菱形正方形性质练习题

合集下载

初中数学《平行四边形、菱形、矩形、正方形的判定与性质证明题》专训40题含答案解析

初中数学《平行四边形、菱形、矩形、正方形的判定与性质证明题》专训40题含答案解析

八年级下学期【(特殊的)平行四边形的判定与性质30题专训】一.解答题(共40小题)1.(2023春•岳麓区校级月考)如图,已知E、F分别是平行四边形ABCD的边BC、AD 上的点,且BE=DF.(1)求证:四边形AECF是平行四边形;(2)在△ABC中,若AB=6,AC=8,∠BAC=90°,求BC边上的高AG.【分析】(1)利用平行四边形的性质得出AF∥EC,再得出AF=EC,即可证明四边形AECF是平行四边形;(2)根据勾股定理求出AB的长,然后根据等积法求出BC边上的高AG即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形;(2)解:∵AB=6,AC=8,∠BAC=90°,∴,∵,∴.2.(2022春•琼海期中)如图,在四边形ABCD中,AD∥BC,对角线AC、BD交于点O,且AO=OC.(1)求证:①△AOE≌△COF;②四边形ABCD为平行四边形;(2)过点O作EF⊥BD,交AD于点E,交BC于点F,连接BE,若∠BAD=100°,∠DBF=32°,求∠ABE的度数.【分析】(1)①由平行线的性质得出∠OAD=∠OCB,可证明△AOE≌△COF (ASA);②证得AD=CB,再由AD∥BC,即可得出结论;(2)由全等三角形的性质得出OE=OF,证出BE=BF,由等腰三角形的性质得出∠OBF =∠OBE=32°,求出∠ABC=116°,则可得出答案.【解答】(1)①证明:∵AD∥BC,∴∠OAD=∠OCB,在△AOE和△COF中,,∴△AOE≌△COF(ASA);②同理可证△AOD≌△COB,∴AD=CB,又∵AD∥BC,∴四边形ABCD为平行四边形;(2)解:∵△AOE≌△COF,∴OE=OF,∵EF⊥BD,∴BE=BF,∴∠OBF=∠OBE=32°,∴∠EBF=64°,∵AD∥BC,∴∠ABC=180°﹣∠BAD=180°﹣100°=80°,∴∠ABE=∠ABC﹣∠EBF=80°﹣64°=16°.3.(2022春•吉林期中)如图,在△ABC中,D、E分别是边AC、BC的中点,延长EC至点F,使FC=CE,过点D作DG∥BC(点G位于点D右侧),且DG=2CF,连接FG.(1)求证:四边形DEFG 为平行四边形;(2)若AB =8,求FG 的长.【分析】(1)先证明DG =EF ,又DG ∥BC 即可得到结论;(2)先证明DE 是△ABC 的中位线,得到,由四边形DEFG 为平行四边形,即可得到答案.【解答】(1)证明:∵FC =CE ,DG =2CF ,∴DG =EF ,∵DG ∥BC ,∴四边形DEFG 为平行四边形.(2)解:∵D 、E 分别是边AC 、BC 的中点,∴DE 是△ABC 的中位线,∴,∵四边形DEFG 为平行四边形,∴FG =DE =4.4.(2022春•云梦县期中)如图:△ABD ,△APE 和△BPC 均为直线AB 同侧的等边三角形,点P 在△ABD 内.(1)求证:四边形PEDC 为平行四边形;(2)当点P 同时满足条件:①PA =PB 和②∠APB =150°时,猜想四边形PEDC 是什么特殊的四边形,并说明理由;(3)若△APB 中,253===PB PA AB ,,,求四边形PEDC 的面积.【分析】(1)证明DE =PC ,PE =CD 即可;(2)根据正方形的判定解决问题即可;(3)过C 作CH 垂直EP 的延长线于H ,依据ED =CP ,EP =DC ,即可得出四边形PCDE 是平行四边形,由勾股定理的逆命定理证得∠APB =90°,求出∠EPC =150°,再由30°的直角三角形性质求出CH的长,最后根据平行四边形的面积公式求解即可.【解答】(1)证明:∵△AEP,△DAB是等边三角形,∴AE=AP,AD=AB,∠EAP=∠DAB=60°,∴∠EAD=∠PAB,∴△EAD≌△PAB(SAS),∴DE=BP,∵PC=PB,∴DE=PC,同理PE=CD,∴四边形PEDC是平行四边形;(2)解:此时四边形PEDC为正方形.理由:当PA=PB时,∵PE=PA,PC=PB,∴PE=PC,∵四边形PEDC是平行四边形,∴四边形PEDC是菱形.当∠APB=150°时,∵∠APE=∠BPC=60°,∴∠EPC=360°﹣60°﹣60°﹣150°=90°,又∵四边形PEDC是菱形,∴四边形PEDC是正方形.(3)解;如图所示,过C作CH垂直EP的延长线于H,∵AB=3,PA=,PB=2,∴PA2+PB2=AB2,∴∠APB=90°又∵∠APE=∠BPC=60°,∴∠EPC=150°,∴∠CPH=30°,∵∠PHC=90°,∴CH=CP=PB=1,又PE=PA=,∴S平行四边形PEDC=CH×EP=1×=.5.(2022春•灌南县期中)如图,在▱ABCD中,延长BC到点E,使得BC=CE,连接AE、DE.(1)求证:四边形ACED是平行四边形;(2)如果AB=AE=5,BE=4,求四边形ACED的面积.【分析】(1)由平行四边形的性质得AD∥BC,AD=BC,再证AD=CE,即可得出结论;(2)由等腰三角形的性质得∠ACE=90°,则平行四边形ACED是矩形,再由勾股定理得AC=,即可求解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵BC=CE,∴AD=CE,∵AD∥CE,∴四边形ACED是平行四边形;(2)解:由(1)得:四边形ACED是平行四边形,∵AB=AE,BC=CE=BE=2,∴AC⊥BE,∴∠ACE=90°,∴平行四边形ACED是矩形,在Rt△ACE中,由勾股定理得:AC===,∴矩形ACED的面积=AC×CE==2.6.(2022春•唐河县期中)如图,点B,E,F,D在同一条直线上,BE=DF,AC交BD 于点O,AD∥BC,AE∥FC.(1)求证:AC与BD互相平分;(2)若AE⊥AC,AE=BE,BD=16,EF=10,求AC的长.【分析】(1)由AD∥BC得到∠ADE=∠CBF,∠AED=∠CFB,再证BF=DE,得到△ADE≌△CBF,即可证明四边形ABCD是平行四边形,由此得证;(2)由AC与BD互相平分,得到OE与AE的长,结合AE⊥AC,即可算出AO,由此得到AC的长.【解答】(1)证明:连接AB,CD,∵BE=DF,∴BF=DE,∵AD∥BC,∴∠ADE=∠CBF,∵AE∥FC,∴∠AED=∠CFB,∴△ADE≌△CBF(ASA),∴AD=CB,∵AD∥BC,∴四边形ABCD是平行四边形,∴AC与BD互相平分;(2)解:∵AC与BD互相平分,∴,∵BE=DF,∴,∴AE=BE=3,∵AE⊥AC,∴根据勾股定理得:,∴AC=2AO=8.。

