汽车变速箱箱体加工工艺及夹具设计

合集下载

汽车变速箱箱体加工工艺及夹具设计

汽车变速箱箱体加工工艺及夹具设计

汽车变速箱箱体加工工艺及夹具设计
汽车变速箱箱体加工工艺:
1. 预处理:将箱体零件进行清洗、除油等处理。

2. 外观检查:进行外观检查,确认箱体零件是否存在缺陷或划痕等问题。

3. 装夹:将箱体零件放入夹具中进行装夹,确保零件不会因加工过程中移动和变形。

4. 粗加工:采用车削和铣削等工艺对箱体零件进行粗加工,以移除多余的金属材料,制作出初步形状。

5. 精加工:在粗加工完成后,进行精加工,采用平面磨或者线切割等工艺,对箱体零件进行加工,确保精度和表面质量。

6. 清洗:将加工完成的箱体零件进行清洗,清除可能存在的金属屑和油脂等。

7. 组装:将加工完成的箱体零件进行组装。

夹具设计:
1. 针对汽车变速箱箱体的形状和工艺特点,设计夹具,确保夹具能够牢固地固定零件,不会因为零件形状而导致变形和移动。

2. 考虑到加工和清洗的需要,夹具应该设计成易于拆卸和清洗的形式。

3. 使用夹具夹持箱体时,夹具表面应该保证平整和光滑,以避免对箱体表面造成损伤。

4. 对于一些需要双面加工的箱体零件,可以采用双面夹具进行
加工,以提高工作效率。

5. 在夹具的设计中应该考虑到工作人员的安全和作业的舒适性。

汽车变速器体的加工工艺及夹具设计

汽车变速器体的加工工艺及夹具设计

汽车变速器体的加工工艺及夹具设计一、汽车变速器体的加工工艺1. 工艺流程汽车变速器体的加工工艺流程包括铸造、粗加工、热处理、精加工和表面处理五个步骤。

2. 铸造铸造是汽车变速器体制作的第一步,主要是通过砂型铸造或压力铸造等方式将铝合金或镁合金材料浇注成型。

3. 粗加工粗加工是指对铸件进行初步的机械加工,包括去除毛刺、修整外形和尺寸等。

主要采用数控车床和数控铣床进行粗加工。

4. 热处理热处理是对粗加工后的变速器体进行热处理,以改善其力学性能。

主要包括时效处理和退火处理两种方式。

5. 精加工精加工是指对经过热处理后的变速器体进行高精度的机械加工,以达到设计要求。

主要采用数控车床、数控铣床和数控磨床等设备进行精加工。

6. 表面处理表面处理是指对经过精加工后的变速器体进行表面涂装或阳极氧化等处理,以提高其耐用性和美观度。

二、夹具设计1. 夹具的作用夹具是汽车变速器体加工中不可或缺的工具,它的作用是固定工件,使其在机床上得以稳定地加工。

同时,夹具还可以保证加工精度和加工效率。

2. 夹具的设计要求(1)夹持力要足够大,以保证工件不会在加工过程中发生位移或滑动。

(2)夹紧力要均匀,以避免对工件造成损伤或变形。

(3)夹具结构要简单、刚性好、重量轻,以方便操作和安装。

(4)夹具应该易于调整和更换,以适应不同尺寸和形状的工件。

3. 夹具的种类根据汽车变速器体的形状和尺寸不同,可以设计出以下几种常见的夹具:(1)平板式夹具:适用于平面或简单曲面零件的加工。

(2)三爪式卡盘:适用于圆柱形零件的加工。

(3)四爪式卡盘:适用于多边形或异型零件的加工。

(4)万能卡盘:适用于不同形状和尺寸的零件加工。

4. 夹具的设计流程夹具的设计流程一般包括以下几个步骤:(1)确定加工零件的形状、尺寸和工艺要求。

(2)根据加工零件的特点和要求,选择合适的夹具种类。

(3)进行夹具结构设计,包括夹持方式、定位方式、支撑方式等。

(4)进行夹具零部件设计,包括卡盘、卡爪、支撑块等。

汽车变速箱壳体工艺及夹具设计

汽车变速箱壳体工艺及夹具设计

汽车变速箱壳体工艺及夹具设计1. 引言汽车变速箱壳体是变速箱的关键组成部分,其主要功能是保护变速箱内部零件并提供结构支撑。

