冲压工艺与模具设计第6章冲压工艺过程设计
冲压工艺及模具设计

冲压工艺及模具设计一、冲压工艺冲压工艺是指利用压力使金属板材在模具的作用下发生塑性变形,从而得到所需形状和尺寸的工艺。
冲压工艺的主要步骤包括:设计制作模具、准备材料、冲压加工及后续处理。
1.模具的设计制作:冲压工艺的关键在于模具的设计和制作。
模具由上下模具组成,上模具固定在机床上,下模具固定在滑块上。
上下模具之间有一定的空隙,当滑块向下运动时,上下模具会夹紧工件,使之发生塑性变形。
2.材料的准备:在进行冲压加工前,需要将金属板材裁剪成适当大小,并将其清洗干净,以去除杂质和油污。
3.冲压加工:冲压加工是将金属板材放置在模具中,通过机械设备施加压力,使金属板材发生塑性变形,最终获得所需形状和尺寸的工件。
4.后续处理:冲压工艺完成后,还需要进行一些后续处理,如清洗、抛光、喷涂等,以提高工件的表面光洁度和装饰性。
二、模具设计模具设计是冲压工艺中的重要环节,好的模具设计可以提高冲压加工的效率和质量。
模具设计的主要考虑因素包括:工件的形状和尺寸、材料的性质、冲压工艺的要求等。
1.模具结构设计:模具结构设计是模具设计的基础,主要包括上模具和下模具的结构设计。
上模具一般由模板、定位销、导向套等组成,下模具一般由模座、模块、导向柱等组成。
2.模具材料选择:模具的材料选择直接影响到模具的使用寿命和加工质量。
一般情况下,模具材料应具有高硬度、高强度、良好的热导性和耐磨性等特性。
3.模具零件设计:模具零件的设计应考虑到工件的形状和尺寸,以及冲压工艺的要求。
模具零件的设计应尽量简化,减少加工难度,提高生产效率。
4.模具配合设计:模具零件之间的配合关系直接影响到模具的精度和稳定性。
模具配合设计应确保零件的定位准确、运动平稳,并充分考虑到热膨胀等因素。
综上所述,冲压工艺及模具设计是一项复杂的工程,它涉及到材料、结构、流程等多个方面。
通过合理的冲压工艺和精心的模具设计,可以实现高效、高质量的冲压加工,为生产制造提供有力支持。
《冷冲压工艺与模具设计》第6章:冷挤压工艺与模具设计简介

/webnew/
6.3.2 冷挤压的变形程度
图6-9 黑色金属正挤压的极限变形程度
/webnew/
6.3.2 冷挤压的变形程度
/webnew/
/webnew/
6.2 冷挤压工艺的分类
图6-1 正挤压
/webnew/
6.2 冷挤压工艺的分类
图6-2 反挤压
/webnew/
6.2 冷挤压工艺的分类
/webnew/
6.3.1 冷挤压的应力与应变状态
/webnew/
6.3.1 冷挤压的应力与应变状态
3. 复合挤压 复合挤压是正挤压和反挤压的组合。复合挤压存在 向不同出口挤出的流动的分界面(分流面)。分流面 位置影响两端金属的相对挤出量,但由于受到零件 形状及变形条件(如模具结构、摩擦与润滑等)的影 响,分流面较难确定具体位置。图6-8为复合挤压 的变形网格示意图,此法可以制造双杯类零件、杯 杆类零件和杆类零件。
/webnew/
6.3.2 冷挤压的变形程度