专题14-菱形、正方形的性质与判定重难点题型(解析版)-初中数学重难点必刷题(人教版)

专题14-菱形、正方形的性质与判定重难点题型(解析版)-初中数学重难点必刷题(人教版)

专题14 菱形、正方形的性质与判定重难点题型分类-高分必刷题 (解析版)专题简介:本份资料包含菱形、正方形的性质与判定这两节的常考主流题型,所选题目源自各名校期中、期末试题中的典型考题,具体包含四类题型:菱形的性质、菱形的判定、中点套路之中位线&Rt △斜边上的中线、 正方形的性质与判定。

适合于培训机构的老师给学生作复习培训时使用或者学生考前刷题时使用。

题型一 菱形的性质1.(中雅培粹)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,OE ⊥AB 于点E ,若⊥ADC =130°,则⊥AOE 的度数为( )A.75°B.65°C.55°D.50°【解答】解:在菱形ABCD 中,∠ADC =130°,∴∠BAD =180°﹣130°=50°, ∴∠BAO =∠BAD =×50°=25°,∵OE ⊥AB ,∴∠AOE =90°﹣∠BAO =90°﹣25°=65°. 故选:B .2.(中雅培粹)如图,菱形ABCD 中,⊥B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则⊥AEF 的周长为( )A.32B.33C.34D.3【解答】解:连接AC ,∵四边形ABCD 是菱形,∴AB =BC ,∵∠B =60°,∴△ABC 为等边三角形, ∴AC =AB =AD =CD ,∴∠CAD =60°,∴∠BAD =120°,∵E 为BC 的中点,∴AE ⊥BC ,∠EAC =30°, ∴AE =,同理:AF =,∵AE =AF ,∠CAF =30°∴∠EAF =60°,∴△AEF 是等边三角形,∴EF =,∴△AEF 的周长为3.故选:B .3.(长郡)如图,已知菱形ABCD 的对角线AC 、BD 交于点O ,2cm OC =,30ABO ∠=,则菱形ABCD 的面积是__________.【解答】解:∵四边形ABCD 是菱形,∴∠ABO =∠CBO =30°,∠BOC =90°, ∵OC =2cm , ∴OB =2cm ,∴=cm 2.∴菱形ABCD 的面积为2cm 2.故答案为:8cm 2.4.(中雅培粹)已知菱形ABCD 的面积是212cm ,对角线cm AC 4=,则菱形的边长是 . 【解答】解:由菱形的面积公式,可得另一对角线长12×2×=6,∵菱形的对角线互相垂直平分, 根据勾股定理可得菱形的边长==cm .故答案为. 题型二 菱形的判定5.(中雅培粹)如图,添加下列条件之一,能使平行四边形ABCD 是菱形的是( ) ⊥BD AC ⊥;⊥︒=∠90BAD ;⊥BC AB =;⊥BD AC =; A.⊥⊥ B.⊥⊥ C.⊥⊥ D.⊥⊥⊥【解答】解:①▱ABCD 中,AC ⊥BD ,根据对角线互相垂直的平行四边形是菱形,即可判定▱ABCD 是菱形;故①正确;②▱ABCD 中,∠BAD =90°,根据有一个角是直角的平行四边形是矩形,即可判定▱ABCD 是矩形,而不能判定▱ABCD 是菱形;故②错误;③▱ABCD 中,AB =BC ,根据一组邻边相等的平行四边形是菱形,即可判定▱ABCD 是菱形;故③正确;D 、▱ABCD 中,AC =BD ,根据对角线相等的平行四边形是矩形,即可判定▱ABCD 是矩形,而不能判定▱ABCD 是菱形;故④错误. 故选:A .6.(中雅)已知矩形ABCD ,把BCD ∆沿BD 翻折,得BDG ∆,BG ,AD 所在的直线交于点E ,过点D 作//DF BE 交BC 所在直线于点F . (1)求证:四边形DEBF 是菱形;(2)若8AB =,4AD =,求四边形DEBF 的面积.【解答】解:(1)证明:∵四边形ABCD 为矩形,∴AD ∥BC ,∴∠EDB =∠DBC , 根据题意可知△BCD ≌△BDG ,∴∠DBG =∠DBC ,∴∠EDB =∠EBD ,∴DE =BE , ∵AD ∥BC ,DF ∥BE ,∴四边形BEDF 为平行四边形, 又∵DE =BE ,∴四边形BEDF 为菱形;(2)设菱形BEDF 的边长为x ,则AE =DE ﹣AD =x ﹣4,在Rt △AEB 中,BE 2=AE 2+AB 2, 即x 2=(x ﹣4)2+82,解得x =10,∴菱形BEDF 的面积=DE •AB =10×8=80.7.(长郡培粹)如图,矩形ABCD 中AD AB >,O 是对角线的交点,过O 任作一直线分别交BC 、AD 于点M 、N (如图①),四边形AMNE 是由四边形CMND 沿MN 翻折得到图②,连接CN .(1)求证:四边形AMCN 是菱形;(2)若CDN ∆的面积与CMN ∆的面积比为1:3,求MNDN的值.