第十一章全等三角形导学案(第1课时)
八年级数学上册人教版第十一章全等三角形中全等三角形的判定(一)“SSS”优秀教案与教学反思

八年级数学上册人教版第十一章全等三角形中全等三角形的判定(一)“SSS”优秀教案与教学反思八年级数学上册人教版第十一章全等三角形中全等三角形的判定(一)“SSS”优秀教案与教学反思教材分析1.掌握三角形全等的“边边边”、“边角边”、“角边角”、“角角边”的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题;学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
2.培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程,为以后的证明打下基础。
学情分析1、学生通过前面的学习已了解了图形的全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
2、学生也具备了利用已知条件作三角形的基本作图能力,这使学生能主动参与本节课的操作、探究成为可能。
3、根据学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限。
教学目标(1)学生在教师引导下,积极主动地经历探索三角形全等的条件的过程,体会利用操作、归纳获得数学结论的过程。
(2)掌握三角形全等的“边边边”、的判定方法,了解三角形的稳定性,能用三角形的全等解决一些实际问题。
(3)培养学生的空间观念,推理能力,发展有条理地表达能力,积累数学活动经验。
教学重点和难点重点:三角形全等条件的探索过程是本节课的重点。
难点:三角形全等条件的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对学生有一定的难度。
教学过程全等形、全等三角角形的概念,对应关系。
判定两个三角形是否全等,至少需要多少个怎样的条件?给定三条定长的线段a.b.c.用这三条线段分别画两个三角形,然后剪下来对照,发现什么问题,多做几次。
11.3三角形全等的判定导学案(SAS)

11.全等三角形导案(SAS)一、导学目标1.知道三角形全等“边角边”的内容.2.会运用“SAS”识别三角形全等,为证明线段相等或角相等创造条件.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.二、导学重难点1. 难点:对全等三角形的识别的理解和运用2.重点:三SAS三、导学准备:三角尺、圆规四、导学流程:1、复习全等三角形的判定12、探索三角形全等的条件(SAS)3、用“SAS”判定的运用4、题型训练11.全等三角形学案(SAS)一、学习目标1.知道三角形全等“边角边”的内容.2.会运用“S AS ”识别三角形全等,为证明线段相等或角相等创造条件.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 二、学习重难点1. 难点:对全等三角形的识别的理解和运用2.重点:三角SAS三、知识储备全等三角形的性质和全等三角形的判定1----SSS四、教学流程 (一)知识回顾1. 如图,四边形ABCD 中,AD =BC ,A B =DC . 求证:△ABC ≌△CDA .2.如图,A B D C =,A CD B=,△ABC ≌△DCB 全等吗?为什么(二)、探索新知 活动一 探索三角形全等的条件DCBA1.如图,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?为什么?(1)在上面的例子中我们已知哪些条件(从三角形的边、角关系作答),得到什么结论?(2)由(1)中的回答,你能得到什么猜想?2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取B、C,使AB=3.1cm,AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?(三)、知识点小结总结得出:相等的两个三角形全等(简称“边角边”或“SAS”)活动二全等三角形判定的简单应用阅读课本第9页例2后,完成下列问题:1.如图,已知AD∥BC,AD=CB.求证:△ABC≌△CDA.(提示:要证明两个三角形全等,已具有两个条件,一是AD=CB(已知),二是___________,还能再找一个条件吗?可以小组交流后再完成)证明:2.思考:如果“两边及其中一边的对角对应相等,那么这两个三角形全等吗?”画一画:三角形的两条边分别为4cm和3cm,长度为3cm的边所对的角为30度,画出这个三角形,把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?把你的发现和同伴交流。
