冲压工艺与模具设计知识点总结
冲压工艺与模具设计复习总结

冲压工艺与模具设计复习总结引言冲压工艺与模具设计是现代制造业中非常重要的一环。
冲压工艺是指通过冲击或压力使板材产生塑性变形,进而得到所需模板形状的一种制造工艺。
而模具设计那么是为了实现冲压工艺需要制造的模具。
本文将从冲压工艺和模具设计两个方面进行复习总结。
冲压工艺复习总结冲压工艺流程冲压工艺的根本流程一般包括:设计图纸准备、材料选择、模具设计和加工、冲压工艺参数确定、冲压件成型、检验和修正。
冲压工艺参数冲压工艺参数是指在冲压过程中控制冲压件形状和尺寸、外表质量以及冲压件的损伤情况的各种参数。
常见的冲压工艺参数包括:冲头和模具间隙、冲头速度、冲头形状、冲头下摆量、引导装置和托板设计等。
冲压损伤冲压过程中,由于材料的塑性变形和外力的作用,冲压件可能会出现各种损伤,如裂纹、皱纹、拉伸变形等。
为了减少冲压损伤,需要合理选择冲压工艺参数,并进行模拟和优化。
冲压材料常见的冲压材料主要包括金属板材和塑料板材。
金属板材常用的有冷轧钢板、热轧钢板、不锈钢板等,而塑料板材那么包括ABS板、聚酰亚胺板等。
不同的冲压材料在冲压工艺和模具设计上具有不同的要求。
冲压工艺的开展趋势随着制造业的开展和技术的进步,冲压工艺也在不断开展。
目前,冲压工艺的开展趋势主要包括:自动化和智能化、快速成型与精密成型、模拟与优化计算等。
模具设计复习总结模具根本要素模具设计中的根本要素包括:模具结构、模具材料、模具加工工艺、模具使用性能等。
其中,模具结构是模具设计中最重要的要素之一,主要包括模具底板、模仁、顶针、导柱等。
模具设计流程模具设计的根本流程包括:产品资料分析、模具三维设计、模具零件设计、模具总装设计、模具加工工艺、模具试制和调试、模具使用与维护等。
模具材料选择模具材料的选择应综合考虑材料的强度、韧性、耐磨性、热稳定性以及切削加工性能等因素。
常用的模具材料有工具钢、合金钢、硬质合金等。
模具设计的关键技术模具设计中的关键技术包括:模具结构设计、模具零件设计、模具安装设计、模具导向设计、模具冷却设计等。
冲压与模具设计知识点

冲压与模具设计知识点冲压与模具设计是现代工业中非常重要的一部分,它们在制造业中起着举足轻重的作用。
本文将介绍一些与冲压和模具设计有关的知识点,帮助读者更好地了解这一领域。
1. 冲压工艺的概述冲压是通过模具将板材或线材进行塑性变形,使之成为特定形状的零件或产品的工艺过程。
冲压工艺主要包括以下几个步骤:(1) 设计冲裁工序:确定零件尺寸、形状以及冲裁模具的结构和参数。
(2) 计算冲床的选型和数量:根据零件的大小和形状,选择合适的冲床,并确定所需的冲床数量。
(3) 设计模具:根据零件的形状和要求,设计冲床模具的结构和参数。
(4) 冲床操作:将冲床模具装配到冲床上,并进行冲压操作。
(5) 零件处理:对冲压成型的零件进行后续处理,如清洗、热处理等。
2. 常见的冲压工艺在实际应用中,常见的冲压工艺包括以下几种:(1) 单冲工艺:利用单个冲头进行冲床操作,适用于简单的零件成型。
(2) 连续冲工艺:通过一次连续的冲压过程,在一张板材上同时冲制多个零件。
(3) 多工位冲工艺:利用多个工作位进行连续冲压,每个工作位上完成一个或多个冲裁工序。
(4) 拉伸冲工艺:将板材拉伸至所需形状,使得材料在冲压过程中得到加工硬化,从而提高强度和韧性。
