙瘩中的作用研究进展[摘要]瘢痕疙瘩是结缔组织过度增生的良性皮肤肿瘤,研究显示调节Warburg效应干扰瘢痕疙瘩成纤维细胞(KFs)等可使瘢痕组织重新上皮化。

本文主要探讨Warburg效应在瘢痕疙瘩中的作用,为其预防和治疗探寻新的选择。

[关键词]Warburg效应;瘢痕疙瘩瘢痕疙瘩是一种病理性瘢痕,临床表现主要为突起于皮肤表面呈蟹足状向周围正常组织浸润生长的皮损,好发于前胸[1],发病机制主要有“肿瘤学说”和“炎症学说”。

1.Warburg效应:在肿瘤研究中最早发现,又称“有氧糖酵解”,是一种适应机制[2]。

2.瘢痕疙瘩与Warburg效应2.1KFs:在瘢痕疙瘩中发挥着重要作用,Su Z等[3]发现抑制KFs的Warburg 效应后I型胶原和平滑肌肌动蛋白的mRNA转录水平显著降低。

此外,通过Akt-GSK3β-Cycin D1途径[4]抑制Warburg效应可减少细胞增殖活性。

2.2巨噬细胞:瘢痕疙瘩中各种炎症细胞有不同程度的增加,Warburg效应是M1型巨噬细胞主要获能方式[5]。

Lv R等[6]发现半乳糖凝集素-9可调节M1、M2巨噬细胞而影响warburg效应。

2.3P53:野生型P53可通过促进线粒体氧化磷酸化对抗Warburg效应,Shtraizent N等[7]发现甘露糖磷酸异构酶丢失后可使糖酵解受阻,细胞死亡。

2.4转化生长因子-β:Ding H等[8]发现抑制Warburg效应可显著减少肾纤维化[9]。

此外,TGF-β[10]信号和典型WNT/β-连环蛋白途径改变可导致Warburg效应。

2.5 上皮间质转化(EMT):指上皮来源的细胞转化为间质细胞的过程,研究发现Atg7[11]通过抑制PKM2,阻止FGFR1与Tyr-105结合产生磷酸化而抑制Warburg 效应,从而降低EMT。

3.总结近年来Warburg效应在肿瘤及纤维化疾病中进行了广泛的研究,而在病理性瘢痕中的研究较少,调节Warburg效应相关机制有望成为病理性瘢痕预防和治疗新的切入点。

血清NF-kB和P53与子宫内膜癌的相关性研究

血清NF-kB和P53与子宫内膜癌的相关性研究

血清NF-kB和P53与子宫内膜癌的相关性研究摘要】目的:探讨核因子kB(NF-kB)和抑癌基因P53在子宫内膜癌中的表达及其相关性。

方法:根据FIGO(2000年)病理分期分为4组,分别为:Ⅰ期、Ⅱ期、Ⅲ期、Ⅳ期组和健康对照组,采用酶联免疫法( ELISA)检测检测血清NF-kB和P53的表达。

结果:与对照组、Ⅰ期、Ⅱ期、Ⅲ期相比较,Ⅳ期组的NF-kB和P53的水平明显上升(P<0.05);NF-kB和P53与子宫内膜癌严重程度呈正相关(rNF-kB=0.69、rP53=0.73,P <0.05)。

结论:NF-kB和P53可能是促进子宫内膜癌发生发展的机制之一。

【关键词】 NF-kB;P53;子宫内膜癌【中图分类号】R737 【文献标识码】A子宫内膜癌为女性生殖道常见恶性肿瘤(约20%-30%),由于人类寿命的延长和肥胖人群增多,其发病率在世界范围内仍持续上升,但目前对其病因及发病机制研究仍不明确。

近年研究子宫内膜癌与癌基因、抑癌基因、生长因子、细胞因子、微环境等相关[1],而作为抑癌基因的P53和多种细胞因子所作用的最终细胞因子NF-kB,它们在子宫内膜癌的发生发展中也起着重要作用[2],但它们作用机制仍不明确。

近期研究表明在mimecan基因的第1个内含子上有NF-kB和P53的结合位点,因此它们在子宫内膜癌的发生发展中可能是通过mimecan发挥各自或相互作用,因此研究NF-kB和P53在子宫内膜癌中的作用有着重要的意义。