良好的壳体工艺和夹具设计能够保证汽车变速箱的稳定性、可靠性和性能。

2. 汽车变速箱壳体工艺2.1 材料选择汽车变速箱壳体通常采用高强度铝合金或铸铁材料制造。

铝合金具有重量轻、抗腐蚀性好的优点,而铸铁则具有较好的抗冲击和抗磨损性能。

2.2 壳体加工工艺2.2.1 铝合金壳体加工工艺铝合金壳体加工工艺一般包括铸造、机加工和表面处理三个主要步骤。

首先,采用铸造工艺铸造出壳体的初形,然后进行精加工,包括铣削、钻孔、镗削等操作。

最后,对壳体进行外观喷涂、阳极氧化等表面处理。

2.2.2 铸铁壳体加工工艺铸铁壳体加工工艺主要包括铸造和热处理两个步骤。

铸造过程中,通过铸模将熔化的铁水注入壳体腔体,然后待铸铁凝固成型。

接下来,进行热处理,包括退火、正火等工艺,以提高铸铁的强度和硬度。

2.3 质量控制汽车变速箱壳体的质量控制非常重要,可以通过以下几个方面来保证壳体的质量: - 制定合理的工艺流程和操作规范,确保生产过程的可控性; - 严格检查原材料的质量,杜绝有缺陷的材料进入生产流程; - 进行壳体的外观检验,确保表面无气泡、裂纹和变形等缺陷; - 进行尺寸测量,确保壳体尺寸符合设计要求; - 进行性能测试,包括强度和疲劳试验,确保壳体满足使用要求。

3. 夹具设计夹具在汽车变速箱壳体的生产过程中起到固定、定位、支撑和辅助加工等作用。

合理的夹具设计可以提高生产效率和产品质量。

3.1 夹具类型3.1.1 固定型夹具固定型夹具主要用于固定壳体在加工过程中的位置,防止壳体移动或变形。

常见的固定型夹具包括卡盘夹具和夹块夹具。

3.1.2 辅助夹具辅助夹具用于辅助加工操作,提供支撑和定位。

常见的辅助夹具包括支撑座夹具、定位销夹具和模板夹具。

3.2 设计要点3.2.1 夹具刚性夹具在加工过程中需要承受一定的切削力、挤压力等作用,因此夹具的刚性要足够强,以确保壳体加工的准确性和稳定性。

汽车变速箱壳体工艺及夹具设计

汽车变速箱壳体工艺及夹具设计

毕业设计汽车变速箱壳体工艺及夹具设计学生姓名:刘犇学号:122011334系部:机械工程系专业:机械设计制造及其自动化指导教师:王玉玲二〇一六年六月诚信声明本人郑重声明:本论文及其研究工作是本人在指导教师的指导下独立完成的,在完成论文时所利用的一切资料均已在参考文献中列出。

本人签名:年月日毕业设计任务书毕业设计题目:汽车变速箱壳体工艺及夹具设计系部:机械工程系专业:机械设计制造及其自动化学号:122011334学生:刘犇指导教师(含职称):王玉玲(副教授)1.课题意义及目标制造业是国家发展及社会进步的基础,而汽车制造将是未来面对普通消费者的主要的机械制造产品,,所以我们有必要对汽车及汽车零件的设计及加工投入更多的精力。

有必要对汽车变速器的加工工艺进行更深层次的了解及学习。

通过对汽车变速箱壳体工业及夹具设计的研究可以对大学四年里所学习的《机械制造工艺学》,《金属切削原理及刀具》,《互换性及技术测量》,《机械工程材料》等许多课程进行复习及提高。

2.主要任务(1) 变速箱壳体工艺规程设计(2) 机床夹具设计(3) 绘制夹具装配图(4) 设计说明书的书写3.主要参考资料[1]王先逵.机械制造工艺学[M].机械工业出版社.2013.1[2]王伯平.互换性及测量技术基础[M].机械工业出版社.2013.9[3]王运炎.机械工程材料[M].机械工业出版社.2008.12[4] 王光斗, 王春福. 机床夹具设计手册[M]. 上海科学技术出版社.2001.74.进度安排审核人年月日汽车变速箱壳体工艺及夹具设计摘要:本次设计主要是完成汽车变速箱壳体零件的加工工艺规程及一些工序的专用夹具设计。