3. 模具设计的基本原则模具设计是冲压工艺中至关重要的一环,良好的模具设计能够提高生产效率和质量。
以下是一些模具设计的基本原则:(1) 充分考虑冲压力和模具应力:模具设计时要考虑到冲压力的大小和方向,并合理安排模具的结构,以保证模具能够承受冲压力。
(2) 合理选择材料:模具应选择具有足够强度和韧性的材料,以延长模具的使用寿命。
(3) 确定模具结构:根据零件的形状和要求,确定合适的模具结构,包括凸模、凹模、导向装置、顶针等。
(4) 考虑材料利用率:模具设计中要尽量减小废料的产生,提高材料利用率。
4. 模具设计的常见问题与解决方法在模具设计过程中,可能会遇到一些常见的问题,下面是一些常见问题与相应的解决方法:(1) 模具寿命太短:可以选择更耐磨损的材料制作模具或者加入表面处理,如表面硬化、涂层等。
《冲压工艺与模具设计》知识点——精华版

《冲压工艺与模具设计》知识点——精华版1.所有的金属都是晶体:面心立方(Al、Cu、γ-Fe、Ni)塑性最好、体心立方(α-Fe、Cr、Mo)塑性次之、密排六方(Mg、Zn、Cd、Ti)结构塑性最差。
2.晶体中由原子组成的平面称为晶面。
3.C能固溶于Fe,形成铁素体和奥氏体固溶体,二者均具有良好的塑性。
当C含量超过Fe的溶C能力时,便形成渗碳体,塑性下降,变形抗力升高。
含C量越高,碳钢的塑性越差。
4.温度升高,塑性增强。
但碳钢加热到200~400°C时,因夹杂物以沉淀的形式在晶界滑移面上析出(时效作用)使得塑性降低,易折断,断口呈蓝色,即蓝脆区;而在800~900°C时会出现热脆,塑性降低。
5.拉应力促进晶间变形,加速晶界破坏;而压应力阻止晶间变形。
6.钢板厚度大于4mm为热轧板,小于4mm为冷轧板。
冷轧板尺寸精度高、表面光亮、内部组织更致密。
7.冲压用板料包括板料、卷料、带料、条料、箔料。
8.冲压设备有曲柄压力机、液压机、气动压力机、电磁压力机。
9.曲柄压力机按机身结构分为开式压力机(机身前面、左右两面均敞开,操纵方便,但刚性差、冲压力大时机身易变形)和闭式压力机(左右两侧封闭,只能前后送料,刚性好,可承受较大的冲压力)。
10.根据压力机上滑块的数目,分为单动压力机、双动压力机和三动压力机。
双动与三动压力机通常用于复杂的拉深件。
11.压力机的主要技术参数包括公称压力、滑块行程、滑块行程次数、装模高度、工作台面及滑块底面尺寸、漏料孔尺寸、模柄孔尺寸、电动机功率。
12.总冲压力等于冲裁力、卸料力、推件力和顶件力之和。
13.落料尺寸等于凹模尺寸,冲孔尺寸等于凸模尺寸。
14.冲孔件设置压料板、落料件设置顶件器,以减少弯拱回弹、提高冲裁件精度。
15.冲裁间隙决定断面质量,根据理论计算法、查表法、经验记忆法确定冲裁间隙。
16.根据冲裁件受剪切周长(mm)、厚度(mm)、剪切强度(MPa)计算冲裁力。
冲压工艺及模具设计知识要点

冲压工艺及模具设计知识要点冲压工艺及模具设计知识要点冲压工艺是制造业中广泛应用的一种金属成形加工方式,它通过在金属材料表面施加压力,使其塑性变形,以达到所需的工艺和形状。
在冲压工艺中,模具的设计和制造是至关重要的一环。
因此,掌握冲压工艺及模具设计知识要点,对于提高冲压制造技术水平、提高产品质量和降低成本具有重要意义。
下面,将结合实际生产实践,总结一些关于冲压工艺及模具设计的知识要点。