3. 影响冷挤压极限变形程度的因素 影响冷挤压极限变形程度的因素首先是模具的强度和使用寿命。冷挤压时坯料 在三向压应力状态下产生塑性变形,这种状态下的金属塑性极好,如果不是受 模具强度的限制,塑性变形可以达到很大的变形程度。如挤压低强度的有色金 属,其变形程度可以高达99%。但坯料的变形程度很大时,所需的挤压力也很 大,模具也要承受强大的挤压力。如果模具所受的挤压力超过其许可范围,则 模具也会过早磨损甚至破坏。所以,冷挤压的极限变形程度实际上受到模具的 强度和使用寿命的限制。可以说,冷挤压的极限变形程度实际上是指在模具强 度允许和保持模具有一定使用寿命的条件下坯料一次挤压所能达到的最大变形 程度。其次是挤压金属材料的性质。被挤压金属的强度、硬度越大,单位挤压 力越大,极限变形程度就越小;被挤压金属的硬化指数越大,极限变形程度也 越小。第三是挤压方式。正挤压的单位挤压力小于反挤压,因此正挤压的极限 变形程度大于反挤压。第四是模具的几何形状。合理的模具几何形状(如正挤压 时合理的凹模中心角、反挤压时合理的凸模端部锥角等),可以降低单位挤压力, 从而提高极限变形程度。除此之外,坯料的表面处理与润滑状态等对极限变形 程度有影响,良好的表面特性与润滑条件也能提高极限变形程度。
冲压工艺与模具设计的内容及步骤

冲压工艺与模具设计的内容及步骤冲压工艺是利用机械设备将金属板材冲压成所需形状的一种生产方法,广泛应用于制造汽车、电器、通信设备等工业产品中。
模具设计是冲压工艺的重要环节,它决定了冲压件的质量和成本。
下面将详细介绍冲压工艺和模具设计的内容及步骤。
一、冲压工艺步骤:1.确定冲压工艺参数:包括材料的选择、厚度、韧性、硬化指数等;成形件的形状、尺寸、公差要求等;冲床的选型和工作速度等。
2.设计冲压模具:根据成形件的形状和尺寸,设计出合适的冲压模具。
冲压模具一般包括上模、下模、冲子、顶针和导向装置等。
冲床是冲压操作的设备,通过上下模具的间隙来进行材料的冲压。
3.制作冲压模具:根据冲压模具设计的要求,进行模具零件的加工和装配。
模具材料通常选择高硬度、高耐磨、高强度的工具钢。
4.进行冲压加工:根据工艺参数和模具设计要求,将金属板材装夹在冲床上,通过冲床的动力系统进行冲压加工,将金属板材冲压成成形件。
5.进行后续加工:对冲压成形的零件进行必要的后续加工,如去毛刺、油污清洗、焊接等。
6.进行检验和质量控制:对成形件进行尺寸、公差、表面质量等方面的检验。
根据质量控制要求,对生产过程进行控制和调整,以保证成形件的质量。
二、模具设计步骤:1.确定产品的设计要求:根据成形件的形状和尺寸要求,确定模具结构、材料和工艺要求。
同时还要考虑到模具制造的成本和生产周期等因素。
2.进行产品结构的分析和仿真:运用CAD和CAM软件进行产品结构的分析和仿真,确定冲压工艺和模具设计的合理性。
通过仿真,可以预测模具在使用过程中可能出现的问题,并进行相应的优化。
3.进行模具结构设计:根据产品的形状和尺寸要求,设计模具的结构,包括上下模板的大小和形状、导向装置的位置和尺寸、冲子的形状和尺寸等。
同时还要合理布置冷却系统和润滑系统,以保证模具的使用寿命和成形件的质量。
4.进行模具零件的设计:将模具结构划分为各个零件,并进行分析和计算,确定各个零件的形状、尺寸和工艺要求,包括上下模板、导向装置、冲子、顶针等。
《冷冲压工艺与模具设计》第6章冷挤压工艺与模具设计

6.3.1 冷挤压的应力与应变状态
/webnew/
6.3.2 冷挤压的变形程度
/webnew/
6.3.2 冷挤压的变形程度
2. 冷挤压的极限变形程度 极限变形程度是指冷挤压时,在模具强度允许的条件下一次挤压所能达