【解答】(1)证法一:连接BD ,则BD 过点O ,∵AD ∥BC ,∴∠OBM =∠ODN , 又OB =OD ,∠BOM =∠DON ,∴△OBM ≌△ODN ,∴BM =DN ;证法二:∵矩形ABCD 是中心对称图形,点O 是对称中心,∴B 、D 和M 、N 关于O 点中心对称,∴BM =DN ;(2)证法一:∵矩形ABCD ,∴AD ∥BC ,AD =BC ,又BM =DN ,∴AN =CM ,∴四边形AMCN是平行四边形,由翻折得,AM=CM,∴四边形AMCN是菱形;证法二:由翻折得,AE=CD,∠E=∠D,∠AMN=∠CMN,又∵∠ANE=∠CND,∴△ANE≌△CND,∴AN=CN.∵AD∥BC,∴∠ANM=∠CMN,∴∠AMN=∠ANM,∴AM=AN,∴AM=MC=CN=NA,∴四边形AMCN是菱形.(3)解法一:∵S△CDN=DN•CD,S△CMN=CM•CD,又S△CDN:S△CMN=1:3,∴DN:CM=1:3,设DN=k,则CN=CM=3k,过N作NG⊥MC于点G,则CG=DN=k,MG=CM﹣CG=2k,NG=,∴MN=,∴==2;解法二:∵S△CDN=DN•CD,S△CMN=CM•CD,又S△CDN:S△CMN=1:3,∴DN:CM=1:3,连接AC,则AC过点O,且AC⊥MN,设DN=k,则CN=AN=CM=3k,AD=4k,CD=,OC=AC===k,∴MN=2ON=2=2=2k,∴==2.8.(广益)如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AD=AB+2,BD=10,求四边形BFDG的面积.【解答】证明:(1)如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF,∴△BDF是等腰三角形;(2)①四边形BFDG是菱形,理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②在Rt△ABD中,AD=AB+2,BD=10,BD2=AD2+AB2,∴100=(AB+2)2+AB2,∴AB=6,∴AD=8,∵BF2=AF2+AB2,∴DF2=(8﹣DF)2+36,∴DF=,∴四边形BFDG的面积=×6=.题型三中点套路:中位线&Rt△斜边上的中线9.(中雅)顺次联结对角线互相垂直且相等的四边形四边的中点所得的四边形是()A.平行四边形B.矩形C.菱形D.正方形【解答】解:∵E、F、G、H分别是AB、BC、CD、AD的中点,∴EH∥FG∥BD,EF∥AC∥HG,∴四边形EFGH是平行四边形,∵AC⊥BD,AC=BD,∴EF⊥FG,FE=FG,∴四边形EFGH是正方形,故选:D.BD CD的中点,若10.(雅礼)如图,BD是矩形ABCD的一条对角线,点,E F分别是,==,则AE EF4,3AB BC+的长为______.【解答】解:∵点E,F分别是BD,DC的中点,∴FE是△BCD的中位线,∴EF=BC=1.5,∵∠BAD=90°,AD=BC=3,AB=4,∴BD=5,又∵E是BD的中点,∴Rt△ABD中,AE =BD =2.5,∴AE +EF =2.5+1.5=4,故答案为:4.11.(师大高新)如图,已知矩形ABCD ,12,9AD CD = =,点R 、P 分别是DC ,BC 上的定点,点E 、F 分别是AP 、RP 的中点,若4CR =,则EF =( ) A . 12B . 6.5C . 9D . 不能确定【解答】解:B.12.(长郡培粹)已知ABC ∆中,AB AC =,点O 在ABC ∆的内部,90BOC ∠=︒,OB OC =,D 、E 、F 、G 分别是AB 、OB 、OC 、AC 的中点. (1)求证:四边形DEFG 是矩形; (2)若2DE =,3EF =,求ABC ∆的面积.【解答】解:(1)连接AO 并延长交BC 于H ,∵AB =AC ,OB =OC ,∴AH 是BC 的中垂线,即AH ⊥BC 于H ,∵D 、E 、F 、G 分别是AB 、OB 、OC 、AC 的中点,∴DG ∥EF ∥BC ,DE ∥AH ∥GF ,∴四边形DEFG 是平行四边形,∵EF ∥BC ,AH ⊥BC ,∴AH ⊥EF ,DE ∥AH , ∴EF ⊥DE ,∴平行四边形DEFG 是矩形. (3)∵△BOC 是等腰直角三角形,∴BC =2EF =2OH =2×3=6,AH =OA +OH =2DE +EF =2×2+3=7, ∴S △ABC =×6×7=21.13.(中雅培粹)如图,在⊥ABC 中,D 、E 分别为AB 、AC 的中点,BE=2DE ,延长DE 到点F ,使得EF=BE ,连接CF 。

平行四边形矩形菱形经典例题(8套)

平行四边形矩形菱形经典例题(8套)