一、冲压工艺的基本要素1.材料选择:冲压材料必须具备良好的塑性变形能力、疲劳寿命和均匀性,同时要满足在特定条件下的强度、硬度和耐磨性等要求。
2.模具设计:模具的设计必须充分考虑冲压材料的变形特性和受力条件,以及零件的加工要求和成本控制等因素。
模具的各个组成部分必须协调配合,且具备高精度、高刚度和耐用性等特点。
此外,模具的加工和装配需要注意细节化管理和工艺标准化。
3.加工工艺:冲压工艺过程需要严格控制各个工艺环节,特别是在模具定位、定量进料、开裂垫片等关键环节,需要特别加以关注。
此外,对于一些复杂形状或外观有要求的零件,可以考虑采用多道冲压或辅助模具等方式进行加工。
二、模具设计的基本原则1.要具备较好的适应性:模具应根据零件的形状、尺寸和材料特性等因素,合理选用模具结构类型和尺寸规格,以满足生产要求。
2.要具有高精度和稳定性:模具必须具备高精度、高刚性和高耐用性,以确保在大量生产过程中,始终保持稳定的加工质量。
3.要考虑冲压力分布均匀性:在模具设计时应充分考虑冲压时的力分布状况,特别是在切断底部的操作中,需要合理安排模具结构,使冲头的力能够均匀作用在零件的各个角落,避免切口不整齐等质量问题。
4.要注意保障安全性:模具设计时必须考虑操作安全和保护措施的设置,以避免操作工程师在工作中出现安全事故和模具损坏情况,同时还需要考虑环境保护和资源利用等问题。
三、模具加工工艺模具加工工艺是冲压工艺中的重要环节之一,是对模具设计的实际落地。
冲压工艺与模具设计复习知识点

一、板料成形(冲压、冷冲)是利用安装在压力机上的模具,对板料施加变形力,使板料在模具里产生变形,从而获得一定形状、尺寸和性能的产品零件的一种压力加工方法二、分离工序:指冲压过程中使冲压件与板料沿一定的轮廓相互分离的工序。
基本工序:冲孔、落料、切断、切口、切边、剖切、整修等。
三、冲孔:用冲孔模沿封闭轮廓冲裁工件或毛坯,冲下部分为废料。
四、落料:用落料模沿封闭轮廓冲裁板料或条料,冲下部分为制件。
五、切断:用剪刃或模具切断板料或条料的部分周边,并使其分离。
六、切口:用切口模将部分材料切开,但并不使它完全分离,切开部分材料发生弯曲。
七、塑性成形工序:指材料在不破裂的条件下产生塑性变形,从而获得一定形状、尺寸和精度要求的零件。
基本工序:弯曲、拉深、成形等。
八、弯曲:把平面毛坯料制成具有一定角度和尺寸要求的一种塑性成形工艺。
九、冲压模具的基本结构组成:按模具零件的功能可分为工艺零件和结构零件两部分。
工艺零件:工作零件:凸模、凹模、凸凹模:结构零件:导向零件:导柱、导套、导板十、冲压模具按工序组合可分为单工序模、级进模、复合模。
十一、冲裁是利用模具使板料沿一定的轮廓形状分离的一种冲压工序。
主要指落料、冲孔十二、冲裁变形过程:弹性变形阶段、塑性变形阶段、断裂分离阶段、十三、断面特征:圆角带、光亮带、断裂带十四、冲裁件断面质量影响因素:1)材料的性能对断面质量的影响2)模具刃口状态对断面质量的影响3)模具冲裁间隙大小对断面质量的影响十五、冲裁间隙的概念:指冲裁模的凸模与凹模刃口之间的间隙,也就是凸、凹模刃口间缝隙的距离。
十六、冲裁间隙对冲裁件质量的影响:冲裁件的质量主要是指断面质量、尺寸精度和形状误差十七、1、尺寸精度:指冲裁件的实际尺寸与基本尺寸的差值,差值越小则精度越高。