(4) 冷挤压时材料在冷态下发生塑性变形,应选用组织致密和杂质少的材料,避免加工过程过多的 中间退火;冷挤压件一般都不进行精加工,所以必须选用精度高的坯料;在冷挤压加工前,毛坯常进行 软化退火和表面磷化等润滑处理。
(5) 冷挤压的适用范围广,既可挤压塑性良好的铜、铝等材料,又可挤压采用锻造等方法较难加工 的一些金属(因金属处于强烈的三向压应力状态,能充分提高金属坯料的塑性);既可以生产截面形状简 单的管、棒等型材,又可生产截面极其复杂的或具有深孔、薄壁以及变截面的零件。
/webnew/
第6章 冷挤压工艺与模具设计简介
案例导入: 下列各图所示零件的工作负荷很大,要求有极高的强度和韧
性,用切削工艺加工会将材料中的纤维组织切断,对材料的 强度和韧性有一定的影响,而且材料利用率较低,改用冷冲 压工艺加工,可以直接制造出高精度的零件或切削量很小的 零件毛坯,在材料的内部还能形成更高强度的纤维组织,大 大提高材料的综合性能,而且能够最大限度地节约原材料和 能源。冷冲压加工是一种少切削或无切削而使金属成形的塑 性加工工艺。
(1) 在冷态下挤压成形,挤压件质量好,精度高,表面粗糙度值小,一般尺寸精度可以达到 IT8~IT9,表面粗糙度可达Ra3.2~0.4μm;冷挤压后材料产生冷作硬化,零件内部的纤维组织连续, 基本沿零件外形分布而不被切断,零件的强度远高于原材料的强度;合理的冷挤压工艺还可使零件表面 形成压应力,从而提高疲劳强度;但冷挤压零件的塑性、冲击韧性变差,而且零件的残余应力大,容易 引起零件变形和耐腐蚀性的降低(产生应力腐蚀)。
冲压工艺与模具设计课程设计

冲压工艺与模具设计课程设计冲压工艺与模具设计课程设计一、课程介绍冲压工艺与模具设计是一门专业的工程课程,旨在培养学生熟悉冲压工艺和模具的设计,制作及使用,具有较强的技术素养,能够胜任相应的专业技术工作岗位。
课程主要内容有:冲压工艺基础、冲压工艺设计、冲压模具设计、冲压机械组装、冲压操作及调试等。
二、教学目标1. 掌握冲压工艺的基础知识;2. 学会掌握冲压工艺设计;3. 学会掌握冲压模具设计;4. 掌握冲压机械组装、操作及调试;5. 培养学生抱着系统的、较强的理论与实践能力,具有较强的技术素养,能够胜任相关技术工作岗位。
三、教学内容1. 冲压工艺基础(1)原理:冲压原理、冲压件分类、制造工艺要求;(2)信息技术:计算机辅助设计、自动化控制技术。
2. 冲压工艺设计(1)工艺设计:材料分析、构型设计、加工工艺设计;(2)冲压工艺数据设计:冲压参数设计、加工参数设计、冲压缺口设计;(3)工艺过程设计:冲压过程设计、冲压加工组合设计。
3. 冲压模具设计(1)模具结构特性及原理:模具种类、模具结构特性、模具加工技术;(2)模具外形设计:模具尺寸设计、模具外形设计、模具开模方式设计;(3)模具细部设计:模具夹具设计、模具油道设计、模具放料口设计。
4. 冲压机械组装、操作及调试(1)机械组装:机床部件安装、工作台安装、冲程控制装置安装;(2)机械操作:调整冲程、挤压调节、调整冲头;(3)机械调试:机械功能调试、挤压参数调试、冲头快速调试。
四、教学安排本课程为2学期,每周3个小时,36学时。
主要采取实验操作和讨论报告的方式,在实验中锻炼学生的实践能力,在讨论中增强学生的专业综合能力。
五、教学考核及格考核和综合考核:成绩由实验操作50%、讨论报告50%组成。
冲压工艺及模具设计