经典例题(附带详细答案)1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,求证:AF CE =.【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =,ACB CAD ∴∠=∠.又BE DF ∥,BEC DFA ∴∠=∠,BEC DFA ∴△≌△,∴CE AF =2.如图6,四边形ABCD 中,AB ∥CD ,∠B=∠D ,,求四边形ABCD 的周长.【【答案】20、解法一: ∵∴又∵∴∴∥即得是平行四边形∴∴四边形的周长解法二:连接3 ,6==AB BC AB CD ∥︒=∠+∠180C B B D ∠=∠︒=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=AC A DCBA DC BD C AB EF∵∴又∵∴≌∴∴四边形的周长解法三:连接∵∴又∵∴∴∥即是平行四边形∴∴四边形的周长3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍,求∠A ,∠B ,∠C 的大小.【关键词】多边形的内角和【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠.根据四边形内角和定理得,360602)20(=++++x x x .解得,70=x .∴︒=∠70A ,︒=∠90B ,︒=∠140C .4.(如图,E F ,是四边形ABCD 的对角线AC 上两点,AF CE DF BE DF BE ==,,∥. 求证:(1)AFD CEB △≌△.(2)四边形ABCD 是平行四边形.【关键词】平行四边形的性质,判定【答案】证明:(1)DF BE ∥,DFE BEF ∴∠=∠.180AFD DFE ∠+∠=°,180CEB BEF ∠+∠=°,AFD CEB ∴∠=∠.又A F C E D F ==,,AFD CEB ∴△≌△(SAS).AB CD ∥DCA BAC ∠=∠B D AC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=⨯+⨯=BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=⨯+⨯=A BDE F C A DCB(2)由(1)知AFD CEB △≌△,DAC BCA AD BC ∴∠=∠=,,AD BC ∴∥.∴四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形)5.)25.如图13-1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =.(1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点(如图13-2),试判断AE EP 与的大小关系,并说明理由;(3)在图13-2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.【关键词】平行四边形的判定【答案】解:(1)AE EF ⊥2390∴∠+∠=°四边形ABCD 为正方形90B C ∴∠=∠=°1390∴∠+∠=°12∠=∠90DAM ABE DA AB ∠=∠==°,DAM ABE ∴△≌△DM AE ∴=AE EP =DM PE ∴=∴四边形DMEP 是平行四边形.解法②:在AB 边上存在一点M ,使四边形DMEP 是平行四边形证明:在AB 边上取一点M ,使AM BE =,连接ME 、MD 、DP .90AD BA DAM ABE =∠=∠=,°Rt Rt DAM ABE ∴△≌△14DM AE ∴=∠=∠,1590∠+∠=°4590∴∠+∠=°AE DM ∴⊥AE EP ⊥ A D C B E B C E DA F P FDM EP ∴⊥∴四边形DMEP 为平行四边形6.(2009年广州市)如图9,在ΔABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点。

平行四边形、矩形、菱形、正方形习题

平行四边形、矩形、菱形、正方形习题

平行四边形 、矩形、菱形、正方形习题平行四边形的性质及判定1.平行四边形的两邻边分别为3、4,那么其对角线必( )A.大于1B.小于7C.大于1且小于7D.小于7或大于12.在ABCD 中,M 为CD 的中点,如DC =2AD ,则AM 、BM 夹角度数是( )A.90°B.95°C.85°D.100°3.如图1,四边形ABCD 是平行四边形,∠D =120°,∠CAD =32°.则∠ABC 、∠CAB 的度数分别为( )A.28°,120°B.120°,28°C.32°,120°D.120°,32° 4.在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( )A.1∶2∶3∶4B.1∶2∶2∶1C.1∶1∶2∶2D.2∶1∶2∶15.如图2,□ABCD 中,EF 过对角线的交点O ,AB =4,AD =3, OF =1.3,则四边形BCEF 的周长为( )A.8.3B.9.6C.12.6D.13.66.下列条件中不能确定四边形ABCD 是平行四边形的是( )A.AB =CD ,AD ∥BCB.AB =CD ,AB ∥CDC.AB ∥CD ,AD ∥BCD.AB =CD ,AD =BC7.在四边形ABCD 中,AC 与BD 相交于点O ,如果只给出条件“AB ∥CD ”,那么还不能判定四边形ABCD 为平行四边形,给出以下六个说法中,正确的说法有( )(1)如果再加上条件“AD ∥BC ”,那么四边形ABCD 一定是平行四边形; (2)如果再加上条件“AB =CD ”,那么四边形ABCD 一定是平行四边形; (3)如果再加上条件“∠DAB =∠DCB ”那么四边形ABCD 一定是平行四边形; (4)如果再加上“BC =AD ”,那么四边形ABCD 一定是平行四边形; (5)如果再加上条件“AO =CO ”,那么四边形ABCD 一定是平行四边形; (6)如果再加上条件“∠DBA =∠CAB ”,那么四边形ABCD 一定是平行四边形. A.3个B.4个C.5个D.6个8. 如图6所示,在□ABCD 中,E ,F 分别在BC ,AD 上,若想使四边形AFCE 为平行四边形,须添加一个条件,这个条件可以是( )①AF=CF ;②AE=CF ;③∠BAE=∠FCD ;④∠BEA=∠FCE 。

菱形正方形性质练习题

菱形正方形性质练习题

特殊平行四边形(菱形)的性质
(期末各城区考试题)菱形
1.如图,菱形ABCD的周长为20,对角线AC、BD交于点O,若AC长为8,求DB的长
2.菱形的两个相邻的内角的度数之比为1:2,若菱形边长为6cm,求较短的对角线长。

3.如图,在菱形ABCD中,点M、N分别在AB、CD上,AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,求∠OBC度数。

4.如图,在菱形ABCD中,AB=4,∠ABC=60°,E为AD中点,P为对角线BD上一动点,连结PA和PE,则PA+PE的值最小
(期末各城区考试题)正方形
1.若正方形的周长为40,求其对角线长
2.在正方形ABCD中,E、F分别为AB、BC上的点,且AE=BF,连结DE、AF,猜想DE、AF的关系并证明.
3.如图,正方形ABCD中,E是AD上一点,∠CED=60°,BD、CE交于点F,FC=2,
求正方形ABCD的边长.
4.生产一种电热水壶,原来每件成本是300元,由于改进技术,连续两次降低成本,现在成本是192元.每次降低成本时,成本的平均降低率为多少?
5.如图,在平行四边形ABCD中,点E,F在对角线BD上,并且BE=DF.
求证∠BAE=∠DCF.。

菱形性质习题精选(含答案)

菱形性质习题精选(含答案)