1资料与方法1.1研究对象 40例子宫内膜癌患者自2008年01月至2011年01月住我院妇产科。

根据FIGO(2000年)病理分期分成4组,分别为:Ⅰ期组,15例,年龄50-66组,Ⅱ期组10例,年龄51-70岁,Ⅲ期组8例,年龄51-75岁,Ⅳ期组7例,年龄53-75岁,选同期健康体检者40例作为对照组,年龄53-70岁,各组间年龄、体重指数(BMI)、腰臀比值(WHR)、空服血糖(FBG)、血脂等差异无统计学意义(p>0.05)。

Warburg效应及其对肿瘤转移的影响

Warburg效应及其对肿瘤转移的影响

Warburg效应及其对肿瘤转移的影响魏慧君;郭丽丽;李林(综述);周清华;吴志浩(审校)【摘要】Cancer cells exhibit altered glucose metabolism characterized by a preference for aerobic glycolysis even when the oxygen content is normal, a phenomenon termed “Warburg e ect”. However the definite molecular mechanisms of Warburg e ect remains unclear, recent works indicated that it might be related to the abnormal activity of the oncogene and tumor suppressor genes, also the change of tumor microenvironment, the abnormal expression of glucose metabolic enzyme and so on. Warburg e ect has a relationship with tumor progression and provide suitable conditions for tumor metastasis. is review will summarizes the mechanism of Warburg e ect and its e ect on tumor metastasis.%肿瘤细胞葡萄糖代谢的一个特点就是在氧含量正常的情况下依然选择利用糖酵解,即Warburg效应。

Warburg效应的内在机制十分复杂,可能与癌基因激活、抑癌基因失活,糖代谢酶表达异常和肿瘤微环境改变等有关,具体的机制还有待进一步研究。

热应激后人脐静脉内皮细胞p53、NF-κB的变化及调控

热应激后人脐静脉内皮细胞p53、NF-κB的变化及调控

热应激后人脐静脉内皮细胞p53、NF-κB的变化及调控张方;罗向东【期刊名称】《安徽医科大学学报》【年(卷),期】2002(037)004【摘要】目的观察p53、NF-κB在热应激后人脐静脉内皮细胞中的变化及相互关系,从信号转导的角度探讨热应激内皮细胞凋亡机制.方法人脐静脉内皮细胞经热应激模型(43℃,2 h)处理后,采用 Western Blotting研究p53表达变化;电泳迁移率改变分析法(EMSA)测NF-κB的活性变化;运用特异的反义寡核苷酸阻断NF-κB亚基(p65)后,Western Blotting检测p53表达变化.结果 p53表达增加,于热应激后6 h 达到高峰;NF-κB活性降低,于热应激后3 h达到最低水平.反义寡核苷酸阻断NF-κB亚基(p65)后,p53表达增加.结论 NF-κB负向调控p53表达,该条调控途径与热应激后人脐静脉内皮细胞p53依赖性凋亡密切相关.【总页数】3页(P265-267)【作者】张方;罗向东【作者单位】第三军医大学烧伤研究所,重庆,400038;第三军医大学烧伤研究所,重庆,400038【正文语种】中文【中图分类】R322.12;R392.11;R394【相关文献】1.丹酚酸B通过调控SIRT1/NF-κB/p53通路减轻缺氧/复氧诱导的大鼠肝细胞损伤 [J], 万磊;陈青松;周壮;周翔宇;郑道峰;吴忠均2.低氧时NF-кB和P53在大鼠肺动脉平滑肌细胞增殖和凋亡中的变化 [J], 敖启林;熊密;郝春荣;王迪浔3.脂多糖诱导人脐静脉内皮细胞分泌高迁移族蛋白B1及NF-κB调控的实验研究[J], 李法权;廖伟;王梦洪4.烟曲霉感染后人脐静脉内皮细胞表达组织因子的变化 [J], 申玉英;徐小勇;张鹏鹏;张峰;施毅5.MTB感染对小鼠肺脏上皮细胞NF-κB和p53信号通路的调控 [J], 白贵斌; 王媛; 燕超; 刘晓明; 李勇因版权原因,仅展示原文概要,查看原文内容请购买。

NF—κB在肿瘤中的研究进展

NF—κB在肿瘤中的研究进展

NF—κB在肿瘤中的研究进展NF-κB广泛存在于各类细胞,在许多疾病中发挥重要作用,尤其是在恶性肿瘤发病中的作用得到广泛关注。

已发现其在大肠癌、肝癌、胰腺癌、肾癌、乳腺癌等恶性肿瘤的发生发展及转移中有着重要作用。

一些药物可通过干预NF-κB 发挥效应,抑制恶性肿瘤的发展,用于部分恶性肿瘤的治疗。

标签:NF-κB;肿瘤治疗;研究进展核因子-κB(nuclear factor κB ,NF-κB)是一类哺乳动物转录因子家族的总称,在人类的许多疾病中发挥重要作用,从发现至今吸引众多学者的目光。