11全等三角形导学案1-6课时

个性天地课题11.1 全等三角形课型自学课总课时 1 主创人教研组长签字领导签字个性天地情境导入明晰目标任务驱动学习目标:1.知道什么是全等形、全等三角形及全等三角形的对应元素,会用符号正确地表示两个三角形全等.2.知道全等三角形的性质,并会进行应用.3.能熟练找出两个全等三角形的对应角、对应边.学习重点:全等三角形的概念.学习难点:找对应顶点、对应边、对应角.学法指导:1、学生独立阅读课本P2—P3,探究课本基础知识,提升自己的阅读理解能力。
2、完成导学案设置的问题,由组长组织对学与群学,进行知识汇报,展示讨论。
3、教师巡视,及时指导、帮助学生解决疑难问题。
导学流程:一、旧知回顾:什么是三角形?它都具备哪些性质?二、基础知识探究活动一:知道全等形、全等三角形及对应元素一系列概念,会用符号表示全等1.将三角板按在纸上,沿外框画出两个三角形,把这两个三角形裁下来后放在一起,观察它们能否重合。
2.观看课本美丽的图片并阅读课本P2—3的部分,思考并回答下列问题:(1)什么是全等形?什么是全等三角形?你能举出生活中全等形的实例吗?(2)全等三角形有哪些对应元素?怎样记两个三角形全等?活动一知道全等三角形的性质1.利用三角形纸片做如下变换:将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.2.思考:各图中的两个三角形全等吗?为什么?如果全等把它们分别表示出来.(注意书写时对应顶点字母写在对应的位置上)3.寻找上图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?(提示:全等三角形是指能够完全重合的两个三角形)独立完成后,小组交流并归纳出全等三角形的性质:.三、综合应用探究1.如图,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角.2.如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.四、达标反馈1.下面的每对三角形分别全等,观察是怎么变化而成的,说出对应边、对应角。
11.1全等三角形

授课人: 班 级: 姓 名: 小 组:课题名称:全等三角形(第1课时)【学习目标】学习内容:11、1 全等三角形学习重点:1、全等三角形的定义 2、全等三角形的性质 3、平移、翻折、旋转前后的图形全等 学习难点:全等三角形性质的应用※ 【活动方案】活动一 知道全等形、全等三角形及对应元素一系列概念,会用符号表示全等 对应练习一1、如图所示,△ABC ≌△DEF , 对应顶点有:点___和点___,点___和点___,点___和点___;对应角有:____和____,_____和_____,_____和_____; 对应边有:____和____,____和____,_____和_____.2、如图(1),点O 是平行四边形ABCD 的对角线的交点,△AOB 绕O 旋转180°,可以与△______重合,这说明△AOB ≌△______.这两个三角形的对应边是AO 与_____,OB 与_____,BA 与______;对应角是∠AOB 与________,∠OBA 与________,∠BAO 与________.3、如图(2),已知△ABC 中,AB=3,AC=4, ∠ABC =118°,那么△ABC 沿着直线AC 翻折,它就和△ADC 重合,那么这两个三角形________,即____________所以DA=______,∠ADC =_____°。