冲裁间隙对冲裁件尺寸精度的影响:当模具制造精度确定后:间隙较大时,拉伸作用增大,落料件尺寸小于凹模尺寸,冲孔孔径大于凸模直径;间隙较小时,挤压力大,落料件尺寸增大冲孔孔径变小。
冲压工艺与模具设计知识点

冲压工艺与模具设计知识点一、冲压工艺的基本概念和分类冲压工艺是指利用模具对工件进行塑性变形或分离加工的一种加工方法。
冲压工艺可以分为单工位冲压和多工位冲压两种方式。
单工位冲压是指在一块材料上进行一次冲压加工,通过简单的动作,如冲孔、冲坑等,完成对工件的加工。
多工位冲压是指在一块材料上通过多个冲压工序进行连续冲压加工,可以完成复杂的工件形状。
二、冲压模具设计的要点和流程1.冲压模具设计的要点(1)合理确定材料和毛坯的尺寸和厚度,以及冲孔或冲坑的位置和尺寸。
(2)合理选择冲压工艺参数,如冲头压力、冲头直径和停留时间等。
(3)考虑材料的延展性和回弹性,以及材料与模具之间的摩擦力。
2.冲压模具设计的流程(1)确定产品的设计要求,包括工件的尺寸、形状和材料等。
(2)确定冲压工艺参数,如冲头压力、冲孔或冲坑的位置和尺寸。
(3)进行模具结构的设计,并制作模具的零件和组装。
(4)对模具进行试验和调整,以确保其性能和精度。
三、冲压工艺和模具设计的关键技术1.材料的选择和优化在冲压工艺中,材料的选择非常重要,需考虑材料的延展性、韧性和回弹性等因素。
一般来说,冷轧板材具有较好的延展性和强度,因此在冲压加工中广泛应用。
2.模具的结构设计和加工工艺冲压模具的结构设计和制造工艺对于冲压加工的效果有着重要影响。
需要考虑到模具的刚度和变形,以及模具的寿命和维护等因素。
模具的加工工艺包括开料、铣齿和加工等。
3.冲压工艺参数的优化冲压工艺参数的优化可以提高冲压加工的效率和质量。
主要包括冲头压力、速度和停留时间等参数。
通过优化这些参数,可以减少工件的变形和回弹,提高冲压零件的精度和表面质量。
四、冲压工艺与模具设计的应用领域总结起来,冲压工艺与模具设计是机械制造中的重要领域,涉及到零部件制造的过程和方法。
了解冲压工艺和模具设计的基本概念和分类,以及冲压模具设计的要点和流程,对于提高冲压加工的效率和质量具有重要意义。
同时,冲压工艺与模具设计的关键技术的掌握,可以在工业生产中实现高效、精度高和成本低的零部件制造。
冲压工艺及模具设计知识点

冲压工艺及模具设计知识点冲压工艺及模具设计是在制造业中广泛应用的一项技术。
冲压工艺主要是通过冲压设备对金属板材进行加工,将其压制成所需形状,广泛应用于汽车、家电、电子产品等行业。
而冲压工艺的实施离不开模具设计,合理的模具设计能够提高冲压工艺的效率与质量。
一、冲压工艺知识点1. 材料选择:在冲压工艺中,常用的材料有钢板、不锈钢板、铝板等。
根据实际应用需求,选择合适的材料可以确保产品的性能与可靠性。
2. 冲压工艺流程:冲压工艺一般包括开料、冲孔、剪裁、弯曲、整形等步骤。
不同产品的冲压流程可能有所不同,但整个过程需要严格把控,以确保产品的精度和一致性。
3. 润滑与冷却:在冲压过程中,适当的润滑与冷却是非常重要的。
润滑能够减少模具与材料之间的摩擦,冷却则可以避免材料过热导致变形或破损。
4. 冲压设备与工艺参数:冲压工艺中的设备选择和工艺参数设置直接关系到产品的加工效果。
对于不同的冲压需求,需要选择适合的设备和合理的工艺参数。
5. 质量控制与检测:冲压工艺中的质量控制与检测是确保产品性能可靠性的关键。
通过合理的质量控制措施和严格的检测标准,能够有效提高产品的质量。