冲压工艺及模具设计冲压工艺及模具设计是现代工业制造中常用的一种技术,它通过将金属板材或者其他形状的金属件置于模具中,然后通过冲压机的动作使得金属材料发生塑性变形以得到所需的形状和尺寸。
冲压工艺及模具设计是一门综合性强的工艺技术,以下将介绍其包括冲压工艺流程、模具设计原则、模具结构设计、模具构件选用等相关内容。
一、冲压工艺流程冲压工艺分为单道冲压和多道冲压两种。
单道冲压是指在一个冲压过程中完成产品的全体造型,多道冲压是指通过多次冲压工艺来完成产品的全体造型。
下面将以多道冲压为例介绍冲压工艺流程。
1.材料准备:选择合适的板材材料,进行剪切、铺料等准备工作。
2.模具设计:根据产品的形状和尺寸要求,设计合适的冲压模具。
3.上料:将材料板厚按照模具规格要求剪切成对应尺寸,然后放置在模具上。
4.开模:通过冲压机的动作,使得模具上的凸模与凹模对压,使材料发生塑性变形。
5.去杂及模具保养:在冲压过程中会产生一些杂质,需要及时清理,并对模具进行保养和维护。
二、模具设计原则模具设计是冲压工艺的核心环节,它直接影响着产品的质量和成本。
在进行模具设计时,需要遵循以下原则:1.合理性原则:模具结构要合理,能够满足产品的形状和尺寸要求,并且易于加工和调整。
2.稳定性原则:模具要具有足够的刚性和稳定性,能够承受冲压机的冲击力和振动。
3.高效原则:模具设计要考虑工作效率,设计出能够实现快速冲压的模具结构。
4.经济原则:模具的设计和制造成本要较低,以降低产品的制造成本。
三、模具结构设计模具的结构设计是模具设计的重要环节,它包括模具的整体结构、分段结构、导向结构等。
下面将介绍常用的模具结构设计方法:1.整体结构设计:将模具设计为一个整体结构,具有较好的刚性和稳定性。
2.分段结构设计:根据产品的形状和尺寸要求,将模具分为多个部分,通过连接件进行连接。
3.导向结构设计:模具需要具有良好的导向性,避免材料在冲压过程中发生歪斜和偏移。
4.其他辅助结构设计:模具还需要考虑各种辅助结构,如剪断边缘结构、定位结构、脱模结构等。
冲压模具设计与制造_冲压工艺过程设计的步骤与内容

冲压模具设计与制造_冲压工艺过程设计的步骤与内容冲压模具设计与制造是冲压工艺的核心环节,它直接影响到冲压件的质量和成本。
冲压工艺过程设计是冲压模具设计与制造的重要组成部分,也是冲压件成形过程中的关键步骤。
下面将详细介绍冲压工艺过程设计的步骤和内容。
第一步:确定冲压件的工艺要求冲压工艺过程设计的第一步是确定冲压件的工艺要求。
这包括冲压件的材料、形状、尺寸、数量等要求。
根据冲压件的工艺要求,决定冲压件的加工方法、工艺流程和工艺参数。
第二步:确定冲压件的几何形状确定冲压件的几何形状是冲压工艺过程设计的核心任务之一、这包括确定冲压件的外形尺寸、形状特征和内部结构。
根据冲压件的几何形状,选择合适的冲压工艺,设计冲压模具的结构和功能。
第三步:制定冲压工艺流程冲压工艺流程是冲压工艺过程设计的重要内容之一、它包括冲压件加工的步骤、工序和设备的安排。
冲压工艺流程应该根据冲压件的几何形状、材料特性和工艺要求来确定,确保冲压件的形状和尺寸满足设计要求。
第四步:选择合适的冲压工艺参数冲压工艺参数是冲压工艺过程设计的关键环节之一、它包括冲压件的压力、速度、温度、模具间隙等参数。
选择合适的冲压工艺参数可以保证冲压件的成形质量和生产效率。