活动二 知道全等三角形的性质 对应练习二1、如图△ ABD ≌ △CDB ,若AB=4,AD=5,BD=6,则BC= ,CD=______,2、如图,若111ABC A B C △≌△,且11040A B ∠=∠=°,°,则1C ∠= .3、如图、三角形纸片ABC ,AB=10CM,BC=7CM,AC=6CM,沿过点Bde 直线折叠这个三角形,使定点C 落在AB 边上的点E 处,折痕为BD ,则△ADE 的周长为 cm.3、如图,D E ,分别为A B C △的A C ,B C 边的中点,将此三角形沿D E 折叠,使点C 落在AB 边上的ABCC 1A 1B 1授课人: 班 级: 姓 名: 小 组:点P 处.若48C D E ∠=°,则A P D ∠等于( )A .42°B .48°C .52°D .58° 4、如图,将Rt △ABC(其中∠B =340,∠C =900)绕A 点按顺时针方向旋转到△AB 1 C 1的位置,使得点C 、A 、B 1 在同一条直线上,那么旋转角最小等于( ) A.560B.680C.1240D.18005、如图,A C B A C B '''△≌△,B C B ∠'=30°,则ACA '∠的度数为( ) A .20°B .30°C .35°D .40°活动三 全等三角形的综合应用 对应练习三 、有关面积的计算1、如图所示,在△ABC 中,∠ACB=900,且AC=BC=4cm,已知△BCD ≌△ACE ,求四边形AECD 的面积。
新人教版八年级数学上册导学案

数学导学案八年级备课组课题11.1全等三角形的判定(一)(1)一、 学习目标1、掌握全等形、全等三角形及相关概念和全等三角形性质。
2、理解“平移、翻折、旋转”前后的图形全等。
3、熟练 确定全等三角形的对应元素。
二、 自学指导自学课本P2-3页,完成下列要求:1、理解并背诵全等形及全等三角形的定义。
2、注意全等中对应点位置的书写。
3、理解并记忆全等三角形的性质。
4、自学后完成展示的内容,20分钟后,进行展示。
三、展示内容:1、________相同的图形放在一起能够____。
这样的两个图形叫做____。
2、能够_____的两个三角形叫做全等三角形。
3、一个图形经过__、__、__后位置变化了,但形状‘大小都没有改变,即平移、翻折‘旋转前后的图形____。
4、______叫做对应顶点。
_______叫做对应边。
_____叫做对应角。
5、全等三角形的对应边__。
____相等。
6、课本P4练习1、27、如图1,△ABC ≌△DEF ,对应顶点是__________,对应角是____________,对应边是___________________。
878、如图2,△ABC≌△CDA,AB和CD,BC和DA是对应边,写出其他对应边及对应角_____________________________9、如图3,△ABN≌△ACM,∠B=∠C,AC=AB,则BN=____,∠BAN=______,_____=AN,_____= ∠AMC.10910、如图,△ABC≌△DEC,CA和CD,CB和CE是对应边,∠ACD和∠BCE相等吗?为什么?课后反思:1.2三角形全等的判定(2)一、学习目标1、掌握三角形全等的判定(SSS)2、初步体会尺规作图3、掌握简单的证明格式二、自学指导认真阅读课本P6-8页,完成下列要求:1、小组讨论探究1。
(1)满足一个或两个条件的两个三角形是否全等。
(2)满足3个条件时,两个三角形是否全等。
第十一章:全等三角形导学案角边角、角角边(正确)

班级:小组:姓名:学号:组内评价:教师评价:课题:《11.2三角形全等的判定》(ASA、AAS)导学案【使用说明与学法指导】1.学生课前预习课本第11-12页完成(预习自测)2 .组内探究、合作学习完成探究案。
3.小组长在课上合作探究环节要在组内起引领示范作用,控制讨论节奏。
4. 积极投入,激情展示,做最佳自己。
5.带﹡的题要多动脑筋,展示你的能力。
【学习目标】1、掌握三角形全等的“角边角”“角角边”条件.能运用全等三角形的条件,解决简单的推理证明问题2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.3、积极投入,激情展示,体验成功的快乐。
【学习重点】应用“角边角”和“角角边”证明三角形全等。
【学习难点】利用三角形全等证明线段或角相等。
【学习过程】(Ⅰ)、旧知回顾判断:1、两边及其夹角对应相等,两个三角形全等。
()2、两边和其中一边的对角对应相等,两个三角形全等。