菱形性质习题精选(含答案)菱形性质习题精选一.填空题(共26小题)1.(2015?模拟)如图,在菱形ABCD中,点E是AB上的一点,连接DE交AC于点O,连接BO,且∠AED=50°,则∠CBO=度.2.(2015?模拟)如图,在四边形ABCD中,AB=6,∠ABC=90°,E在CD上,连接AE,BE,∠DAE=75°,若四边形ABED 是菱形,则EC的长度为.3.(2015?模拟)如图,菱形ABCD的对角线AC、BD交于点O,其中AC=8,BD=6,以OC、OB为边作矩形OBEC,矩形OBEC 的对角线OE、BC交于点F,再以CF、FE为边作第一个菱形CFEG,菱形CFEG的对角线FG、CE交于点H,如此继续,得到第n个菱形的周长等于.4.(2015?州市校级模拟)己知菱形相邻两角的度数比为1:5,且它的面积为8,则这个菱形的周长为.5.(2015?模拟)如图,在菱形ABCD中,∠A=45°,DE⊥AB,垂足为E,若CD=4cm,则菱形ABCD的面积是.6.(2015?模拟)如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为40,则OH的长等于.7.(2014?)菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB=cm.8.(2014?)菱形的周长为20cm,两个相邻的角的度数之比为1:2,则较长的对角线长度是cm.9.(2014?)如图,菱形ABCD中,AC、BD相交于点O,若∠BCO=55°,则∠ADO=.10.(2014?宿迁)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y 轴上,则点C的坐标是.11.(2014?眉山)如图,菱形ABCD中,E、F分别是BC、CD 的中点,过点E作EG⊥AD 于G,连接GF.若∠A=80°,则∠DGF的度数为.12.(2014春?期末)如图在菱形ABCD中,∠B=∠EAF=60°,∠BAE=20°,则∠CEF的大小为.13.(2014?模拟)如图,在菱形ABCD中,∠B=60°,AB=2,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为.14.(2014?江都市二模)已知菱形ABCD的对角线相交于点O,AC=6cm,BD=8cm,则菱形的高AE为cm.15.(2014?简阳市模拟)如图,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,记=k,我们把k叫做这个菱形的“形变度”.若变形后的菱形有一个角是60°,则形变度k=.16.(2014?淮区一模)如图,在菱形ABCD中,∠ABC=60°,BC=1cm,以DC为边在菱形的外部作正三角形CDE,连接AE,则AE=cm.17.(2014?惠安县二模)如图,菱形ABCD的边长是2cm,∠A=60°,点E、F分别是边AB、CD上的动点,则线段EF的最小值为cm.18.(2013秋?海陵区期末)如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF.若菱形ABCD的边长为4cm,∠A=120°,则EF=cm.19.(2014春?仙游县校级期末)如图,以菱形AOBC的顶点O 为原点,对角线OC所在直线为x轴建立平面直角坐标系,若OB=,点C的坐标为(4,0),则点A的坐标为.20.(2014春?期末)如图,在菱形ABCD中,AB=13cm,BC 边上的高AH=5cm,那么对角线AC的长为cm.21.(2014春?泰兴市校级期末)如图,菱形ABCD的周长为16cm,BC的垂直平分线EF 经过点A,则对角线BD长为cm.22.(2014春?建湖县期末)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在BD的延长线上,且△EAC是等边三角形,若AC=8,AB=5,则ED的长等于.23.(2014春?玄武区期末)如图,在菱形ABCD中,BE⊥AD,垂足为E,且E为AD为中点.则∠ADC=°.24.(2014春?定县期末)如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P 是对角线AC上的一个动点,当P移动到AC的中点时,则PE+PB的值是.25.(2014春?顺义区期末)如图,菱形ABCD中,∠BAD=120°,CF⊥AD于点E,且BC=CF,连接BF交对角线AC于点M,则∠FMC=度.26.(2014秋?武进区期中)如图,依次连结第一个矩形各边的中点得到第一个菱形,再依次连结所得菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为2,则第2013个菱形的面积为.二.解答题27.(2014?县模拟)如图,四边形ABCD是菱形,CE⊥AB交AB延长线于E,CF⊥AD交AD延长线于F,求证:CE=CF.28.(2014?江都市模拟)如图,在菱形ABCD中,点M是对角线AC上一点,且MC=MD.连接DM并延长,交边BC于点F.(1)求证:∠1=∠2;(2)若DF⊥BC,求证:点F是边BC的中点.29.(2014春?期末)如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.30.(2014春?高淳县校级期末)如图,已知菱形ABCD的边长为2,∠B=60°,点P、Q分别是边BC、CD上的动点(不与端点重合),且BP=CQ.(1)图中除了△ABC与△ADC外,还有哪些三角形全等,请写出来;(2)点P、Q在运动过程中,四边形APCQ的面积是否变化,如果变化,请说明理由;如果不变,请求出面积;(3)当点P在什么位置时,△PCQ的面积最大,并请说明理由.31.(2013秋?东海县月考)如图,在菱形ABCD中,点E是AD 边的中点,点M是AB边上的一个动点(不与点A重合),延长ME 交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形.(2)若∠DAB=60°,当点M位于何处时,四边形AMDN是矩形?并说明理由.(请在备用图中画出符合题意的图形)32.(2012秋?鼓楼区校级期末)如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B 出发向点C运动,点P、Q的速度都是1cm/s.(1)在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?(2)分别求出菱形AQCP的周长、面积.参考答案1.50 2.3 3. 4.16 5.8cm 2 6.5 7.5 8.5 9.35° 10.(5,4) 11.50° 12.20°13.3 14.4.8 15. 16.17. 18.2 19.(2,1)20. 21.4 22.4-3 23.120 24.2 25.105 26.27、证明:四边形ABCD 是菱形CE ⊥AE,CF ⊥AF∠DAB=∠CBB,∠DAB=∠FDC,∴∠CBE=∠FDC又 BC=DC,∴Rt △BEC ≌Rt △DFC,∴CE=CF.28、证明:(1)∵四边形ABCD 是菱形,∴AB ∥CD ,∴∠1=∠ACD ,∵MC=MD ,∴∠ACD=∠2,∴∠1=∠2;(2)连接BD ,∵四边形ABCD 是菱形,∴∠ACB=∠ACD ,BC=CD ,∵∠ACD=∠2,∴∠ACB=∠ACD=∠2,∵DF ⊥BC ,∴3∠2=90°,∴∠2=30°,∴∠BCD=∠ACB+∠ACD=60°,∴△BCD 是等边三角形,∴BF=CF ,即点F 是边BC 的中点.29、(1)在△DFC 中,∠DFC =90°,∠C =30°,DC =2t ,∴DF =t .又∵AE=t ,∴AE=DF(2)能.理由如下:∵AB ⊥BC ,DF ⊥BC ,∴AE ∥DF .又AE =DF ,∴四边形AEFD 为平行四边形.∵AB =21AC BC=35 222AC BC AB =+∴()2223521AC AC =+??? ?? ∴AC=1010 2.AD AC DC t ∴=-=-若使AEFD 为菱形,则需10.102,.3AE AD t t t ==-=即即当103t =时,四边形AEFD 为菱形30、(1)△ABP ≌△ACQ ,△APC ≌△AQD ;(2)∵△ACP ≌△ADQ ,∴S △ACP =S △ADQ ,即S 四边形APCQ =S △ACD =3221??;(3为菱形的高) (3)∵△PAQ 是等边三角形,点P 是BC 的中点时,AP 垂直于BC ,AP 最小,∴当AP ⊥BC 时,三角形APQ 的面积最小,故在四边形APCQ 的面积一定,△APQ 面积最小时,△PCQ 的面积最大. 此时BP=1,31、证明:∵四边形ABCD 是菱形∴∠DNM=∠AMN又∵DE=AE ,∠NDE=∠MAE∴△NDE=△MAE∴ND=AM∴ND ∥AM∴四边形ANDM 是平行四边形(2)当点M 是AB 的中点时,四边形AMDN 是矩形证明:如图所示∵四边形AMDN 是矩形,∠DAB=60o∴∠ADM=30o∴AM=AD 21 ∵AD=AB ∴AM=AB 21 即M 是AB 的中点32、解:(1)经过x 秒后,四边形AQCP 是菱形∴DP=X cm AP=CP=AD-DP=(8-X)cm∵DP 2+CD 2=PC 2∴16+X 2=(8-X) 2 解得x=3即经过3秒后四边形是菱形(2)由(1)得菱形的边长为5∴菱形AQCP的周长=5×4=20(㎝)菱形AQCP的面积=5×4=20(㎝2)。