根据冲压件的材料特性、几何形状和工艺要求,确定合适的冲压工艺参数。
第五步:设计冲压模具设计冲压模具是冲压工艺过程设计的重要内容之一、它包括冲压模具的结构、尺寸、材料和加工工艺等方面。
根据冲压件的几何形状、工艺要求和生产效率要求,设计合理的冲压模具。
冲压模具应具备高精度、高强度和高耐磨性的特点,确保冲压件的成形质量和生产效率。
第六步:制造冲压模具制造冲压模具是冲压工艺过程设计的最后一步。
它包括冲压模具的加工工艺、装配和调试等环节。
冲压模具的制造应根据设计要求和工艺要求,选择合适的材料和加工工艺,确保冲压模具的质量和寿命。
制造冲压模具还需要进行装配和调试,确保冲压模具的合理性和可靠性。
总结:冲压工艺过程设计是冲压模具设计与制造的重要环节,它直接关系到冲压件的质量和生产效率。
冲压工艺与模具设计

冲压工艺与模具设计引言随着制造业的发展,冲压工艺和模具设计在产品制造过程中变得越来越重要。
冲压工艺是一种将金属板材置于冲压机中,通过冲压机的力量使得金属板材发生塑性变形,以实现所需产品形状的工艺过程。
而模具则是冲压工艺不可或缺的工具,它在冲压过程中起到定位、压制、剪断等作用,对产品质量和生产效率有着重要影响。
本文将对冲压工艺和模具设计进行详细介绍。
冲压工艺冲压工艺的基本原理冲压工艺是利用冲压机对金属板材进行塑性变形的工艺过程。
它通过冲切、冲孔、弯曲和拉伸等方法,将金属板材切割成所需形状,并加工出具有一定强度和刚度的产品。
冲压工艺的基本原理如下:1.选择合适的冲压机:不同的冲压工艺需要不同类型的冲压机。
根据冲压件的材料、厚度、尺寸和加工要求,选择冲压机的类型和规格。
2.制作模具:模具是冲压工艺的关键,它决定了产品的形状和尺寸。
模具的制作需要考虑产品的结构、材料和加工要求等因素。
3.材料准备:选择合适的金属板材,根据产品的要求进行裁剪和处理。
4.加工过程:将金属板材放置在冲压机的工作台上,通过机械力对金属板材施加压力,使其发生塑性变形。
5.完成产品:经过冲压机的压制、弯曲、切割等操作,金属板材最终被加工成所需的产品形状。
冲压工艺的优点和应用领域冲压工艺有以下几个优点:•生产效率高:冲压工艺可以实现自动化生产,大大提高了生产效率。
•产品质量好:冲压工艺可以保持产品的尺寸精度和表面质量,提高产品的一致性和稳定性。
•節約資源:冲压工艺可以最大限度地利用材料,减少浪费。
因其高效、高质和节约资源的特点,冲压工艺被广泛应用于汽车、电子、家电、航空航天等行业。
模具设计模具设计的基本原理模具设计是根据产品的形状和加工要求,设计和制作适用于冲压工艺的模具。
模具设计的基本原理包括如下几点:1.确定产品结构:根据产品的形状和功能需求,确定产品的结构和尺寸。
2.确定模具类型:根据产品的加工要求,确定适用于冲压工艺的模具类型,如冲裁模、冲孔模、弯曲模和拉伸模等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章冲压工艺过程设计冲压工艺过程是冲压件各加工工序的总和。
加工工序不仅包括冲压件所用到的冲压加工基本工序,而且包括基本工序之前的准备工序、基本工序之间的辅助工序和基本工序之后的后续工序。
工艺过程设计的任务就是根据生产条件,对这些工序的先后次序做出合理安排(协调组合),其基本要求是技术上可行、经济上合算,还要考虑操作方便与安全。
