江苏省苏州相城区2014―2015年八年级(下)期中考试数学(精)

合集下载

2014-2015学年度第二学期期中测试八年级数学试题附答案

2014-2015学年度第二学期期中测试八年级数学试题附答案

2014-2015学年度第二学期期中测试八年级数学试题一、选择题1.下面的图形中,是中心对称图形的是( )A. B . C .D .2.要调查姜堰城区八年级5000名学生了解“溱潼会船节”的情况,下列调查方式最合适的是( )A .在某校八年级选取100名女生;B .在某校八年级选取100名男生;C .在某校八年级选取100名学生;D .在城区5000名八年级学生中随机选取100名学生. 3.下列事件是随机事件的是( )A .在一个标准大气压下,加热到100℃,水沸腾;B .购买一张福利彩票,中奖;C .2-的绝对值小于0 ;D .在一个仅装着白球和黑球的袋中摸球,摸出红球.4.小明乘车从姜堰到泰州,行车的平均速度y (km/h)和行车时间x (h)之间的函数图像是(5.平行四边形ABCD 中,AC ,BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A .AB=BCB .AC=BDC .AC ⊥BD D .AB ⊥BD 6.如图,已知双曲线 xky =)0(<k 经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若△AOC 的面积为9,则k 的( )A .4-B .6-C .9-D .12-二、填空题7.当=x ________时,分式13-+x x 没有意义. 8.从1-,0,π,3四个数中随机任取一数,取到无理数的概率是 . 9.反比例函数xk y 1+=的图象在每一象限内y 随x 的增大而增大,则k 的取值范围是 . 10.若关于x 的分式方程233x m x x -=--有增根,则m = . 11.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,若设货车的速度为x 千米每小时,依题意可列的方程是 . 12.如图,在菱形ABCD 中,AC 、BD 相交于点O ,E 为AB 的中点,若OE =3,则菱形ABCD 的周长是_____________.13.某校根据去年初三学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示A 等级的扇形的圆心角的大小为_____________.14.如图,四边形ABCD 中,E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点.请你添加一个条件,使四边形EFGH 为矩形,应添加的条件是 . 15.如图,矩形ABCD 中,E 为BC 中点,AEC ∠的角平分线交AD 于F 点。

八年级数学第二学期期中试卷苏科版

八年级数学第二学期期中试卷苏科版

八年级数学第二学期期中试卷苏科版相城区第二学期期中考试试卷八年级数学本试卷由填空题、选择题和解答题三大题组成,共28题,满分130分。

考试用时120分钟。

注意事项:1、答题前,考生务必将学校、姓名、考场号、座位号、考试号填写在答题卷相应的位置上.2、答题必须用0. 5mm黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.3、考生答题必须在答题卷上,答在试卷和草稿纸上一律无效.一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑。

) 一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑。

) 1.在代数式①12x?yx;②;③;④中,属于分式的有?ax?15?B.①③ C.①③④ D.①②③④A.①② 2.分式a可变形为 ?a?baa A. B.?a?ba?b A.y=5xB. y=-C.?a a?bD.-a a?b1 x3.下列四个函数中,在同一象限内,当x增大时,y的值减小的函数是3 xC.y=3x+2 D.y=4.某反比例函数的图象经过点(-1,3),则此函数的图象也经过点A. (-1,-3) B.(-3,1) C.(1,3) D.(-3,-1) 5.在下列四组三角形中,一定相似的是A.两个等腰三角形 B.两个等腰直角三角形 C.两个直角三角形D.两个锐角三角形6.△ABC的三边之比为3:4:6,且△ABC∽△A'B'C',若△A'B'C'中最短边长为6,则它的最长边长为A.21 B.18 C.12 D.97.美是一种感觉,当人体下半身长与身高的比值越接近0.618时。

越给人一种美感,如图,某女士身高165 cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为 A.4 cm B.6 cm C.8 cmD.10cm8.如图,关于x的函数)y=-k(x-1)和y=是k(k≠0),它们在同一坐标系内的图象大致x112?b??a?9.已知a、b均为正数,且???.则??????aba?b?a??b?A.2 B. 4 C. 6 D. 1610.在△ABC中AB=AC,AD为高,点E在AC上,BE交AD于F, EC:AE=1:2,则FD:AF= A.1:2 B.1:3 C.1:4 D.1:5 二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上) 11.分式22x?4中,当x=▲ 时,分式的值为零. 2?x12.四边形ABCD∽四边形A'B'CD',∠A=70°,∠B'=108°,∠C'=92°,则∠D=▲ °.感谢您的阅读,祝您生活愉快。