它能影响细胞的去分化和增殖,活化的NF-κB与抑制细胞凋亡、血管生成蛋白的表达以及致癌作用密切相关[1]。

随着研究的深入,人们获取了大量关于NF-κB在肿瘤发病机理的信息,并运用于肿瘤的临床治疗当中。

现就该领域的研究进展进行综述。

1 NF-κB简介研究发现NF-κB广泛存在于各类细胞中,现在已知的NF-κB家族有五个成员,包括p50/p105 (NF-κB1),p52/100 (NF-κB2),c-Rel,p65 (RelA)和Rel-B,它们能两两结合成同源性或异源性二聚体,以P50/P65异源二聚体最为常见,能迅速被多种刺激激活[1]。

一般而言,NF-kB存在于胞浆中,并与抑制性蛋白质结合形成无活性的复合物,可被多种因素激活。

激活过程是通过磷酸化抑制性蛋白使其构象改变而从NF-kB脱落,使得NF-kB得以活化。

活化的NF-kB进入细胞核,与DNA接触,从而调节下游基因的表达。

2 NF-κB与消化系统肿瘤2.1 NF-κB与结肠、直肠癌David等[2]发现CRC在肿瘤浸润的前缘、中心和正常的粘膜层中NF-κB基质细胞源性因子1[Chemokine (C-X-C motif)ligand 1,CXCL1]等靶基因的表达不同,最大的差异是肿瘤浸润的前缘表达NF-κB的靶基因上调,因而他们认为NF-κB信号下游的靶点与CRC的浸润和进展有关,阻断NF-κB信号通路可能对治疗散发的CRC有效。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Nuclear factor-k B,p53,and mitochondria:regulation of cellular metabolism and the Warburg effect Rene´e F.Johnson and Neil D.PerkinsInstitute for Cell and Molecular Biosciences,Newcastle University Medical School,Catherine Cookson Building,Framlington Place,Newcastle Upon Tyne NE24HH,UKAmong the characteristics acquired by many tumour cells is a shift from using oxidative phosphorylation to using glycolysis for ATP production.Although the nu-clear factor(NF)-k B family of transcriptional regulators have important roles in tumorigenesis,their ability to function as regulators of metabolism has only been recently investigated.This has revealed the importance of crosstalk between NF-k B,the p53tumour suppressor and other crucial cell signalling pathways.This review discusses the mechanisms through which NF-k B regu-lates tumour cell metabolism and the important role of p53in determining the consequences of NF-k B activity.It also proposes a model in which NF-k B contributes to the shift to glycolytic ATP production through regulation of both nuclear and mitochondrial gene expression. Metabolic adaptation in tumoursCancer cells acquire a set of characteristics that facilitate growth and survival.These‘hallmarks of cancer’include evasion of growth suppressors;sustained proliferative sig-nalling;increased resistance to cell death;induction of angiogenesis;limitless replicative potential;and tissue invasion and metastasis[1].Following the renewed inter-est in metabolic changes in cancer cells,in recent years,it has become clear that alterations in metabolism should also be included among the essential characteristics of tumour cells[1–3].Indeed,metabolic reprogramming dur-ing tumorigenesis is intimately integrated with many of these characteristics and is regulated by many of the same effectors[4].Although it wasfirst reported in1927by Otto Warburg that tumours prefer to use glycolysis instead of oxidative phosphorylation[5],there has recently been a revival of interest in tumour cell metabolism.The use of glycolysis even in the presence of oxygen,termed the‘Warburg effect’[6],provides the tumour cell with ATP in a less efficient manner than that produced by oxidative phosphorylation. However,the tumour cell also benefits because using glycol-ysis to break down glucose also provides substrates for anabolic processes including the pentose phosphate path-way,lipid metabolism,and amino acid/nucleotide synthesis through the citric acid cycle[4].It might also confer a growth advantage in hypoxic conditions,allowing tumour cells to survive in the absence of oxygen[7].Warburg hypothesised that this defect in cellular respiration and the subsequent shift to glycolysis is the initiating step in tumorigenesis[6]. However,except for a small subset of cancers in which mutation of one the genes encoding the tricarboxylic acid (TCA)cycle enzymes results in tumourigenesis,it is not yet clear whether altered metabolism results in cancer forma-tion or if these alterations arise after cancer development[8] (Box1).In addition,the use of different model systems and cell lines can make it difficult to determine how generali-sable these effects may be to real tumours of different origins (Box2).Either way,this aspect of tumour cell biology has been diagnostically exploited,in that tumours and metas-tases can be monitored noninvasively using positron emis-sion tomography(PET),which detects the uptake of the radioactive hexokinase substrate2-18F-2-deoxyglucose (FDG)by highly glycolytic tumour cells[9].Furthermore, the increased use of glycolysis for cancer cell cellular energy production may also prove to be a potential therapeutic target,although attempts to inhibit glycolysis in cancer cells have not yet proved to be successful.To a great extent,this metabolic shift results from altered expression of the genes and proteins that regulate glycolysis and oxidative phosphorylation.These gene ex-pression changes are due,at least in part,to the altered activities of key transcription