冲压工艺过程的优劣,决定了冲压件的质量和成本,所以,冲压工艺过程设计是一项十分重要的工作。
6.1 冲压工艺过程设计步骤冲压工艺过程设计涉及的内容很多很广,所以应分步进行,其步骤现已大体形成规律,可依据程序进行。
一般步骤如下。
1. 熟悉原始资料在接到冲压件设计任务之后,首先应熟悉以下原始资料:(1) 产品图及技术条件或实物样品;(2) 原材料的牌号、尺寸规格、冲压性能;(3) 生产纲领或生产批量;(4) 可提供的冲压设备种类、型号、规格、技术参数及使用说明;(5) 可提供的模具制造能力与技术水平;(6) 相关技术标准和资料。
2. 冲压件的工艺性分析按上述原始资料对冲压件的结构形状、尺寸、精度要求、材料性能等进行分析。
判断该冲压件用冲压工艺成形能不能达到规定的技术要求,需要哪几种性质的工序和工步,各道中间工序件/半成品的形状和尺寸由哪道工序完成,然后按前几章分别阐述的冲压工艺性要求逐个分析,裁定该冲压件加工难易程度,裁定是否需要采取特殊工艺措施。
由于生产条件(工艺装备及生产的传统习惯)不同,工艺性的涵义也会有一些差异。
若存在冲压工艺性不好、冲压加工困难,则应在不影响其使用性能的前提下提出修改意见,经与产品设计人员协商同意后对冲压件图样作出适合工艺性的修改。
3. 确定最佳工艺方案通过工艺性分析,结合工艺计算,并经分析比较确定最佳方案,这是冲压工艺过程设计中十分重要的环节。
其内容包括工艺性质、工序数目、工序顺序、工序件/半成品件的形状尺寸以及其他辅助工序的安排,6.2节将专题叙述。
4. 完成工艺计算工艺方案确定后,对各道冲压工序进行工艺计算,其内容主要包括:(1) 排样及计算材料消耗定额;(2) 计算冲压所需的力、所消耗的功;(3) 计算凸、凹模工作部分尺寸。
5. 选择模具类型及结构形式根据确定的工艺方案和冲压件形状特点、精度要求、生产批量、模具加工条件、操作方便与安全等要求,选定冲模类型及结构形式。
一般而言,用复合模冲出的制件精度高于级进模,而级进模又高于单工序模。
这是因为用单工序模冲压多工序的冲压件时,要经过多次定位和变形,产生积累误差大,冲压件精度较低。
复合模是在同一位置一次冲出,不存在定位误差。
因此,厚料、低精度、小批量、大尺寸的冲压件宜单工序生产,用简单模;薄料、小尺寸、大批量的产品宜用级进模连续生产;而形位精度高的产品,可用复合模加工相关尺寸。
详细内容见第7章。
6. 选择冲压设备根据工艺计算结果和模具空间尺寸的估算值,结合可提供的冲压设备情况,合理确定设备类型和标称压力。
7. 编写工艺过程卡冲压工艺过程设计的归宿是编制出冲压工艺过程卡,它是针对具体冲压产品,对其生产方式、方法、数量、质量等作出的全部决定和记载,其内容主要包括工序名称、工序内容、工序说明(工序件/半成品形状和尺寸)、模具类型、选用设备、检验要求等(参见表6.1、表6.2)。
应该说明的是,上述各项内容难免互相联系、互相制约,因而各设计步骤应前后兼顾和呼应,有时要互相穿插进行。
6.2 冲压工艺方案的确定在分析冲压件加工工艺性的基础上,提出各种可能的冲压工艺方案,经过综合分析、比较,最后确定适合生产条件的最佳方案,其内容主要包括工序性质、工序数目、工序顺序以及其他辅助工艺(热处理等)的安排。
6.2.1 工序性质的确定工序性质是由冲压件的结构形状、尺寸精度、弱区的变形性质所决定。
一般冲压件的加工过程由表1.1、表1.2中所列的各基本工序中的一个或几个组成,即可完成冲压成形。