苏科版八年级数学下册2014—2015学年第二学期期中测试

苏科版八年级数学下册2014—2015学年第二学期期中测试

苏科版八年级数学下册2014—2015学年第二学期期中测试(初二数学试卷含答案)注意事项:1.本试卷共28题,满分l00分,考试用时100分钟;2.答题前,考生务必将自己的姓名、年级、学号填写在答题卷的相应位置上;3.考生答题必须答在答题卷上,答在试卷和草稿纸上无效. 一、选择题(本大题共10小题,每小题3分,共30分) 1. 反比例函数xy 2-=的图象位于( ▲ ) A .第一、三象限 B .第二、四象限 C .第一、二象限 D .第三、四象限 2. 若分式21+-x x 的值为零,则x 的值是( ▲ ) A .0 B .1 C .-1 D .-23. 如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于 E 、F ,那么阴影部分的面积是矩形ABCD 面积的( ▲ )A .15 B .14 C .13 D .310(第3题) (第4题) (第8题)4. 如图,D 、E 分别是△ABC 的边AC 和BC 的中点,已知DE=2,则AB 为( ▲ )A .1B .2C .3D .4 5. 下列等式一定成立的是( ▲ )A =B =C 3±D .()992-=-6. 在菱形ABCD 中,两条对角线AC =6,BD =8,则此菱形的边长为( ▲ ) A .5 B .6 C .8 D .107. 若点(-3,1y )、(-2,2y )、(1,3y )在反比例函数2y x=的图像上,则下列结论正确的是( ▲ ) A .123y y y >> B .213y y y >> C .312y y y >> D .321y y y >>8. 如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠ACB =30°,AB =2,则BD 的长为( ▲ )A .4B .3C .2D .19. 某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务.设乙车间每天生产x 个,可列方程为( ▲ )A .40050010x x =-B .40050010x x =+ C .40050010x x =+ D .40050010x x =-10. 如图,在□ABCD 中,对角线AC 与BD 相交于点O ,过点O 作EF ⊥AC 交BC 于点E ,交AD 于点F ,连接AE 、CF .则四边形AECF 是( ▲ ) A .梯形 B .矩形 C .菱形 D .正方形二、填空题(本大题共10小题,每小题2分,共20分)11. x 的取值范围是 ▲ .12. 13.(第12题) (第13题) (第17题)14. 的结果是 ▲ .15. 若关于x 的分式方程2133m x x =+--有增根,则m = ▲ . 16. 若5=+b a ,3=ab ,则abb a +的值是 ▲ .17. 如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连接DF ,18. 19. 如图,正方形ABCD 的边长为8,且DM=2,N 是AC 上的一动点,则DN+MN 的最小值为 ▲ .(第18题) (第19题) ( 第20题)20. 如图,直线22y x =-+与x 轴、y 轴分别相交于点A 、B ,四边形ABCD 是正方形,曲线ky x=在第一象限经过点D .则k = ▲ .三、解答题(本大题共7小题,共50分,解答时应写出必要的过程)21. (本题10分)计算:(1)12118121-⎪⎭⎫⎝⎛+--; (2 22. (本题6分)解分式方程:231242-=+-x x x x . 23. (本题6分)已知x 是满足11x -≤≤的整数,请你先化简代数式2111211x x x x x x +⎛⎫+÷ ⎪--+-⎝⎭,再从中选取所有你认为符合题意....的x 的值代入,求出该分式的值. 24. (本题6分)如图.在△ABC 中,D 是AB 的中点.E 是CD的中点,过点C 作CF ∥AB 交AE 的延长线于点F ,连接BF .(1)求证:DB=CF ;(2)如果AC=BC .试判断四边形BDCF 的形状.并证明你的结论.25. (本题6分)如图,直线y kx b =+与反比例函数my x=(0x <)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为-4.(1)试确定反比例函数的关系式;(2)求△AOB 的面积.26. (本题8分)已知四边形ABCD 是正方形,M 、N 分别是边BC 、CD 上的动点,正方形ABCD的边长为4cm .(1)如图①,O 是正方形ABCD 对角线的交点,若OM ⊥ON ,求四边形MONC 的面积;(2)连接线段MN,探究当MN 取到最小值时,判断MN 与对角线BD 的数量关系和位置关系,并说明你的理由.27. (本题8分)如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 的中点,点E (4,n )在边AB 上,反比例函数ky x =(k ≠0)在第一象限内的图象经过点D 、E ,且12AB OA =.(1)求边AB 的长;(2)求反比例函数的解析式和n 的值;(3)若反比例函数的图象与矩形的边BC 交于点F ,将矩形折叠,使点O 与点F 重合,折痕分别与x 、y 轴正半轴交于点H 、G ,求线段OG 的长.( 第26题)( 第27题)附加题(共20分)28. (本题429. (本题4分)如图,边长为6的正方形ABCD 内部有一点P ,BP=4,∠PBC=60°,点Q 为正方形边上一动点,且△PBQ 是等腰三角形,则符合条件的Q 点有 ▲ 个.30. (本题44=的解是负数,则n 的取值31. (本题8分)如图1,在平面直角坐标系中,等腰Rt △AOB 的斜边OB 在x 轴上,直线34y x =-经过等腰Rt △AOB 的直角顶点A ,交y 轴于C 点,双曲线ky x=也经过A 点.(1)求点A 坐标;(2)求k 的值;(3)若点P 为x 正半轴上一动点,在点A 的右侧的双曲线上是否存在一点M ,使得△PAM 是以点A 为直角顶点的等腰直角三角形.若存在,求出点M 的坐标,若不存在,请说明理由;(4)若点P 为x 负半轴上一动点,在点A 的左侧的双曲线上是否存在一点N ,使得△PAN 是以点A 为直角顶点的等腰直角三角形.若存在,求出点N 的坐标,若不存在,请说明理由.初二数学期中考试答案一、选择题二、填空题11、 x≤2 12、 6 13、 45 1415、 2 16、19317、 60 18、 x>2或-1<x<0 19、 10 20、 3 三、解答题21、(1)= 1)2- …3分= 3 …5分22、解:4+(x-2)=3x …2分 x=1 …5分)经检验:x=1是原方程的解。