在本次设计中,由于汽车变速箱壳体零件的主要加工表面是平面及孔系。

一般来说,保证平面的加工精度要比保证孔系的加工精度容易。

因此,本设计遵循先面后孔的原则。

并将孔及平面的加工明确划分成粗加工和精加工阶段以保证平面及孔系加工精度。

基准选择以变速箱壳体的输入轴和输出轴的支承孔作为粗基准,以顶面及两个工艺孔作为精基准。

汽车变速箱箱体加工工艺及夹具设计

汽车变速箱箱体加工工艺及夹具设计

汽车变速箱箱体加工工艺及夹具设计本科毕业设计(论文)开题报告题目: 汽车变速箱箱体加工工艺及夹具设计教学单位: 机电工程系专业: 机械设计制造及其自动化学号:姓名:指导教师:年月1(毕业设计,论文,题目背景、研究意义及国内外相关研究情况。

随着不规则形状零件在现代制造业中的广泛应用,如何加工这类零件,如何保证这类加工精度就显得尤为重要。

不规则零件因其结构较为复杂,例如箱体零件结构就比较复杂,其内部成腔形,壁厚较薄且不均匀。

有许多孔距精度较高的孔系和许多螺纹紧固孔要加工,还有一些较大的平面要加工,故不规则零件不可能运用锻造一次性加工成型,而需充分了解零件,对其进行深入的工艺分析,接而制定一个较为适合该零件的加工工艺。

本课题通过分析典型零件汽车变速箱箱体的结构特点和加工要求,制定合理的加工工艺且进行专用夹具设计,从而为保证该零件的加工精度将提供一种经济实用的工艺装备,具有一定的实用价值。

不断地提高加工精度和加工表面质量,是现代制造业永恒追求,其目的是提高产品性能、质量以及可靠性。

各种箱体的加工工艺过程虽然随着箱体结构、精度要求和生产批量的不同而有较大的差异,但也有相同的特点:主要是平面加工和孔系加工,所以在加工方法上有共同特点:结构形状都比较复杂、壁厚不均匀、加工精度不稳定。

因而在安排工艺过程时,既要考虑到原则问题,也要考虑到共同的特点。

在箱体加工中,孔的加工比平面加工要困难得多,以孔为粗基准划线或成批生产时以毛坯孔定位,先加工平面,再以平面为精基准加工孔。

这样不仅可以保证孔的加工余量较为均匀,而且为孔的加工提供了稳定的精基准。

因为箱体的结构形状比较复杂,主要表面的精度要求高,粗、精加工分开进行,可以减小由粗加工所造成的内应力、切削力、夹紧力和切削热对加工精度的影响.有利于保证加工精度,还可以在粗加工时及时的发现毛坯内部的缩孔、气孔、夹砂等缺陷。