简单冲压件的形状能很直观地反映出冲压加工的工序性质类别,如图6.1所示弯曲件,需经落料、弯曲、冲孔等工序完成。
但有些冲压件工序性质类别并不能直观地反映出来,其弱区和强区是相对的,必须通过计算和比较才能确定,如图1.13所示“环形坯料的变形趋向”,改变坯料各部分的相对尺寸、改变模具工作部分的几何形状和尺寸,甚至改变坯料和模具之间的摩擦阻力,都会使坯料某部分由弱区转化为强区,或由强区转化为弱区,从而改变冲压工序的性质。
为了使每道工序都能顺利完成任务,必须使该道工序中应该变形的部分处于弱区,并保证需要变形的先变形,不需要变形的部分不变形,为此,应采取措施对冲压变形加以控制(详见为了改善弱区的变形条件,有时要增加一些附加工序。
如图6.2所示的轴承盖零件,其拉深系数为0.43,已超过极限拉深系数,不能一次拉深成形,该件的一种工艺方案为落料——第1次拉深——第2次拉深——冲23mm 孔,但若在落料同时,在坯料中心预冲11mm 孔,则在拉深时凸缘仍然是弱区,但底部也可以产生一定的变形量,拉深时11mm 孔扩大,底部的部分材料转向侧壁,从而使成形高度得到增加,而坯料直径则可适当减小,因此可一次拉深成形,此时该件的工艺方案变为冲孔(11)落料复合——拉深——冲孔(23)。
显然,后一方案更好。
此外,冲裁件如果平面度要求较高,应增加校平工序;弯曲件弯曲半径太小时,应增加整形工序,使之达到要求;各类空心件若采用拉深工序,拉深件圆角半径太小时,也要增加整形工序。
图6.1 弯曲件 图6.2 轴承盖零件图6.2.2 工序数目的确定冲压件基本工序确定后,工序数目主要根据材料的极限变形参数(如拉深系数、翻边系数、缩口系数、胀形系数等)来确定,此外,下列因素也对工序数目的确定产生影响。
1. 冲压件的形状、尺寸要求的影响对于复杂的冲裁件,由于受模具结构或强度限制,常常将其内外轮廓分成几个部分,用几道冲压工序或在级进模中分几个工步进行冲裁。
非常靠近的孔,不能同时冲出,也要分步冲裁。
弯曲件的工序数目决定于弯角的多少、相对位置和弯曲方向。
2. 工序合并情况的影响对于多工序的冲压件,应尽可能把冲压基本工序合并起来,采用复合工序或级进工序,以提高生产效率。
料薄、尺寸小的冲压件,宜通过工序合并,用级进工序进行冲压;形位精度高的冲压件,宜通过工序合并,用复合工序加工相关尺寸,反之宜采用单工序分散冲压。
工序合并与否,还需考虑冲压设备能力、模具制造能力、模具造价及使用的可靠性。
3. 冲压件的尺寸精度及形位公差要求如图6.3所示的某锁圈,因为内孔 00.122 是配合尺寸,有精度要求,所以其工艺方案为落料——成形——冲孔。
如果其内孔22没有精度要求,则其工艺方案可以是落料冲孔复合——成形。
这样工序少、效率高。
图6.3 有精度要求的锁圈弯曲件弯曲角度公差要求较高时,需增加校正弯曲;有凸缘拉深件底部和凸缘有平面度要求时,要增加整形工序。
拉深件的口部、翻边件的边缘等都难以直接做到规则而平齐,因而一般情况下,拉深件、翻边件等最后都有一道修边工序。
若对周边口部没有较高要求时,修边工序可省略。
4. 坯料类型的影响如图5.24所示,该制件如用板料加工,从落料到最后冲孔共需6道工序,改为用管料则只需切断、缩口、第2次缩口共3道工序。
当然,这种替代只有对细长的管类制件才有效。