二、模具设计知识点1. 模具材料选择:模具的材料一般选择硬度高、耐磨性好的工具钢。
根据冲压工艺的要求和模具的使用寿命,选择合适的材料可以延长模具的使用寿命。
2. 模具结构设计:模具的结构设计对冲压工艺具有重要影响。
合理的模具结构能够提高冲压效率、减少材料浪费,并且方便维修与更换。
3. 模具加工工艺:模具加工工艺包括数控加工、电火花加工等。
不同零部件的加工工艺选择需要考虑加工难度、效率和加工精度等因素。
4. 模具装配与调试:在模具制造完成后,需要进行模具的装配与调试。
合理的装配与调试过程能够确保模具的精度和性能达到要求。
5. 模具维护与管理:模具的维护与管理是保证模具使用寿命的关键。
定期的润滑、清洁和维修工作可以延长模具的寿命,减少生产中的故障和停机时间。
冲压工艺与模具设计总复习

一、填空题1.冲裁模的工作零件主要有凸模、凹模、凸凹模。
2.按照模具完成的冲压工序内容分,冲压模具可分为单工序模、复合模和级进模。
3.冲压模具的模架基本零件包括了上下模座、导柱、导套。
4.冲压加工的基本工序可分为分离和成型两类。
5.导柱和导套在与模座的装配中,应采用的配合关系是过盈配合 .6.冷冲压工艺在常温下,在压力机上,利用模具对材料施加压力,使其产生分离或塑性变形从而获得所需零件的一种压力加工方法。
7.要使冷冲压模具正常而平稳地工作,必须要求模具压力中心与模柄的轴心线要求重合(或偏移不大)。
8.普通曲柄压力机的闭合度是指滑快在下止点位置时,滑快底面到工作台上平面之间的距离。
模具的闭合高度是指冲模处于闭合状态时,模具上模座上平面至下模座下平面之间的距离。
9.选择压力机时,必须使模具的闭合高度介于压力机的最大闭合高度与最小闭合高度之间。
10.具有过载保护功能的压力机是摩檫压力机。
行程可调的冲床是偏心冲床。
二.选择题1.在设计冲压模的模柄时,模柄的直径与冲床滑块上的模柄孔径相比,只能是 C 。
A 大于B 小于 C等于 D都可以2.在复合模的一次行程动作中,可以完成的冲压工序数是 C 。
A 一次B 只有两次C 两次或两次以上 D三次或三次以上3.下面零件中,属于冲压模成型零件的是 A 。
A 凸模B导套 C 导柱D压边圈4.在单工序冲裁模的一次行程动作中,可以完成的冲压工序数是 A 。
A 一次B 只有两次C 两次或两次以上 D三次或三次以上5.冲压工艺适用于多种金属材料,下面材料中,不适用于冲压工艺的是 C 。
A 铜B钢 C 铸铁D铝6.模柄的作用是将模具的某一部分固定在冲床的滑块上,这部分是 C 。
A 凸模B 凹模C 上模座 D下模座7.下面各种零件中,属于卸料零件的是 C\D 。
A. 凸模B. 导料板C. 压边圈D. 弹簧8.在冲压模中,若采用滑动导柱和导套,则导柱与导套之间采用的配合类型是 A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1,P1,冲压是通过模具对板材施加压力或拉力,使板材塑性成形,有时对板材施加剪切力而使板材分离,从而获得一定尺寸、形状和性能的一种零件加工方法。
冲压工艺可以分成分离工序和成形工序两大类。
(判断:表1和表2)2,P18,硬化定义:随着冷变形程度的增加,金属材料强度和硬度指标都有所提高,但塑性、韧性有所下降。
N称为材料的硬化指数,是表明材料冷变形硬化性能的重要参数。