中考数学复习《矩形、菱形与正方形》专项练习题含答案

中考数学复习《矩形、菱形与正方形》专项练习题含答案

初三中考数学复习矩形、菱形与正方形专项练习题1.正方形具有而菱形不一定具有的性质是()A.四条边都相等B.对角线互相垂直平分C.对角线相等D.对角线平分一组对角2.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF 的周长为()A.14B.15C.16D.173. 若矩形ABCD的邻边长分别是1,2,则BD的长是()A. 3 B. 5 C. 3 D.2 54. 在下列性质中,矩形具有而平行四边形不一定具有的是( )A.对边相等 B.对角相等 C.对角线相等 D.对边平行5. 如果矩形的一个内角的平分线把矩形的一边分成了3cm和5cm的两部分,则矩形的较短边长为()A.3cm B.5cm C.3cm或5cm D.以上都不对6. 如图所示,菱形ABCD中,E,F,G,H分别是菱形四边形的中点,连结EG与FH交于点O,则图中的菱形共有()A.4个B.5个C.6个D.7个7.如图所示,已知菱形ABCD中,AE⊥BC于点E,若S菱形ABCD=24,且AE=4,则CD等于()A.12 B.8 C.6 D.28. 如图,▱ABCD的周长为16cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为()A.2cm B.4cm C.6cm D.8cm9.已知菱形的周长为16 cm,一条对角线长为4 cm,则菱形的四个角分别为()A.30°,150°,30°,150°B.60°,120°,60°,120°C.45°,135°,45°,135°D.以上都不对10. 如图,F为正方形ABCD的边AD上一点,CE⊥CF交AB的延长线于点E,若正方形ABCD的面积为64,△CEF的面积为50,则△CBE的面积为()A.20 B.24 C.25 D.2611.如图,菱形ABCD中,对角线AC,BD相交于点O,不添加任何辅助线,请添加一个条件________,使四边形ABCD是正方形(填一个即可).12.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD 于点F,连结EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正确结论的序号是________.13.矩形的对角线相交成的角中,有一个角是60°,这个角所对的边长为20cm,则其对角线长为________,矩形的面积为________.14.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=4cm,BD=8cm,则这个菱形的面积是________cm2.15.如图,矩形ABCD中,点E,F分别是AB,CD的中点,连结DE和BF,分别取DE,BF的中点M,N,连结AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为________.16.如图,▱ABCD的对角线相交于点O,请你添加一个条件________,使▱ABCD 是矩形.17.如图所示,在菱形ABCD中,∠C=108°,AD的垂直平分线交对角线BD 于点P,垂足为E,连结AP,则∠APB=________度.18.如图所示,菱形ABCD中,∠B=60°,AB=2,E,F分别是BC,CD的中点,连结AE,EF,AF,则△AEF的周长为________.19. 如图所示,将两条宽度相同的纸条交叉重叠放在一起,则重叠部分ABCD 是________形,若纸条宽DE=4cm,CE=3cm,则四边形ABCD的面积为________.20. 如图,在正方形ABCD中,E是对角线BD上任意一点,过点E作EF⊥BC 于点F,作EG⊥CD于点G,若正方形ABCD的周长为a,则四边形EFCG的周长为________.21. 如图,在Rt△ABC中,∠C=90°,∠A,∠B的平分线相交于点D,过点D作DE⊥BC于点E,DF⊥AC于点F.求证:四边形CEDF是正方形.22. 如图所示,在菱形ABCD中,对角线AC,BD的长分别为a,b,AC,BD 相交于点O.(1) 用含a,b的代数式表示菱形ABCD的面积S;(2) 若a=3cm,b=4cm,求菱形ABCD的面积和周长.23. 如图所示,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD 交AD的延长线于点F.请你猜想CE与CF的大小有什么关系,并说明理由.24. 如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是点E,F,并且DE=DF,求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.25. 如图,在正方形ABCD中,E为AD上一点,BF平分∠CBE交CD于点F.求证:BE=CF+AE.参考答案:1---10 CCBCC BCDBB 11. ∠BAD=90°12.①②④⑤13.40 cm4003cm214. 1615. 2616. AO=BO17. 7218. 3319. 菱20 cm220. a 221. 证明:过点D作DG⊥AB于点G,∵∠C=90°,DE⊥BC,DF⊥AC,∴四边形DECF是矩形,∵BD平分∠ABC,DG⊥AB,DE⊥BC,∴DE=DG.同理:DG=DF,∴DE=DF,∴四边形CEDF是正方形22. 解:(1) S=ab(2) 菱形ABCD的面积为6 cm2,周长为10 cm23. 解:CE=CF.理由如下:∵S菱形ABCD=CE·AB=CF·AD,且AD=AB,∴CE=CF.24. 证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,又∵DE=DF,DE⊥AB,DF⊥BC,∴∠DEA=∠DFC=90°,∴△ADE≌△CDF(AAS)(2)由(1)知AD=DC,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形25. 证明:延长DC至点E′,使CE′=AE,连结BE′,易证△ABE≌△CBE′,∴BE =BE′,AE=CE′,∠CBE′=∠ABE.再证∠BFC=∠E′BF=∠ABE+∠EBF,∴BE′=E′F,∴BE=E′F=CF+CE′=CF+AE。