()(Ⅱ)、教材助读1、两角和它们的夹边对应相等的两个三角形全等(可以简写成或);两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成或)。
2、三角形的两个内角分别是600和800,它们的夹边为4cm你能画几个三角形同时满足这些条件?请将你画的几个三角形剪下,观察它们是不是全等?3、三角对应相等的两个三角形全等吗?4、证明三角形全等有哪几种方法?(Ⅲ)预习自测1、判断:(1)全等三角形的三个角对应相等,反之也成立()(2)有两个角及一条边对应相等的两个三角形全等()2、图1中的两个三角形全等吗?请说明理由。
3、(易错题)如图2所示,∠B=∠ACD,∠ACB=∠D=900,AC是△ABC和△ACD的公共边,所以就可以判定△ABC≌图1DCBA50°45°50°45图2BDA△ACD 。
你认为正确吗?为什么??我的疑惑请你将预习中未能解决的问题和有疑问的问题写下来,等待课堂上与老师和同学探究解决(Ⅰ)、学始于疑——我思考、我收获1、 三角形中已知两角及一边对应相等有几种可能?它们都能证明两个三角形全等吗?2、 “角边角”和“角角边”有哪些应用?学习建议 请同学们思考2分钟,可以通过三角形中两角与边的不同的位置关系找出几种可能并进行探究。
第十一章全等三角形导学案

第十一章:全等三角形课题:全等三角形主备人: 初审人: 终审人:中学理科教研组【导学目标】1、理解全等三角形的概念,能识别全等三角形的对应顶点、对应边、对应角。
2、掌握全等三角形的性质,并运用性质解决有关的问题。
3、会用符号表示全等三角形及他们的对应元素,培养大家的符号意识。
【导学重点】运用全等三角形的性质解决相关的计算及证明等问题。
【导学难点】运用全等三角形的性质解决相关的计算及证明等问题。
【导学过程】一、温故知新(5分钟)1、能够______________的图形就是全等图形, 两个全等图形的_________和________完全相同。
2、一个图形经过______、______、_________后所得的图形与原图形 。
3、把两个全等的三角形重合在一起,重合的顶点叫做 ,重合的边叫做 ,重合的角叫做 。
“全等”用“ ”表示,读作 。
4、如图所示,△OCA ≌△OBD ,对应顶点有:点___和点___,点___和点___,点___和点___; 对应角有:____和____,_____和_____,_____和_____; 对应边有:____和____,____和____,_____和_____.5、全等三角形的性质:全等三角形的 相等。
二、设问导学(一)小组讨论,完成下题: 1、如图,△AB C ≌△CDA ,AB 和CD ,BC 和DA 是对应边。
写出其他对应边及对应角。
2、如图,△ABN ≌△ACM ,∠B 和∠C 是对应角,AB 与AC 是对应边。
写出其他对应边及对应角。
(二)课内探究1、如图△EFG ≌△NMH,∠F 和∠M 是对应角.在△EFG 中,FG 是最长边.在△NMH 中,MH 是最长边.EF=2.1㎝,EH=1.1㎝,HN=3.3㎝.(1)写出其他对应边及对应角.(2)求线段MN 及线段HG 的长.2、如图,△ABC ≌△DEC,CA 和CD,CB 和CE 是对应边.∠ACD 和∠BCE 相等吗?为什么?三、当堂达标1、△AOB ≌△COD ,那么∠ABD 与∠CDB 相等吗?为DBAC O DCBA NMGHF E DC BEA EDCBA什么?四、拓展训练2.如图:Rt △ABC 中,∠ A=90°,若△ADB ≌△EDB ≌△EDC ,则∠C= .五、谈谈本节课的收获 六、预习指向1、预习下节中“探究2”.2、完成练习册中1_5题。
第十一章 全等三角形 全章学案

第十一章 全等三角形 11.1全等三角形学习目标1.知道什么是全等形、全等三角形;2.能熟练找出全等三角形的对应元素,能用符号正确地表示两个三角形全等; 3.掌握全等三角形的性质.重点: 全等三角形的概念、性质。
难点: 对应边和对应角的确定。