硬化指数n大时,表现在冷变形过程中材料的变形抗力随变形的增加而迅速增大,材料的塑性变形稳定性较好,不易出现局部的集中变形和破坏,有利于提高伸长类变形的成形极限。
P30,成形破裂:胀形(a破裂)和扩孔翻边破裂(B破裂)。
3,P32(了解)硬化指数n值:材料在塑性变形时的硬化强度。
N大,说明该材料的拉伸失稳点到来较晚。
塑性应变比r值:r值反映了板材在板平面方向和板厚方向由于各向异性而引起应变能力不一致的情况,它反映了板材在板平面承受拉力或压力时抵抗变薄或变厚的能力。
4,P45,冲裁过程的三个阶段:弹性变形阶段,塑性变形阶段,断裂分离阶段。
5,P48,断面的4个特征区:圆角带,光亮带,断裂带,毛刺。
(简答)影响断面质量的因素:1,材料力学性能的影响。
材料塑性好,材料被剪切的深度较大,所得断面光亮带所占的比例就大,圆角也大;反之则反。
2,模具间隙的影响。
间隙过小时,最初形成的滞留裂纹,在凸模继续下压时,产生二次剪切,会在光亮带中部形成高而薄的毛刺;间隙过大时,使光亮带所占比列减小,材料发生较大的塌角,第二次拉裂使得断面的垂直度差,毛刺大而厚,难以去除,使冲裁件断面质量下降。
3,模具刃口状态的影响。
刃口越锋利,拉力越集中,毛刺越小;刃口磨损后,压缩力增大,毛刺增大。
4,断面质量还与模具结构、冲裁件轮廓形状、刃口的摩擦条件等有关。
6,P50,降低冲裁力的方法:阶梯凸模冲裁(缺点:长凸模插入凹模较深,容易磨损,修磨刃口夜间麻烦),斜刃口冲裁,加热冲裁。
7,P52,F卸:从凸模上将零件或废料卸下来所需要得力。
F推:顺着冲裁方向将零件或废料从凹模腔推出的力。
F顶:逆着冲裁方向将零件或废料从凹模腔顶出的力。
设h为凹模孔口直臂的高度,t为材料厚度,则工件数:n=h|t。
刚性卸料装置和下出料方式的冲裁模总压力:F总=F冲+F推弹性和下出料方式的总冲压力:F总=F冲+F卸+F推弹性和上出料方式的总冲压力:F总=F冲+F卸+F顶(选择)8,P53,冲裁间隙:冲裁模的凸模和凹模刃口之间的间隙。
分双边(C)和单边(Z)两种。
间隙的影响:(1)对冲裁件质量的影响。
间隙较大时,材料所受的拉伸作用增大,冲裁完毕后材料弹性恢复,冲裁件尺寸向实体方向收缩,使落料件尺寸小于凹模尺寸,而冲孔件的孔径则大于凸模尺寸。
当间隙较小时,凸模压入板料接近于挤压状态,材料受凹、凸模挤压力大,压缩变形大,冲裁完毕后,材料的弹性恢复使落料件尺寸增大,而冲孔件的孔径则变小。
(2)对模具寿命的影响。
间隙减小时,接触压力随之增大,摩擦距离随之增长,摩擦发热严重,因此模具磨损加剧;较大间隙使得孔径在冲裁后因回弹增大,卸料时减少与凸模侧面的磨损。
(3)对冲裁力及卸料力的影响。
间隙减小时,材料所受的拉应力减小,压应力增大,板料不易产生裂纹,冲裁力增大;反之减小,但继续增大间隙值,凸、凹模刃口产生的裂纹不相重合,会发生二次断裂冲裁力下降变缓。
间隙增大时,冲裁件光亮带窄,落料件尺寸偏差为负,冲孔件尺寸偏差为正,因而使卸料力、推件力或顶件力减小。
间隙继续增大,制作毛刺增大,卸料力、顶件力迅速增大。
9,P61重点(冲裁模刃口尺寸计算)(1)计算原则:落料模先确定凹模刃口尺寸(以凹模为基准,间隙取在凸模上);冲孔模先确定凸模刃口尺寸(以凸模为基准,间隙取在凹模上);选择模具刃口制造公差;保证有合理的间隙值;“入体”原则。