平行四边形、矩形、菱形-正方形练习题

平行四边形、矩形、菱形-正方形练习题

平行四边形、矩形、菱形、正方形1.已知:如图,在▱ABCD中,点E、F是对角线AC上的两点,且AE=CF.求证:BF∥DE.2.如图,平行四边形ABCD的对角线AC、BD交于点O,EF过点O且与BC、AD分别交于点E、F.试猜想线段AE、CF的关系,并说明理由.~3.如图,四边形ABCD是平行四边形,E、F分别是BC、AD上的点,∠1=∠2.求证:AF=CE.~4.已知:如图,在平行四边形ABCD中,点M在边AD上,且AM=DM.CM、BA的延长线相交于点E.求证:(1)AE=AB;(2)如果BM平分∠ABC,求证:BM⊥CE.5.如图,在▱ABCD中,点E、F在BD上,且BE=AB,DF=CD.求证:四边形AECF是平行四边形.-6.在▱ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.(1)求证:四边形DEBF是平行四边形;(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.)7.如图,在四边形ABCD中,AD∥BC,AC与BD交于点E,点E是BD的中点,延长CD到点F,使DF=CD,连接AF,(1)求证:AE=CE;(2)求证:四边形ABDF是平行四边形;(3)若AB=2,AF=4,∠F=30°,则四边形ABCF 的面积为.!8.如图,在▱ABCD中,E,F分别是AC上两点,BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF为平行四边形.9.已知:如图,点E、F在线段BD上,AB=CD,∠B=∠D,BF=DE.|求证:(1)AE=CF;(2)AF∥CE.10.如图所示,▱ABCD中,E,F分别是AB、CD上的点,AE=CF,M、N分别是DE、BF的中点.(1)求证:四边形ENFM是平行四边形.、(2)若∠ABC=2∠A,求∠A的度数.11.在▱ABCD中,点E,F分别在AD,BC上,AE=CF,连接EF,BD.(1)求证:四边形EBFD是平行四边形;:(2)若∠C+∠ABE=90°,求证:BD=EF.12.如图,在▱ABCD中,AE⊥BD,CF⊥BD,E,F分别为垂足.(1)求证:△ABE≌△CDF.(2)求证:四边形AECF是平行四边形.<13.如图,在△NMB中,BM=6,点A,C,D分别在边MB、BN、MN上,DA∥NB,DC∥MB,∠NDC=∠MDA.求四边形ABCD的周长.;14.在矩形ABCD中,AB=3,BC=4,E,F是对角线AC上的两个动点,分别从A,C同时出发相向而行,速度均为1cm/s,运动时间为t秒,0≤t≤5.(1)AE =,EF=|(2)若G,H分别是AB,DC中点,求证:四边形EGFH是平行四边形.(3)在(2)条件下,当t为何值时,四边形EGFH为矩形.15.如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF."(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=3,求DC的长度.)16.如图,▱ABCD中,O是AB的中点,CO=DO.(1)求证:▱ABCD是矩形.(2)若AD=3,∠COD=60°,求▱ABCD的面积.|17.如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD (1)求证:四边形AEBD是矩形;(2)连接CE交AB于点F,若BE=2,AE=2,求EF的长.,18.如图,在平行四边形ABCD中,对角线AC、BD交于点O,AC⊥BC,AC=2,BC=3.点E是BC 延长线上一点,且CE=3,连结DE.(1)求证:四边形ACED为矩形.(2)连结OE,求OE的长.|19.如图,▱ABCD中,点E在BC延长线上,EC=BC,连接DE,AC,AC⊥AD于点A.(1)求证:四边形ACED是矩形;(2)连接BD,交AC于点F.若AC=2AD,猜想∠E与∠BDE的数量关系,并证明你的猜想.|20.如图,在△ABC中,BD平分∠ABC交AC于D,作DE∥BC交AB于点E,作DF∥AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∠BDE=15°,∠C=45°,CD=,求DE的长.|21.如图,在△ABC中,BD平分∠ABC交AC于D,EF垂直平分BD,分别交AB,BC,BD于E,F,G,连接DE,DF.(1)求证:四边形BEDF是菱形;(2)若∠BDE=15°,∠C=45°,DE=2,求CF的长./22.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE 的延长线于点F.](1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积."23.如图,在四边形ABCD中,对角线AC、BD交于点O,AB∥DC,AB=BC,BD平分∠ABC,过点C 作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=2,BD=4,求OE的长.24.如图,AC是▱ABCD的对角线,∠BAC=∠DAC.(1)求证:四边形ABCD是菱形;}(2)若AB=2,AC=2,求四边形ABCD的面积.25.同学张丰用一张长18cm、宽12cm矩形纸片折出一个菱形,他沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四边形AECF(如图).@(1)证明:四边形AECF是菱形;(2)求菱形AECF的面积.!26.如图,EF是平行四边形ABCD的对角线BD的垂直平分线,EF与边AD、BC分别交于点E、F.(1)求证:四边形BFDE是菱形;(2)若ED=5,BD=8,求菱形BFDE的面积.|27.