5. 操作安全与方便方面的要求工人操作是否安全、方便也是在确定工艺方案时要考虑的一个十分重要的问题。
例如,对于一些形状复杂、需要进行多道工序冲压的小型件,如果用单工序模分步冲压,需用手钳放置或取出坯料/工序件/制件,多次进出危险区域,很不安全。
还可能出现定位困难。
为此,有时即使批量不大,也采用比较安全的级进模进行冲压。
图6.4和图6.5所示即为一实例。
图6.4 形状复杂的小冲压件图6.5 形状复杂的小冲压件在级进模上连续冲压的排样1—冲废Ⅰ;2—冲废Ⅱ;3—切边、冲工艺孔;4—压包;5—压弯Ⅰ;6—压弯Ⅱ;7—切断图6.6所示制件,第1道工序拉深出的 00.460 是以后冲侧孔和翻边两道工序的定位尺寸,为了防止工序件转动,还需增加周向定位,所以,冲裁两个 5.5工艺孔。
图6.6 增加定位工艺孔的制件又如图6.7(a)所示冲裁件,3个槽与3个小孔之间有相对位置要求。
图6.7(b)、(c)所示为用单工序模进行冲裁的两种工艺方案。
工艺方案1先冲出带槽的型孔,再以型孔定位冲出3个小孔。
该方案定位较复杂,操作不方便,效率低而且不安全。
工艺方案2先冲大圆孔,再以大圆孔定位冲3个槽和3个小孔,这样定位简单可靠,操作方便安全,效率高。
图6.7 冲裁工艺方案的比较6.2.3 工序顺序的安排各冲压工序的先后顺序,主要根据冲压件的形状、工序性质、材料的变形规律及冲压件的精度和定位要求来安排。
安排的一般原则为:(1) 所有的孔,只要其形状和尺寸不受后续工序的变形影响,都应在平板坯料上冲出。
因为在立体冲压件上冲孔时操作不方便,定位困难,模具结构复杂。
另外,先冲的孔还可以作为后续工序的定位孔。
(2) 对于带孔(缺)的平板冲裁件,如果采用单工序模,一般先落料再冲孔(缺);若选用级进工序,则先冲孔(缺)后落料。
(3) 对于带孔的弯曲件,应参照弯曲件的工艺性分析安排冲孔工序,当孔径与变形区或孔与基准面有较高要求时,应先弯曲后冲孔。
除此之外,一般情况下都应先冲孔后压弯。
(4) 对于带孔(缺)的拉深件,一般先拉深后冲孔(缺)。
对于带底孔的拉深件,当孔径要求不高时,可先冲孔后拉深。
即使孔径要求较高(如图6.3所示),为使确定的工序顺序有利于发挥材料的塑性,以减少工序数量,也可采取先冲孔后拉深,最后修边达到要求。
(5) 对于多角弯曲件,应从材料变形区的相互影响和弯曲时坯料偏移走向两方面安排先后弯曲的顺序。
一般先弯外角后弯内角。
(6) 对于复杂旋转体拉深件,一般按由大到小顺序进行拉深(先拉出大尺寸的外形,后拉深小尺寸的圆筒)。
对于非旋转体复杂形状的拉深件,为便于材料的变形流动,应先成形内部形状再拉深外部形状。
(7) 附加的整形工序、校平工序,应安排在基本成形之后。
热处理及酸洗工序,一般安排在多次拉深工序中间或压弯工序之前。
6.2.4 工序件/半成品形状与尺寸工序件/半成品是坯料和成品制件之间的过渡件。
每个工序件/半成品都可分为两个组成部分:已成形部分——形状和尺寸与成品制件相同;待成形部分——形状和尺寸与成品制件不同(是过渡性的)。
这些过渡性的尺寸和形状,虽然在冲压加工完成后会完全消失,但对每道工序的成形及整个冲压件的质量却有重要的影响。
因此,工序件/半成品形状尺寸的确定是冲压工艺方案确定的重点内容之一。
图6.8所示为气阀罩的冲压工艺过程。
第2次拉深工序之后,形成了直径为16.5的圆筒形部分,这部分形状和尺寸在以后的加工过程中不再发生变化。