(2)计算方法:凸模和凹模分开加工{分开加工与配合加工的区别及其优缺点}、{配合加工计算题};凸模和凹模配合加工{1,落料:应以凹模为基准件,然后配做凹模2,冲孔} 例2-310,P67 重点排样利用率的计算(一个进距的材料利用率和一板料上总的材料利用率公式)排样:冲裁件在板、条等材料上的布置方法。
材料的利用率:衡量排样经济性、合理性的指标。
冲裁过程中产生的废料分为两种:(1)结构废料(2)工艺废料排样方法分三种:(1)有废料排样(2)少废料(3)无废料排样11,P71搭边:排样中相邻两工件之间的余料或工件与条料边缘间的余料。
影响搭边值大小的因素:材料力学性能,材料厚度,工件的形状和尺寸,排样的形式,送料及挡料方式。
12,P78,冲裁工序按工序的组合程度可分为:单工序,复合和级进冲裁。
(复合和级进冲裁的区别和利用)冲裁组合方式的选择根据冲裁件的生产批量、尺寸精度、形状复杂程度、模具成本等多方面考虑(1)生产批量(2)冲裁件的尺寸精度(3)对工件尺寸、形状的适应性(4)模具制造、安装调整和成本(5)操作方便与安全(P94习题2)13,P96,弯曲:把板料、管材或型材等弯曲成一定的曲率或角度,并得到一定形状零件的冲压工序。
应变中性层:由外区向区过渡时,其中有一金属纤维层长度不发生变化的金属层。
(重点:如何确定中性层)(P98稍稍理解:弯曲时的中性层:如何确定)14,P101,重点弯曲件毛坯长度的计算:直线部分和弯曲部分3-12公式r大于0.5t及图3-8 r小于0.5的弯曲件。
P103,最小相对弯曲半径Rmin|t:在保证发生弯曲时表面不发生开断的条件下,弯曲件表面能够弯曲成取小圆角半径与坯料后度的比值。
Rmin|t越小,弯曲性能越好。
影响最小弯曲半径的因素:零件的弯曲角a,板材的方向性,板材表面质量与剪切断面质量板材的宽度和厚度15,P108,弯曲回弹:卸载后弯曲角形状和尺寸发生变化的现象16,P109,影响弯曲回弹量的因素(1)材料力学性能(2)相对弯曲半径R|t(3)弯曲角a(4)弯曲方式和模具结构(5)摩擦16,P121,根据应力应变状态的不同,将拉深毛坯分为5个区域:平面凸缘区,凸缘圆角区,筒壁部分,底部圆角区,筒底部分。
拉深中主要的破坏形式:起皱和拉裂。
17,P127,起皱:拉伸过程中,毛坯凸缘在切压应力作用下,产生的塑性失稳。
起皱原因:凸缘的切向压应力超过板材临界压力应力引起。
最大切向压应力产生在凸缘外缘处,起皱首先由此开始。
防皱措施:(1)压边圈、拉深筋、拉深槛(2)合理设计零件形状(3)合理设计模具(4)改善冲压条件压边力的平衡润滑(5)合理选材,确定适当板厚、低屈服极限材料,防皱效果好P128,拉裂的防治措施:根据板材成形性能,采用适当的拉伸比和压力比;增加凸模表面的粗糙度;改善凸缘部分的润滑条件;选用KS|Kb比值小,n值大,r值大的材料。
18,P128毛坯尺寸计算原则:毛坯面积等于工件面积(面积相等原则)P132,拉伸系数:每次拉伸后圆筒形件的直径与拉伸前毛坯(或半成品)的直径之比,即首次:m1=d1|D拉伸系数是拉伸工作中重要的工艺参数。
极限拉伸系数的影响因素:板料成形性能,毛坯相对厚度t|D,凹凸模间隙及其圆角半径等有关。
以下为具体介绍:(1)板料的部组织和力学性能板料塑性好、组织均匀、晶粒大小适当、屈强比小、塑性应变比r值大时,板料的拉深性能好,可以采用较小的极限拉伸系数。