以免浪费加工工时,并可合理利用机床.既提高粗加工机床的切削效率,又可以保护精密机床的精度。

汽车变速箱体加工工艺及夹具设计

汽车变速箱体加工工艺及夹具设计

汽车变速箱体加工工艺及夹具设计首先是铸造工艺。

汽车变速箱体通常是使用铸造工艺来制造的,常见的铸造方法有砂型铸造和压铸。

在进行砂型铸造时,需要先制作铸造模具,然后将熔化的金属倒入模具中,待金属冷却凝固后,即可取出变速箱体。

而压铸则是将熔化的金属压入模具中,待金属冷却凝固后,同样可取出变速箱体。

接下来是机加工工艺。

铸造后的变速箱体需要进行机加工,以获得更加精确的尺寸和形状。

常见的机加工方法包括车削、铣削、钻削和磨削。

通过这些机加工方法,可以对变速箱体进行精确的修整和形状加工,以满足设计要求。

然后是热处理工艺。

热处理是对变速箱体进行加热和冷却处理,以改变其组织结构和性能。

通过热处理,可以提高变速箱体的强度和硬度,增强其耐磨性和耐腐蚀性。

常见的热处理方法有淬火、回火、正火和表面渗碳等。

最后是装配工艺。

将经过铸造、机加工和热处理的变速箱体与其他零部件进行组装。

在装配过程中,需要仔细检查各个零部件的尺寸和形状,确保其互相匹配和配合良好。

同时,还需要进行润滑和密封等处理,以确保变速箱的正常运转和使用寿命。

夹具是在加工过程中用于固定和定位工件的工具。

在汽车变速箱体的加工过程中,夹具的设计起着至关重要的作用。

一个合理的夹具设计可以提高生产效率和加工质量,减少工件的变形和损坏。

夹具设计需要考虑以下几个方面:夹持力、定位精度、操作便捷性和安全性。

夹具应该具有足够的夹持力,以确保工件在加工过程中的稳定性和精确性。

同时,夹具还应具有良好的定位精度,以确保工件的正确位置和形状。

操作便捷性是指夹具的设计应该简单易用,方便操作人员进行装夹和取卸工件。

同时,夹具还应具有良好的安全性,以避免意外事故的发生。

在夹具设计中,需要根据变速箱体的形状和尺寸,选择适当的夹具类型和夹持方式。

常见的夹具类型有平行夹具、三爪夹具和冲击夹具等。

同时,还需要考虑夹具的刚度和稳定性,以确保夹具在加工过程中不产生松动和变形。

总之,汽车变速箱体加工工艺和夹具设计是汽车制造中不可或缺的环节。

变速箱箱体机械加工工艺规程及夹具设计

变速箱箱体机械加工工艺规程及夹具设计

第1章夹具在其发展的200多年历史中,大致经历了三个阶段:第一阶段,夹具在工件加工、制造的各工序中作为基本的夹持装置,发挥着夹固工件的最基本功用。

随着军工生产及内燃机,汽车工业的不断发展,夹具逐渐在规模生产中发挥出其高效率及稳定加工质量的优越性,各类定位、夹紧装置的结构也日趋完善,夹具逐步发展成为机床—工件—工艺装备工艺系统中相当重要的组成部分。

这是夹具发展的第二阶段。

这一阶段,夹具发展的主要特点是高效率。

在现代化生产的今天,各类高效率,自动化夹具在高效,高精度及适应性方面,已有了相当大的提高。

随着电子技术,数控技术的发展,现代夹具的自动化和高适应性,已经使夹具与机床逐渐融为一体,使得中,小批量生产的生产效率逐步趋近于专业化的大批量生产的水平。

这是夹具发展的第三个阶段,这一阶段,夹具的主要特点是高精度,高适应性。

可以预见,夹具在不一个阶段的主要发展趋势将是逐步提高智能化水平。

一项优秀的夹具结构设计,往往可以使得生产效率大幅度提高,并使产品的加工质量得到极大地稳定。

尤其是那些外形轮廓结构较复杂的,不规则的拔叉类,杆类工件,几乎各道工序都离不开专门设计的高效率夹具。

目前,中等生产规模的机械加工生产企业,其夹具的设计,制造工作量,占新产品工艺准备工作量的50%—80%。

生产设计阶段,对夹具的选择和设计工作的重视程度,丝毫也不压于对机床设备及各类工艺参数的慎重选择。

夹具的设计,制造和生产过程中对夹具的正确使用,维护和调整,对产品生产的优劣起着举足轻重的作用。

1.1零件的分析拖拉机的变速箱箱体是拖拉机上的一个重要零件。

变速箱箱体的主要作用是支承各传动轴,保证各轴之间的中心距及平行度,并保证变速箱部件与发动机正确安装。

因此拖拉机变速箱箱体零件的加工质量,不但直接影响拖拉机变速箱的装配精度和运动精度,而且还会影响拖拉机的工作精度、使用性能和寿命。

拖拉机变速箱主要是实现拖拉机的变速,改变拖拉机的运动速度。

拖拉机变速箱箱体零件的顶面用以安装变速箱盖,前后端面支承孔、用以安装传动轴,实现其变速功能。

变速箱箱体零件的加工工艺规程及专用夹具设计说明书

变速箱箱体零件的加工工艺规程及专用夹具设计说明书

摘要在整个毕业设计过程中,综合应用工程图学,机械设计、机械制造工艺学、机械几何精度设计等相关理论知识。

本设计为变速箱箱体零件的加工工艺规程及专用夹具设计。

在工艺规程设计过程中,详细分析箱体零件的技术要求,变速箱箱体的主要加工表面是平面及孔系,一般来说保证平面的加工精度要比保证孔系的加工精度容易,因此,本设计遵循先面后孔的原则,并明确划分粗、精加工阶段。