自主学习一、全等形、全等三角形的概念阅读课本P2内容,回答课本思考问题,并完成下面填空: 1. 能够完全重合的两个图形叫做 .全等图形的特征:全等图形的 和 都相同. 2.能够完全重合的两个三角形叫做 . 二、全等三角形的对应元素及表示阅读课本P3第一个思考及下面两段内容,完成下面填空:1. 平移 翻折 旋转甲DCABFE 乙DCAB丙DCABE启示:一个图形经过平移、翻折、旋转后, 变化了,•但 、 都没有改变,所以平移、翻折、旋转前后的图形 ,这也是我们通过运动的方法寻全等的一种策略.2.全等三角形的对应元素(1)对应顶点(三个)---重合的顶点 (2)对应边(三条)--- 重合的边 (3)对应角(三个)--- 重合的角请同学们写出上图甲、乙、丙的对应顶点、对应边、对应角 图甲: 对应边是: 对应顶点是: 对应角是: 图乙:对应边是: 对应顶点是: 对应角是:图丙:对应顶点是: 对应边是:对应角是: 寻找对应元素的规律(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角;(4)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (5)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
3.“全等”用“≌”表示,读作“全等于”如图甲记作:△ABC ≌△DEF 读作:△ABC 全等于△DEF 如图乙记作: 读作: 如图丙记作: 读作:注意:两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上. 三、全等三角形的性质阅读课本P3第二个思考及下面内容,完成下面填空: 全等三角形的性质:全等三角形的 相等, 相等. 练习1.如图1,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,说出这两个三角形中相等的边和角.D CABODCABE图1 图22.如图2,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,•指出其他的对应边和对应角. 课堂小结本节课你有哪些收获? 巩固练习1.下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角.(1)(2)(3)2.如图,△ABE≌△ACD,AB与AC,AD与AE是对应边,已知:∠A=43°,∠B=30°,求∠ADC的大小.B C课堂检测1.全等用符号表示,读作: .2.若△BCE≌△CBF,则∠CBE= , ∠BEC= ,BE= , CE= .3.判断题1)全等三角形的对应边相等,对应角相等.()2)全等三角形的周长相等,面积也相等. ()3)面积相等的三角形是全等三角形. ()4)周长相等的三角形是全等三角形. ()4.如图:△ABC≌△DBF,找出图中的对应边,对应角.答:∠B的对应角是,∠C的对应角是,∠BAC的对应角是;AB的对应边是,AC的对应边是,BC的对应边是 .课后作业:课本P4习题第1、2题板书设计:11.1 全等三角形一、全等形、全等三角形的概念二、全等三角形的对应元素及表示三、全等三角形的性质教学反思:BDAC FBE 11.2.1三角形全等的判定学习目标1.理解三边对应相等的两个三角形全等的内容. 2.会运用“边边边”条件证明两个三角形全等. 3. 会作一个角等于已知角. 自主学习 一、课前准备1. 叫做全等三角形2.全等三角形的 和 相等3.将△ABC 沿直线BC 平移,得到△DEF ,说出你得到的结论,说明理由?如果AB=5, ∠A=55°, ∠B=45°,那么DE= ,∠F= . 二、自主探究自主探究三角形全等的条件:阅读课本P6探究2之前,回答下面问题: 通过探究(1)只给一个条件对应相等的两个三角形一定全等吗?①只给一条边时;②只给一个角时;(2)如果给出两个条件画三角形,你能说出有哪几种可能的情况?①给出两个角时;②给出两条边时;③给出一条边和一个角时;45◦ 45◦45◦3㎝ 3㎝ 3cm(3)由上面的几种情景,两个三角形满足一个或两个条件时,它们一定全等吗?(4)如果两个三角形有三个条件对应相等,这两个三角形全等吗?我们也可以分情况讨论,有哪几种情况?①我们先来探究两个三角形三个角相等的情况:②画出一个三角形,使它的三边长分别为3cm 、 4cm 、6cm ,把你画的三角形与小组内画的进行比较,它们一定全等吗?③上面的探究反映了什么规律?阅读课本P6-7探究2至例1前,回答下面问题:的两个三角形全等,简写为“ ”或“ ”. 三、例题学习阅读课本P7例1,学习“边边边”证明两个三角形全等的格式. 巩固练习1. 