(2)毛坯的相对厚度t|D毛坯的相对厚度t|D小时,容易起皱,防皱压力圈的压力加大,引起的摩擦阻力也大,因此极限拉伸系数相应加大。
(3)拉伸模的凸模圆角半径rp和凹模角度半径rd rd过小时,筒壁部分与底部的过渡区的弯曲变形加大,使危险断面的强度受到削弱,使极限拉伸系数增加。
rd过小时,毛坯沿凹模圆角滑动的阻力增加,筒壁的拉应力相应加大,其结果是提高极限拉伸系数值。
(4)润滑条件及模具情况润滑条件良好、凹模工作表面光滑、间隙正常,都能减小摩擦阻力改善金属的流动情况,使极限拉伸系数减小。
(5)拉伸方式采用压边圈拉深时,因不易起皱,极限拉伸系数可取小些。
(6)拉伸速度拉伸速度对极限拉伸系数的影响不大,但速度敏感的金属拉伸速度大时,极限拉伸系数应适当加大。
(P137 如何判断能否一次性拉深成功)19,P160,凹模与凸模圆角半径。
凹模圆角半径:过大,则板材在经过凹模圆角部分时的变形阻力以及在间隙的阻力都要增大,势必引起总的拉深力增大和模具寿命的降低。
过小,拉深初始阶段不与模具表面接触的毛坯宽度加大,这部分很容易起皱。
凸模圆角半径:过大,会使拉伸初级阶段不与模具表面接触的毛坯宽度加大,也使容易此部分起皱。
过小,在后续的拉深工序中毛坯沿压边圈的滑动阻力也要增大,对拉伸过程不利。
{Rd:小,阻力大使得抗力增大,危险断面变薄或破裂,刮伤工件;大,过早丧失压边力致起皱。
Rp(对冲压效果影响无Rd显著)小,增大弯曲变形,危险断面变薄或开裂,影响表面质量;大,凸模毛坯接触面减小,底部容易变薄,圆角处皱。
20,P177,胀形:在模具的作用下,迫使毛坯厚度减薄和表面积增大,以获取零件几何形状的冲压加工方法。
在凸模力作用下,变形区材料受双向拉应力作用,沿切向和径向产生伸长变形,成形面积的扩大主要是靠毛坯厚度变薄而获得。
由于变形区不存在压应力,不会出现失稳起皱现象。
21,P179,胀形工艺分两大类:平板毛坯的局部胀形、圆孔空心毛坯的胀形。
22,P193,(判断)翻边分类按工艺特点,可分为:孔翻边、外缘翻边(分为区翻边和外区翻边)和变薄翻边。
按变形性质分为伸长类翻边(特点:变形区材料受拉应力,切向伸长,厚度减薄,易发生破裂,如圆孔翻边和外缘翻边中的区翻边)、压缩类翻边(特点:变形区材料切向受压缩应力,产生压缩应力,产生压缩变形,厚度增厚,易起皱。
如外缘翻边中的外区翻边)以及属于体积成形的变薄翻边等。
23,P194,翻边系数K:圆孔翻边时的变形程度(K=d0|dm d0毛坯上圆孔上的初始直径,dm翻边后的竖边直径)翻边系数K与竖边边缘厚度变薄量关系可近似表达为t~=t0K1\2.K越小,当翻边系数减小到使孔的边缘濒于拉裂时,这种极限状态下的翻边系数称为极限翻边系数,用Kl表示。
表6-1和6-2.24,P195,影响圆孔翻边成形极限的因素:(1)材料伸长率和硬化成形极限n大,Kl小,成形极限大。
(2)口缘如无毛刺和无冷作硬化时,Kl较小,成形极限较大。
(3)用球形、锥形和抛物线形凸模翻边时,变形条件比平底凸模优越,Kl较小。
在平底凸模中,其相对圆角半径rp|t越大,极限翻边系数越小。
(4)板材相对厚度越大,Kl越小,成形极限越大。
25,P219冲模的分类:(1)按工序性质分:落料模、冲口模、切断模、整修模、弯曲模、拉深模,成形模等。
(2)按工序组合程度分为:单工序模、级进模、复合模。