factors,including NF-k B and hypoxia inducible factor(HIF)-1,together with the loss of tumour suppressors such as p53.Although we have chosen to focus on crosstalk between p53,NF-k B,and HIF,it should be noted that these are not the only factors resulting in altered energy metabolism in cancer cells.Other changes,such as in the levels of reactive oxygen species (ROS),cytokines and chemokines,and aberrant AKT ac-tivity,all alter the tumour microenvironment and subse-quently tumour energy metabolism[10,11].Moreover, processes that result in an increase in the rate of glycolysis also result in changes in mitochondrial metabolism through a process known as the Crabtree effect[12].p53p53is a transcription factor that regulates a diverse range of cellular functions including apoptosis,senescence,DNA repair,cell proliferation and autophagy[13].Mutation or suppression of p53,a frequent occurrence in cancer,results in loss of control of these crucial functions,thus promoting tumourigenesis and leading to p53being referred to as aCorresponding author:Perkins,N.D.(n.d.perkins@).0968-0004/$–see front matterß2012Elsevier Ltd.All rights reserved./10.1016/j.tibs.2012.04.002Trends in Biochemical Sciences,August2012,Vol.37,No.8317tumour suppressor.In undamaged cells,the murine double minute chromosome protein2(MDM2)E3ubiquitin ligase keeps p53in check through rapid ubiquitin-mediated pro-teolysis.In general,induction of p53involves the inactiva-tion of this process through post-translational modification and/or protein binding to MDM2,leading to its dissociation from p53[14].Although induction of p53is most frequently associated with DNA damage and oncogene activation,it is also activated by a wide variety of cellular stresses,includ-ing metabolic changes,limited nutrients,and reduced oxygen tension(hypoxia)[15].For example,p53can be activated by AMP-activated kinase(AMPK)in response to changes in ATP/ADP levels,or by malate dehydrogenase,a TCA cycle enzyme,in response to glucose deprivation[15]. Unmutated p53promotes oxidative phosphorylation and inhibits the Warburg effect,thus contributing to its tumour suppressor functions[15,16].By contrast,the inhibition,loss and/or mutation of p53,which is one of the most common events in tumorigenesis,results in decreased oxygen consumption and increased glycolysis[16].There are a variety of reported mechanisms in different cell types through which p53might achieve these effects [15](Figure1).For instance,in many different cell lines, p53induces expression of TIGAR(TP53-induced glycolysis and apoptosis regulator),a fructose-2,6-bisphosphatase, leading to a drop in fructose-2,6-bisphosphate levels in cells,which in turn leads to inhibition of glycolysis and reduced intracellular ROS levels[15].In mouse models and cell lines,p53has also been shown to increase oxidative phosphorylation through upregulation of the synthesis of cytochrome c oxidase2(SCO2)gene[15].In addition,p53 directly regulates glycolytic genes.For example,p53-re-sponsive elements have been identified in the promoters of the hexokinase(HK)-II and phosphoglycerate mutase (PGM)genes,which both encode enzymes in the glycolytic pathway[15].Moreover,p53has been shown to down-regulate expression of PGM and the glucose transporters (GLUT)1,3,and4[15,17].Interestingly,increased glucose metabolism(through upregulation of HK1or GLUT1)can in turn suppress p53activity,providing a potential mech-anism through which alterations in metabolism can con-tribute to tumorigenesis[18].The metabolic effects of p53 are not restricted to glycolysis and oxidative phosphoryla-tion.Consequences of p53activation also include increased pentose phosphate pathway activity,resulting in an in-crease in the NADPH:NADP ratio and glutathione[15]. In response to glucose starvation,p53can also induce the expression of guanidinoacetate methyltransferase (GAMT),a regulator of creatine synthesis,thus allowing fatty acid oxidation(FAO)to be used as an alternate energy source[19].p53and NF-k B crosstalk regulates tumour cell metabolismNF-k B is a dimeric transcription factor composed offive family members:RelA(p65),p105/p50(NF-k B1),p100/ p52(NF-k B2),c-Rel,and RelB.NF-k B functions as an important regulator of the immune and inflammatory responses[20].NF-k B is induced by a wide variety of inflammatory and immunological stimuli and cell stresses,including cytokines such as tumour necrosis factor(TNF)a,interleukin(IL)-1,bacterial lipopolysac-charide(LPS),low oxygen tension(hypoxia),and DNA damage[20].It plays a crucial role in multiple cellular pathways including cell survival,proliferation,adhesion, and angiogenesis[20].Through these processes,aberrant-ly active NF-k B found