如图,AB=AD ,BC=CD ,求证:(1)△ABC ≌△ADC (2)∠B=∠D证明: (1)在△ABC 和△ADC 中(公共边)∴△ABC ≌△ADC ( )(2)∵△ABC ≌△ADC∴∠B=∠D ( )2.如图,已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB .要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到AB CD 300 700 800300 800700FDCBEABCDA这个条件?证明:四、作一个角等于已知角阅读课本P7最后一段至P8,回答书中问题.课堂小结本节课你有哪些收获? 课堂检测如图,AB=CD ,AC=BD ,△ABC 和△DCB 是否全等?试说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C 11A B A 1第十一章全等三角形导学案(第1课时)
年级:八年级 学科:数学 执笔: 试教:
内容: 11.1 全等三角形 课型:新授课 上课间: 2011.____.___
学习目标:
1、了解全等形、全等三角形的概念,明确全等三角形对应边、对应角相等。
2、在列举生活中常见的的全等图形的过程中,学会判断对应边、对应角的方法。
3、积极投入,激情展示,做最佳自己
学习重难点:
教学重点:全等三角形的性质及寻找全等三角形的对应边、对应角。
教学难点:寻找全等三角形的对应边、对应角。
一、阅读教材第 2 页至 3页(关键处、疑难处做好标记)
二、 独立思考•解决问题:
1、全等形。
回忆:举出现实生活中能够完全重合的图形的例子? 同一张底片洗出的同大小照片是能够完全重合的(如图);
能够完全重合的两个图形叫做 . (1) 一个图形经过平移,翻转,旋转后,位置变化了,但 和 都没有改变,即平移,翻转,旋转前后的图形 。
(2) 如果两个图形全等,它们的形状大小一定都相同吗?全等形的特征是 和
2、全等三角形。
能够完全重合的两个三角形叫做 (如下图)。
“全等”用符号“≌”来表示,读作“全等于”,如上图记作△ABC ≌△A 1B 1C 1 叫对应顶点,A ←→A 1,B ←→B 1,C ←→C 1
叫对应边,AB ←→A 1B 1,AC ←→ , ←→B 1C 1 叫对应角,∠A ←→∠A 1,∠B ←→∠ ,∠C ←→∠ 注意:书写全等式时要求把对应顶点字母放在 的位置上。
3、全等三角形的性质。
全等三角形的 相等, 相等。
用符号表示为
∵△ABC ≌△A 1B 1C 1 ∴ AB=A 1B 1, BC=B 1C 1, AC=A 1C 1
(全等三角形的 )
∴ ∠ A= ∠ A 1, ∠ B= ∠B 1 , ∠ C= ∠C 1(全等三角形的 )
三、合作探究
11A B A 1
P A B D
C F E C A B
D B C F
A D
1、在找全等三角形的对应元素时一般有什么规律?
有公共边的,公共边是对应边有公共角的,公共角是对应角有对顶角的,对顶角是对应角. 一对最长的边是对应边,一对最短的边是对应边; 一对最大的角是对应角,一对最小的角是对应角。
根据上面的提示,你能总结寻找对应边、角的规律吗? 2、如图:△ABC ≌△DBF, 找出图中的对应边, 对应角.
四、学以致用 1、如图△ABC ≌ △ADE,若∠D=∠B , ∠C= ∠AED ,
则∠DAE= ; ∠DAB= 。
2、如图,△ABC ≌△AED,AB 是△ABC 的最大边,
AE 是△AED 的最大边, ∠BAC 与∠ EAD 对应角,且
∠BAC=25°, ∠B=35°,AB=3cm,BC=1cm,求出∠E,
∠ ADE 的度数和线段DE,AE 的长度。
∠BAD 与
∠EAC 相等吗?为什么?
五、当堂检测
1、全等用符号 表示,读作: 。
2、若△ BCE ≌ △ CBF ,则∠CBE= , ∠BEC= ,BE= , CE= .
3、判断题
1)全等三角形的对应边相等,对应角相等。
( )
2)全等三角形的周长相等,面积也相等。
( )
3)面积相等的三角形是全等三角形。
( )
4)周长相等的三角形是全等三角形。
( )
4、如图△ABD ≌ △EBC ,AB=3cm,BC=5cm,求DE 的长
六、我的收获与反思
七、作业:必做:第4页习题11.1 1-3
选做:第5页第4题
A
B C D A B C D
C D A B E。