在进行镗孔专用夹具设计中,阐述了定位方案的选择、夹紧机构的设计、镗模主要零件设计,运用AutoCAD完成此专用夹具的装配图和夹具零件图。

关键词:变速箱;加工工艺;夹具设计;第一章零件的工艺分析及生产类型的确定ABSTRACTIn the whole process of graduation design, the comprehensive application engineering graphics, mechanical design,mechanical manufacturing technology, mechanical geometry precision design and related theory knowledge. This design for gear-box parts processing procedure and special fixture design. In process planning process, a detailed analysis of the technical requirements of the case accessories, gear-box main processing surface is flat and hole department, generally guarantee machining precision of the plane than guarantee hole machining precision of the department, therefore, this design to follow the principle of after make face first, and clearly hole diameter, finishing stage division. Special fixture design in boring, expounds the positioning of the choice, clamping mechanism design, boring major parts design, mould using AutoCAD complete this special jig's drawings and fixture detail drawings.Keywords: transmission; Processing craft; Fixture design;第一章零件的工艺分析及生产类型的确定1.1零件的分析箱体类零件时机器及其部件的基础件,变速箱箱体的主要作用是支撑各传动轴、轴承、套、和齿轮,并且保证各轴几间的中心距及平行度,按规定的传动关系变速并协调地运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 汽车变速箱加工工艺规程设计1.1零件的分析1.1.1零件的作用题目给出的零件是汽车变速箱箱体。

变速箱箱体的主要作用是支承各传动轴,保证各轴之间的中心距及平行度,并保证变速箱部件与发动机正确安装。

因此汽车变速箱箱体零件的加工质量,不但直接影响汽车变速箱的装配精度和运动精度,而且还会影响汽车的工作精度、使用性能和寿命。

汽车变速箱主要是实现汽车的变速,改变汽车的运动速度。

汽车变速箱箱体零件的顶面用以安装变速箱盖,前后端面支承孔mm 120φ、mm 80φ用以安装传动轴,实现其变速功能。

1.1.2零件的工艺分析由汽车变速箱箱体零件图可知。

汽车变速箱箱体是一个簿壁壳体零件,它的外表面上有五个平面需要进行加工。

支承孔系在前后端面上。

此外各表面上还需加工一系列螺纹孔。

因此可将其分为三组加工表面。

它们相互间有一定的位置要求。

现分析如下:(1)、以顶面为主要加工表面的加工面。

这一组加工表面包括:顶面的铣削加工;H M 6108-⨯的螺孔加工;mm 027.0122+⨯φ的工艺孔加工。

其中顶面有表面粗糙度要求为m Ra μ3.6,8个螺孔均有位置度要求为mm 3.0φ,2个工艺孔也有位置度要求为mm 1.0φ。

(2)、以mm 03.0120+φ、mm 013.080+φ、mm 035.0100+φ的支承孔为主要加工表面的加工面。

这一组加工表面包括:2个mm 03.0120+φ、2个mm 013.080+φ和1个mm 035.0100+φ的孔;尺寸为mm 025.0365±的与mm 03.01202+⨯φ、mm 013.0802+⨯φ的4个孔轴线相垂直的前后端面;前后端面上的3个H M 614-、16个H M 610-的螺孔,以及4个mm 15φ、2个mm 8φ的孔;还有另外两个在同一中心线上与两端面相垂直的mm 020.0015.030+-φ的倒车齿轮轴孔及其内端面和两个H M 610-的螺孔。

其中前后端面有表面粗糙度要求为m Ra μ3.6,3个H M 614-、16个H M 610-的螺孔,4个mm 15φ、2个mm 8φ的孔均有位置度要求为mm 3.0φ,两倒车齿轮轴孔内端面有尺寸要求为mm 46.0090+及表面粗糙度要求为m Ra μ2.3。

(3)、以两侧窗口面为主要加工平面的加工面。

这一组加工表面包括:尺寸为mm 01.0160-和mm 01.0104-的两侧窗口面;与两侧窗口面相垂直的12个H M 610-的螺孔;与两侧面成︒60角的尺寸为1''的锥管螺纹孔(加油孔)。