can contribute to most,if not all,of the‘hallmarks’of cancer(reviewed in[21,22]).There are two principal pathways leading to NF-k B activation,both of which utilise members of the I k B kinase(IKK)family. Thefirst of these involves IKK b-dependent phosphoryla-tion of the NF-k B inhibitor I k B a,resulting in the ubiqui-tylation and degradation of I k B a.This allows NF-k B complexes(most commonly a RelA/p50heterodimer)to be retained in the nucleus of the cell[20].This‘classical’pathway is typically induced by TNF,IL-1,LPS and other Toll-like receptor ligands[20].The second pathway is induced by stimuli such as lymphotoxin b,and involvesBox1.Caveats to the Warburg hypothesisAlthough many solid tumours and cancer cell lines display theclassic traits of the Warburg effect,such as enhanced glycolysis andreduced or impaired oxidative phosphorylation,not all cancer cellshave been shown to increase glycolysis(reviewed in[61]).Many,but not all tumours display a PET signal,demonstrating highutilisation of glucose,and the PET signal is often only poorlydiagnostic in early cancer stages[62].Furthermore,although sometumour cells have reduced mitochondrial H+-ATP synthase,sug-gesting decreased oxidative phosphorylation[63],several otherstudies have described tumour cells that display relatively normaloxidative phosphorylation[64].Other studies have suggested that,depending on the tumour microenvironment or pattern of geneexpression,glycolysis and oxidative phosphorylation can be eithersuppressed or restored in the cells,suggesting that tumourmetabolism is not an irreversible characteristic[61,65].Therefore,although the Warburg effect and alterations in cell metabolismundoubtedly play a part in tumour formation and growth,it appearslikely that cancer cells use a wide range of metabolic changes thatare under constant adaptation and alteration,thus satisfying theparticular energy and nutrient requirements that are determined bythe specific conditions encountered by the cell.Box2.Generalisations among different cancer cell lines andacross speciesAs with the majority of scientific and medical research,studies incell metabolism have been conducted using a variety of normal andcancerous cells lines,tissue samples and animal models,and theextent to which the resulting data can be generalised across thesesystems is unknown.Studies using cancer cell lines derived fromprimary tumours that have been grown in the presence of highlevels of oxygen and glucose,often for many years,can incorporatechanges resulting from metabolic adaptation to these cultureconditions,and can display chromosomal aberrations and muta-tions that may not have been present in the original tumour.Thus,care should be taken when interpreting data generated using thesesystems.However,it is often the case that studies have beenconducted and confirmed in vastly different systems or acrossspecies.The studies represented in this review used a wide range ofcell lines,from mouse and human origin,as well as human andmouse tissue samples.It should be noted that it is possible that theresults obtained from these different systems may represent datathat are highly cell and or context specific.However,the use of‘switchable systems’allowing genes to be turned on or off in liveanimals[66],might help to elucidate the common or specific natureof these observations with regard to the Warburg effect andtumorigenesis.Trends in Biochemical Sciences August2012,Vol.37,No.8 318the IKK a -dependent phosphorylation and proteolytic pro-cessing of the p100subunit,generating p52-containing NF-k B complexes [20].Crosstalk between p53and the NF-k B family of tran-scription factors provides a mechanism of integrating two signalling pathways with important roles in tumourigen-esis [20,23,24].Although in many cases this has the ap-pearance of an antagonistic relationship,because the tumour promoting NF-k B inhibits the tumour suppressor p53or vice versa [23,24],these effects are probably better described as being modulatory and context dependent.For example,under some circumstances,p53and NF-k B can cooperatively induce or repress joint target genes and promote apoptosis [22].Furthermore,p53can also be a substrate of IKK,leading to p53degradation through a ubiquitin-dependent but Mdm2-independent pathway [25].Crosstalk between p53and NF-k B also appears to have an important role in the changes associated with tumour cell metabolism.Given the complexity of this cross-talk,it is likely that,dependent on the context,NF-k B and IKK can modulate metabolism through p53in a variety of ways.Here,we discuss some specific examples where p53/NF-k B crosstalk has been shown to affect tumour cell metabolism.Of