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=12,求AD的长.—28.如图,在▱ABCD中,BC=2AB,点E、F分别是BC、AD的中点,AE、BF交于点O,连接EF,OC.(1)求证:四边形ABEF是菱形;(2)若AB=4,∠ABC=60°,求OC的长.<29.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.#(1)求证:四边形ABCD是正方形.(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.30.已知:如图,在矩形ABCD中,E是BC边一点,DE平分∠ADC,EF∥DC交AD边于点F,连结BD.(1)求证:四边形EFCD是正方形;(2)若BE=1,ED=2,求BD的长.{31.如图,正方形ABCD的对角线AC与BD交于点O,分别过点C、点D作CE∥BD,DE∥AC.求证:四边形OCED是正方形.【32.如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为E,F,若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时,四边形BFEG是正方形《33.如图,正方形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是正方形.\34.E、F、M、N分别是正方形ABCD四条边上的点,AE=BF=CM=DN,四边形EFMN是什么图形证明你的结论.35.如图,点E、F分别是矩形ABCD的边AB、CD上的一点,且DF=BE.求证:四边形AECF是平行四边形.;36.如图,矩形ABCD中,对角线AC、BD交于点O,以AD、OD为邻边作平行四边形ADOE,连接BE.求证:四边形AOBE为菱形.>37.如图,在矩形ABCD中,点O为对角线AC的中点,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)连接OB,若AB=8,AF=10,求OB的长.38.如图,已知在菱形ABCD中,∠ABC=60°,对角线AC=8,求菱形ABCD的周长和面积./39.如图,在菱形ABCD中,过点B作BE⊥AD于E,过点B作BF⊥CD于F,求证:AE=CF.>40.如图,菱形ABCD的对角线AC和BD交于点O,AB=10,∠ABC=60°,求AC和BD的长.41.如图,已知菱形ABCD两条对角线BD与AC的长之比为3:4,周长为40cm,求菱形的高及面积.,42.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,~(1)求证:∠DHO=∠DCO.(2)若OC=4,BD=6,求菱形ABCD的周长和面积.】43.如图,菱形ABCD中,对角线AC、BD相交于点O,点E是AB的中点,已知AC=8cm,BD=6cm,(1)求菱形ABCD的面积.(2)求OE的长度.44.在菱形ABCD中,E是AB边的中点,连接DE,DE⊥AB,对角线AC、BD交于点H.(1)求∠ABC的度数;(2)如果菱形的对角线AC=2,求菱形的面积.<¥45.如图,在正方形ABCD中,点E,F在对角线BD上,AE∥CF,连接AF,CE.(1)求证:△ABE≌△CDF;(2)试判断四边形AECF的形状,并说明理由.46.如图,小方将一个正方形纸片剪去一个宽为4cm的长方形(记作A)后,再将剩下的长方形纸片剪去一个宽为5cm的长方形(记作B).(1)若A与B的面积均为Scm2,求S的值.(2)若A的周长是B的周长的倍,求这个正方形的边长.47.已知:如图,E,F是正方形ABCD的对角线BD上的两点,且BE=DF.求证:四边形AECF是菱形48.如图,正方形ABCD中,点P,Q分别为AD,CD边上的点,且DQ=CP,连接BQ,AP.求证:BQ =AP.49.如图,已知正方形CDEF的面积为169cm2,且AC⊥AF,AB=3cm,BC=4cm,AF=12cm,试判断△ABC的形状,并说明你的理由.50.如图,正方形ABCD中,AB=AD,G为BC边上一点,BE⊥AG,于E,DF⊥AG于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,EF=4,求四边形ABED的面积.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O
D
B
A
特殊平行四边形(菱形)的性质
(期末各城区考试题)菱形
1.如图,菱形ABCD 的周长为20,对角线AC 、BD 交于点O ,若AC 长为8,求DB 的长
2.菱形的两个相邻的内角的度数之比为1:2,若菱形边长为6cm ,求较短的对角线长。

3.如图,在菱形ABCD 中,点M 、N 分别在AB 、CD 上, AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =28°,求∠OBC 度数。

4.如图,在菱形ABCD 中,AB =4,∠ABC =60°,E 为AD 中点, P 为对角线BD 上一动点, 连结P A 和PE ,则P A +PE 的值最小
F
E D
C
B A (期末各城区考试题)正方形
1.若正方形的周长为40,求其对角线长
2.在正方形ABCD 中,E 、F 分别为AB 、BC 上的点,且AE =BF ,连结DE 、AF ,猜想DE 、AF 的关系并证明.
3.如图,正方形ABCD 中,E 是AD 上一点,∠CED =60°,BD 、CE 交于点F ,FC =2, 求正方形ABCD 的边长.
4.生产一种电热水壶,原来每件成本是300元,由于改进技术,连续两次降低成本,现在成本是192元. 每次降低成本时,成本的平均降低率为多少?
5.如图,在平行四边形ABCD 中,点E,F 在对角线BD 上,并且BE =DF . 求证∠BAE =∠DCF .
F
E
D C
B
A。

相关文档
最新文档