其中两侧窗口面有表面粗糙度要求为m Ra μ3.6,12个螺孔均有位置度要求为mm 3.0φ。

1.2变速箱箱体加工的主要问题和工艺过程设计所应采取的相应措施由以上分析可知。

该箱体零件的主要加工表面是平面及孔系。

一般来说,保证平面的加工精度要比保证孔系的加工精度容易。

因此,对于变速箱箱体来说,加工过程中的主要问题是保证孔的尺寸精度及位置精度,处理好孔和平面之间的相互关系。

由于汽车变速箱的生产量很大。

怎样满足生产率要求也是变速箱加工过程中的主要考虑因素。

1.2.1孔和平面的加工顺序箱体类零件的加工应遵循先面后孔的原则:即先加工箱体上的基准平面,以基准平面定位加工其他平面。

然后再加工孔系。

变速箱箱体的加工自然应遵循这个原则。

这是因为平面的面积大,用平面定位可以确保定位可靠夹紧牢固,因而容易保证孔的加工精度。

其次,先加工平面可以先切去铸件表面的凹凸不平。

为提高孔的加工精度创造条件,便于对刀及调整,也有利于保护刀具。

变速箱箱体零件的加工工艺应遵循粗精加工分开的原则,将孔与平面的加工明确划分成粗加工和精加工阶段以保证孔系加工精度。

1.2.2孔系加工方案选择变速箱箱体孔系加工方案,应选择能够满足孔系加工精度要求的加工方法及设备。

除了从加工精度和加工效率两方面考虑以外,也要适当考虑经济因素。

在满足精度要求及生产率的条件下,应选择价格最底的机床。

根据汽车变速箱箱体零件图所示的变速箱箱体的精度要求和生产率要求,当前应选用在组合机床上用镗模法镗孔较为适宜。

(1)、用镗模法镗孔在大批量生产中,汽车变速箱箱体孔系加工一般都在组合镗床上采用镗模法进行加工。

镗模夹具是按照工件孔系的加工要求设计制造的。

当镗刀杆通过镗套的引导进行镗孔时,镗模的精度就直接保证了关键孔系的精度。

采用镗模可以大大地提高工艺系统的刚度和抗振性。

因此,可以用几把刀同时加工。

所以生产效率很高。

但镗模结构复杂、制造难度大、成本较高,且由于镗模的制造和装配误差、镗模在机床上的安装误差、镗杆和镗套的磨损等原因。

用镗模加工孔系所能获得的加工精度也受到一定限制。

(2)、用坐标法镗孔在现代生产中,不仅要求产品的生产率高,而且要求能够实现大批量、多品种以及产品更新换代所需要的时间短等要求。

镗模法由于镗模生产成本高,生产周期长,不大能适应这种要求,而坐标法镗孔却能适应这种要求。

此外,在采用镗模法镗孔时,镗模板的加工也需要采用坐标法镗孔。

用坐标法镗孔,需要将箱体孔系尺寸及公差换算成直角坐标系中的尺寸及公差,然后选用能够在直角坐标系中作精密运动的机床进行镗孔。

零件图所示变速箱箱体孔系尺寸换算如下:如下图所示为三个支承孔中心线所构成的坐标尺寸关系。

其中:mm OA 05.028.150||±=,mm OB 05.035.133||±=,mm AB 05.002.91||±=。

设加工时坐标系为y x 0且mm x OB 30=现在要计算OB y 、OA x 及OA y 。

由图可知: mm y OB 93.1293035.13322=-=22497.035.133/30||/30cos ===OB β∴ 999.76=β001.1390=-=βγ根据余弦定理:8004.035.13328.150202.9135.13328.150||||2||||||cos 222222≈⨯⨯-+=-+=OB OA AB OB OA α ∴ 827.36=α根据几何关系可得: mm OA x O A 707.60)sin(||=-=γαmm OA y O A 473.137)cos(||=-=γα孔系中心的直角坐标尺寸算出来后。

还需要进一步确定各组成环的公差。

组成环的公差分配方法有多种,现以等公差分配法为例子说明各组成环公差的求解方法。

已知: mm 707.903060.707|CA | =+=mm y y CB O B O A 541.7932.129473.137||=-=-=mm AB 084.78||=因 222||||||AB CB AC =+两边微分后得:||||2||||2||||2AB d AB CB d CB AC d AC ⋅=⋅+⋅若 ε==||||CB d AC d ,则有0067.0541.7707.9002.9105.0||||||||±=⨯⨯±=⋅=CB AC AB AB d ε |AC|与OA x 和OB x 构成尺寸链,其中|AC|为尺寸链的封闭环。