2014-2015学年度第二学期八年级数学期中考试卷附答案

2014-2015学年度第二学期八年级数学期中考试卷附答案

2014-2015学年度第二学期八年级数学期中考试卷(考试时间:100分钟 满分:120分)一、选择题:(每小题3分,共42分)下列各题都有A 、B 、C 、D 四个答案供选择,其中只有一个答案是正确的,请把认为正确的答案前面的字母编号写在相应的题号下。

1.下列式子是分式的是( )A.2x B.11+x C.y x +2 D.πxy2 2. 使分式2-x x有意义的x 的取值范围是( )A. 2x =B.2x ≠C.2x =-D.2x ≠-3. 某种感冒病毒的直径是0.00000012米,用科学记数法表示为( )米.A .71.210-⨯ B .71012.0-⨯ C .6102.1-⨯ D .61012.0-⨯ 4.点)0,2(在( )A.x 轴上B.y 轴上C.第一象限D.第四象限 5.点P (5,4-)关于x 轴对称点是( )A .(5,4) B.(5,4-) C.(4,5-) D.(5-,4-) 6.若点P(3,-1m )在第二象限,则m 的取值范围是( )A. m <1B. m <0C. m >0D. m >1 7.函数23-=x y 的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限8.在同一坐标系中,函数x ky =和3+=kx y )0(≠k 的图像大致是( )9. 在平行四边形ABCD 中,A B C D ∠∠∠∠∶∶∶的值可以是( ) A.1234∶∶∶ B.1221∶∶∶ C.2211∶∶∶ D.2121∶∶∶ 10.下列说法错误的是( )学校: 班别: 姓名: 座号:………………………………………………………………装………………订………………线………………………………………………得分E A .平行四边形的对角相等 B.平行四边形的对角互补 C .平行四边形的对边相等 D.平行四边形的内角和是360°11.如图1,在平行四边形ABCD 中,CA ⊥AB ,若AB=3,BC=5,则平行四边形的面积等于( )A .6 B. 10 C. 12 D. 1512. 如图2,a b ∥,下列线段中是a b ,之间的距离的是( )A.AB B.AE C.EF D.BC图2 13.已知2111=-b a ,则b a ab -的值是( ) A .21 B.21- C.2 D.2-14.当一次函数32-=x y 的图像在第四象限时,自变量x 的取值范围是( ) A.0<x <23 B.x >0 C.x <23D.无法确定二、填空题:(每小题4分,共16分)15. 若分式方程212-=--x x m x 有增根,则这个增根是=x 16.若反比例函数xky = 的图象经过点(1,-2),则此函数的解析式为 。