the NF-k B subunits,only RelA has been clearly dem-onstrated to have an important role in tumour cell metabo-lism.However,effects involving the other subunits cannot be ruled out.Interestingly,depending on the context,RelA can either promote or repress oxidative phosphorylation andthe switch to glycolytic energy production.Strikingly,p53can determine which of these effects occurs (Figure 2).For example,Mauro et al.have demonstrated that,upon glucose starvation of mouse embryo fibroblasts (MEFs),RelA acti-vates the p53gene promoter and consequently induces p53RNA and protein levels [26].Consequently,this RelA-de-pendent increase in p53levels leads to an increase in oxidative phosphorylation and a decrease in glycolysis [26].These metabolic effects are due,at least in part,to upregulation of the p53target gene SCO2,a subunit of the mitochondrial cytochrome C oxidase (COX)complex,which is the terminal and crucial component of the electron trans-port chain that catalyses the transfer of electrons from cytochrome c to molecular oxygen (Figure 1).This complex is required for aerobic ATP production through mainte-nance of the proton gradient across the inner mitochondrial membrane [27].In this system,loss of RelA reduced oxidative phos-phorylation and also resulted in the upregulation of genes normally repressed by p53,including the glycolytic en-zyme PGM2and glucose transporters GLUT1,GLUT3,and GLUT4[26](Figure 1).Through these p53-dependent effects,RelA is able to suppress H-Ras-induced transfor-mation in vitro [26].Although the study of Mauro et al.mostly used MEFs,it also demonstrated that RelA can promote metabolic adaptation of CT-26human colorectal cancer cells in a mouse xenograft model.Moreover,loss of RelA further suppressed the growth of tumours chal-lenged with the diabetes drug metformin,an inhibitormtDNAmtDNAmtDNAGlut 1, 3 and 4GlucoseRRM2Bp53I κB αRelARelAp53GlucoseGlucose 6 phosphate Fructose 6-phosphatep53SCO2p53RelAFructose 1,6-bisphosphateGlyceraldehyde 3-phosphate Acetyl CoATCA cycleISCO1/2miR210HIFPDK1HIF NADH FADH1,3-Diphosphoglycerate3-Phosphoglycerate2-PhosphoglyceratePhosphoenolpyruvatePyruvateLactateHIFRelAp53HIFp53TIGARp53HIFHIFHIFT i BSFigure 1.Regulation of metabolic pathways by p53,NF-k B,and HIF.Summary of how the p53,NF-k B,and HIF signalling pathways can regulate the expression and/or activity of key components of the glycolytic and TCA pathways,together with oxidative phosphorylation.Trends in Biochemical Sciences August 2012,Vol.37,No.8319of mitochondrial complex I,beyond treatment with met-formin alone.Therefore,the ability of RelA to induce p53 and SCO2upon glucose starvation adds to a growing list of pathways through which NF-k B can behave more akin to a tumour suppressor rather than its more commonly de-scribed function as a tumour promoter[22].In contrast to these results,RelA can also promote glycolysis.Kawauchi et al.have reported that,upon loss of p53,RelA induces expression of the glucose transporter GLUT3in tumour cells,resulting in increased glucose consumption and lactate production[17].Moreover,in p53-deficient mousefibroblast cells,this process is re-quired for oncogenic Ras-induced cell transformation and acceleration of aerobic glycolysis.Such effects are consistent with reports suggesting that at least in some Ras-dependent tumour models,such as an H-Ras-driven lung adenocarcinoma model,the ability of NF-k B to func-tion as a tumour promoter requires loss of p53[28],al-though another study has suggested that this is not the case[29].These studies provide good examples of the context-dependent duality of function of NF-k B function in cancer,where depending on the context,it can exhibit both tumour-promoting and tumour-suppressing charac-teristics[22].A common theme appears to be that loss of tumour suppressors leads to loss of control of NF-k B, leaving its tumour-promoting functions to dominate. Regulation of mitochondrial function by NF-k B and p53 As described above,a major mechanism through which NF-k B and p53can exert effects on cellular metabolism is through their well-established roles as regulators of nucle-ar gene expression(Figure3).However,there is also evidence that NF-k B and p53have direct effects within mitochondria,the site of oxidative-phosphorylation-depen-dent ATP generation.The vast majority of the>1500 mitochondrial proteins are encoded by nuclear genes and imported from the cytosol[30]but there are some crucial exceptions that are expressed from the mitochon-drial genome(Figure3).This exists as an approximately 16.5-kb closed,covalent,circular DNA structure,encoding 13proteins,22tRNAs,and two ribosomal RNAs[31] (Figure3).All mitochondrially encoded