按等公差分配原则,OA x 及OB x 的公差各取mm 034.02/±=ε。

|CB|与OA y 及OB y 构成另一个尺寸链,且||CB|为尺寸链的封闭环。

按前述方法可得OA y 及OB y 的尺寸公差各为mm 034.02/±=ε。

最终求得的变速箱箱体孔系在直角坐标中的尺寸及公差为:mm x O A 0034.0707.60±=mm y O A 0034.0473.137±=mm x O B 0034.030±=mm y O B 0034.093.129±=1.3变速箱箱体加工定位基准的选择1.3.1粗基准的选择粗基准选择应当满足以下要求:(1)、保证各重要支承孔的加工余量均匀;(2)、保证装入箱体的零件与箱壁有一定的间隙。

为了满足上述要求,应选择变速箱的主要支承孔作为主要基准。

即以变速箱箱体的输入轴和输出轴的支承孔作为粗基准。

也就是以前后端面上距顶平面最近的孔作为主要基准以限制工件的四个自由度,再以另一个主要支承孔定位限制第五个自由度。

由于是以孔作为粗基准加工精基准面。

因此,以后再用精基准定位加工主要支承孔时,孔加工余量一定是均匀的。

由于孔的位置与箱壁的位置是同一型芯铸出的。

因此,孔的余量均匀也就间接保证了孔与箱壁的相对位置。

1.3.2精基准的选择从保证箱体孔与孔、孔与平面、平面与平面之间的位置 。

精基准的选择应能保证变速箱箱体在整个加工过程中基本上都能用统一的基准定位。

从变速箱箱体零件图分析可知,它的顶平面与各主要支承孔平行而且占有的面积较大,适于作精基准使用。

但用一个平面定位仅仅能限制工件的三个自由度,如果使用典型的一面两孔定位方法,则可以满足整个加工过程中基本上都采用统一的基准定位的要求。

至于前后端面,虽然它是变速箱箱体的装配基准,但因为它与变速箱箱体的主要支承孔系垂直。

如果用来作精基准加工孔系,在定位、夹紧以及夹具结构设计方面都有一定的困难,所以不予采用。

1.4变速箱箱体加工主要工序安排对于大批量生产的零件,一般总是首先加工出统一的基准。

变速箱箱体加工的第一个工序也就是加工统一的基准。

具体安排是先以孔定位粗、精加工顶平面。

第二个工序是加工定位用的两个工艺孔。

由于顶平面加工完成后一直到变速箱箱体加工完成为止,除了个别工序外,都要用作定位基准。

因此,顶面上的螺孔也应在加工两工艺孔的工序中同时加工出来。

后续工序安排应当遵循粗精分开和先面后孔的原则。

先粗加工平面,再粗加工孔系。

螺纹底孔在多轴组合钻床上钻出,因切削力较大,也应该在粗加工阶段完成。

对于变速箱箱体,需要精加工的是支承孔前后端平面。

按上述原则亦应先精加工平面再加工孔系,但在实际生产中这样安排不易于保证孔和端面相互垂直。

因此,实际采用的工艺方案是先精加工支承孔系,然后以支承孔用可胀心轴定位来加工端面,这样容易保证零件图纸上规定的端面全跳动公差要求。

各螺纹孔的攻丝,由于切削力较小,可以安排在粗、精加工阶段中分散进行。

加工工序完成以后,将工件清洗干净。

清洗是在c ︒-9080的含0.4%—1.1%苏打及0.25%—0.5%亚硝酸钠溶液中进行的。

清洗后用压缩空气吹干净。

保证零件内部杂质、铁屑、毛刺、砂粒等的残留量不大于m g 200。

根据以上分析过程,现将汽车变速箱箱体加工工艺路线确定如下:工序1:粗、精铣顶面。

以两个mm 120φ的支承孔和一个mm 80φ的支承孔为粗基准。

选用立轴圆工作台铣床,和专用夹具。

工序2:钻顶面孔、铰工艺孔。

以两个mm 120φ的支承孔和前端面为基准。

选用专用组合钻床和专用夹具。

相关文档
最新文档