proteins are in-volved in oxidative phosphorylation[31].Mitochondrial gene transcription occurs bidirectionally from three pro-moters located in the D-loop region of the genome.Tran-scription of the light strand produces a single mRNA encoding the NADH dehydrogenase6(MTND6)gene and eight tRNA sequences.The heavy strand has two promoters that either produce an RNA encoding the two mitochondrial rRNA sequences12S and16S rRNA(H1),or a polycistronic transcript encoding the remaining12open reading frames(ORFs),14tRNAs,and2rRNAs(H2).The polycistronic transcript then undergoes subsequent RNA processing to generate separate RNA species[31].Mito-chondrial transcription is carried out by a specialised set of mitochondrial transcription factors,including a specific mitochondrial RNA polymerase,POLRMT[polymerase (RNA)mitochondrial(DNA directed)][31].Mitochondrially encoded genes all have the potential to modulate oxidative phosphorylation,albeit at differing levels,thus,it is crucial that mitochondrial transcription be coordinated with the other cellular signalling pathways that impose their own energy demands upon the cell[32] (Figure3).Signalling pathways can indirectly control mi-tochondrial gene expression through regulation of proteins such as peroxisome proliferator-activated receptor g coac-tivator1(PGC-1)a and nuclear respiratory factor(NRF)-1 and2[31],which in turn regulate the expression of the nuclear-encoded mitochondrial transcription factors.In-deed,following LPS stimulation of hepatocytes the NF-k B subunit RelA,in conjunction with cAMP responsive element binding protein(CREB),can activate the NRF-1 promoter and induce its expression,leading to induced expression of nuclear encoded mitochondrial transcription factors and expanded mitochondrial DNA(mtDNA)copy number[33].A role for NF-kB in mitochondria?Such mechanisms inevitably impose a delay on how quick-ly mitochondrial gene expression responds to changes in cellular signalling.The cell can regulate the effect of mitochondrially encoded proteins by modulating their translation efficiency or activity,which is the case for the mitochondrial H+-ATP synthase and the mRNA of one of its constituent proteins,b-F1-ATPase[34].Howev-er,direct regulation of mitochondrial transcription pro-vides another route through which regulation of oxidative phosphorylation can be integrated with cellular signal-ling.For instance,control can be achieved through the targeted mitochondrial localisation of nuclear transcrip-tion factors such as NF-k B,which then act as the effectorsNF-κB NF-κBInduces p53Induces SCO2(other geneexpression effects)Induces oxidativephosphorylation/represses glycolysisOncogene induced transformationInduces Glut3 (and other genes?) Induces glycolysisNF-κB repressesmitochondrial geneexpressionMitochondriaInhibition of oxidativephosphorylationFigure2.Model of how the p53-dependent regulation of ATP production by NF-k Bmight influence oncogene induced transformation.Nutrient deprivation,in at leastin some cell types,causes NF-k B to induce p53protein expression,which in turnresults in induction of synthesis of SCO2.SCO2then acts to promote oxidativephosphorylation.p53can also prevent RelA localisation to mitochondria.However,upon loss of p53expression or activity in a tumour cell,NF-k B can exhibit differentbehaviour,promoting glycolysis through induction of genes such as Glut3,whilethen being able to localise to mitochondria where it can repress mitochondrialgene expression.The context dependency of these results,and whether they arerestricted to certain cell or tumour types,has yet to be established.Blue arrowssymbolise potentially tumour suppressing pathways,and red arrows indicatepotentially tumour-promoting pathways.Trends in Biochemical Sciences August2012,Vol.37,No.8 320of the major cell signalling pathways (Figure 3).Regula-tion of the mitochondrial genome by nuclear transcription factors might be another mechanism by which these cells can adapt metabolic processes to respond to changes in the microenvironment.Indeed,many reports indicate that a wide variety of such factors can be found in mito-chondria,including signal transducer and activator of transcription (STAT)3,CREB,nuclear hormone receptors [32],NF-k B subunits,and p53[32,35–38].However,this is a controversial area because these factors lack defined mitochondrial targeting sequences (MTSs)and their mechanism of mitochondrial import has not yet been explained (Box 3).Several components of the NF-k B/IKK signalling pathway have been putatively identified in mitochon-dria.These include the NF-k B subunits RelA and p50,the I k B a inhibitor as well as the upstream kinases IKK a ,IKK b ,and IKK g [35–38].Although the exact location of these proteins within the mitochondrion is still contentious,they are thought to be located in the intermembrane space [35]as well as in the mitochondri-al matrix [36,37]where the mtDNA is found.There are,however,limited data on the function of these signallingmolecules in this organelle and most attention has fo-cussed on RelA.NF-k B from mitochondrial extracts from prostate cancer cells and U937monocytic leukaemia cells can bind NF-k B consensus sequences in vitro [36,37];an effect enhanced by treating cells with TNF-related apoptosis-inducing ligand (TRAIL)or TNF a [36,37].Treatment with TRAIL or TNF a is associated with a decrease in the expression of mitochon-drial genes encoding cytochrome c oxidase III and II and cytochrome b ,which is inhibited by expression of a mutant or super-repressor form of the NF-k B inhibitor I k B a [36,37].RelA-dependent repression of mitochondrial gene expres-sion has also been observed in a variety of cancer cell lines,including U-2OS osteosarcoma cells and H1299non small cell lung cancer cells.This observation is true for both endogenous and overexpressed,artificially mitochondrially targeted RelA [38].Using a chromatin immunoprecipitation (ChIP)assay,recruitment of RelA to the mitochondrial genome has been shown;RelA repression of transcription is dependent upon the C-terminal RelA transactivation domain,and is associated with reduced POLRMT binding to mtDNA [38].These results are consistent with RelA exerting a direct effect on mitochondrialtranscription,NucleusCytoplasmMitochondrionNuclear encoded mitochondrial genes(>1000)Nuclear TFsMetabolic regulators glycolytic genesNuclear TFsNF-κB NF-κBDirect targets and crosstalkInflammationstress oncogenesOther nuclear transcription factorsRibosomes translation(i)(iii)(ii)(iv)(v)(vi)ATPMatrix2H+4H+ 2H+Inner mitochondrial membraneInter-membrane space3H+Electron transport chain (ETC)Transcription Complex I Complex III Complex IV ATP synthase Ribosomal RNAKey:D Loop regulatory region C y t bN D 6ND5N D4N D4LN D3C O I I IC O IIC OI N D 1N D 212S 16SMitochondrialDNA 16569 bpA T P8A T P 6L S PH S P 1HSP2(vii)& translationMatrix(I)(II) (III)(IV) (V)3H+T i BSFigure 3.NF-k B can regulate ATP production through effects on both nuclear and mitochondrial gene expression.Multiple stimuli can induce NF-k B nuclear translocation (i).In the nucleus,NF-k B can regulate metabolism either by direct effects on target genes or by inducing or modulating the expression and activity of other transcription factors (TFs)such as HIF-1,p53,and STAT3(ii).NF-k B can potentially influence mitochondrial function through crosstalk with transcription factors such as NRF 1/2and PGC 1a ,which regulate the expression of nuclear-encoded mitochondrial proteins,including mitochondrial transcription factors such as transcription factor A,mitochondrial (TFAM),and polymerase (RNA)mitochondrial (DNA directed)(POLRMT)(iii).mRNAs for the nuclear-encoded mitochondrial factors are then translated in the cytosol (iv).These proteins possess mitochondrial targeting sequences,therefore,they are then translocated into mitochondria through the TOM and TIM complexes (v).This inevitably leads to a delayed response between an initial NF-k B activating signal and any effect on mitochondrial function.However,there potentially exists a parallel pathway in which the RelA NF-k B subunit,as well as other normally nuclear transcription factors,can be translocated directly to mitochondria (vi).This would allow a more direct response to inducing stimuli while also providing a mechanism to integrate mitochondrial and nuclear gene expression.The pathways through which these nuclear factors enter mitochondria are poorly defined (Box 3).Mitochondrial function of nuclear transcription factors could occur either in the matrix or intermembrane space.In the matrix of the mitochondria,transcription from multiple copies of the circular mitochondrial genome is regulated by nuclear-encoded transcription factors,some of which transactivate exclusively mitochondrial genes,and others that can transactivate both nuclear and mitochondrial genes (vii).The RelA NF-k B subunit can repress mitochondrial gene expression,thus contributing to the downregulation of oxidative phosphorylation and switch to glycolysis that is seen in cancer cells.The positions of the three mitochondrial transcriptional promoters (HSP1,2,and LSP)in the D loop region in the mitochondrial genome are shown.The coding regions of individual mitochondrial genes in this figure are not to scale,nor are the positions of mitochondrial tRNAs depicted.Trends in Biochemical Sciences August 2012,Vol.37,No.8321。

相关文档
最新文档