2014-2015学年八年级下学期期中数学试卷附答案

2014-2015学年八年级下学期期中数学试卷附答案

2014-2015学年八年级下学期期中数学试卷一、选择题(本大题共10题,每小题3分,共计30分)1.下列各式、、、+1、中分式有( )A.2个B.3个C.4个D.5个2.顺次连结矩形四边的中点所得的四边形是( )A.矩形B.正方形C.菱形D.以上都不对3.函数中,自变量x的取值范围是( )A.B.C.D.4.如图,四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是( )A.AB=DC,AD=BC B.AB∥DC,AO=BO C.AB=DC,∠B=∠D D.AB∥DC,∠B=∠D5.如果把分式中的m和n都扩大3倍,那么分式的值( )A.不变B.扩大3倍C.缩小3倍D.扩大9倍6.如图,平行四边形ABCD的对角线交于点O,且AB=7,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )A.32 B.28 C.16 D.467.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,则m的值为( ) A.1 B.1或﹣1 C.﹣1 D.0.58.为了早日实现“绿色太仓,花园之城”的目标,太仓对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是( )A.B.C.D.9.若要使分式的值为整数,则整数x可取的个数为( )A.5个B.2个C.3个D.4个10.在平面直角坐标系中,直角梯形AOBC的位置如图所示,∠OAC=90°,AC∥OB,OA=4,AC=5,OB=6.M、N分别在线段AC、线段BC上运动,当△MON的面积达到最大时,存在一种使得△MON周长最小的情况,则此时点M的坐标为( )A.(0,4)B.(3,4)C.(,4)D.(,3)二、填空题(本大题共8小题,每小题3分,共计24分)11.当x=__________时,分式的值为0.12.,﹣的最简公分母是__________.13.如果菱形的两条对角线长为a和b,且a、b满足,那么菱形的面积等于__________.14.如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,则CD的长为__________.15.如果分式方程无解,则m=__________.16.已知﹣=3,则代数式的值为__________.17.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为__________.18.关于x的方程:x+=c+的解是x1=c,x2=,x﹣=c﹣解是x1=c,x2=﹣,则x+=c+的解是__________.三、解答题(本大题共8小题,共计66分)19.计算或化简:(1)计算:a﹣1﹣;(2)先化简(﹣)÷,再从(1)中m的取值范围内,选取一个你认为合适的m的整数值代入求值.20.解方程(1)(x﹣5)2=2(5﹣x);(2)2x2﹣4x﹣6=0(用配方法).21.如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.22.如图,线段AC是矩形ABCD的对角线,(1)请你作出线段AC的垂直平分线,交AC于点O,交AB于点E,交DC于点F(保留作图痕迹,不写作法)(2)求证:AE=AF.23.某中学利用假期进行学校改造,先要加固1560平方米校舍,按计划进行6天后,由于熟练,每天能多做原来的25%,结果比计划提前了4天完成.你能知道他们原来每天能加固多少平方米校舍么?实际上加固校舍花了多少天时间?24.阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则称这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形__________A.平行四边形B.矩形C.菱形D.等腰梯形(2)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形ABCD 的和谐线,且AB=BC,请直接写出∠ABC的度数.25.如图1,矩形ABCD中,点P从A出发,以3cm/s的速度沿边A→B→C→D→A匀速运动;同时点Q从B出发,沿边B→C→D匀速运动,当其中一个点到达终点时两点同时停止运动,设点P运动的时间为t s.△APQ的面积s(cm2)与t(s)之间函数关系的部分图象由图2中的曲线段OE与线段EF给出.(1)点Q运动的速度为__________cm/s,a﹦__________cm2;(2)若BC﹦3cm,①求t>3时S的函数关系式;②在图(2)中画出①中相应的函数图象.26.如图①,在▱ABCD中,AB=13,BC=50,点P从点B出发,沿B﹣A﹣D﹣A运动.已知沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.若P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,是否存在线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分的情况?若存在,求出所有t的值;若不存在,请说明理由.(3)设点C、D关于直线PQ的对称点分别为C′、D′,在点P沿B﹣A﹣D运动过程中,当C′D′∥BC时,求t的值(直接写出结果)一、选择题(本大题共10题,每小题3分,共计30分)1.下列各式、、、+1、中分式有( )A.2个B.3个C.4个D.5个考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:、、的分母中均不含有字母,因此它们是整式,而不是分式.、+1分母中含有字母,因此是分式.故选:A.点评:本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.顺次连结矩形四边的中点所得的四边形是( )A.矩形B.正方形C.菱形D.以上都不对考点:中点四边形.分析:因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.解答:解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=G F=FE,∴四边形EFGH为菱形.故选:C.点评:本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.3.函数中,自变量x的取值范围是( )A.B.C.D.考点:函数自变量的取值范围.分析:根据当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.解答:解:由,得3﹣2x>0,解得x<,故选:B.点评:本题考查了函数自变量的范围,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.4.如图,四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是( )A.AB=DC,AD=BC B.AB∥DC,AO=BO C.AB=DC,∠B=∠DD.AB∥DC,∠B=∠D考点:平行四边形的判定.分析:根据平行四边形的判定定理进行判断即可.解答:解:A、根据两组对边分别相等的四边形是平行四边形可以判定四边形ABCD为平行四边形,故此选项不合题意;B、根据对角线互相平分的四边形是平行四边形可以判定四边形ABCD为平行四边形,故此选项不合题意;C、不能判定四边形为平行四边形,故此选项符合题意;D、∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠B=∠D,∴AD∥BC,∴根据两组对边分别平行四边形是平行四边形可以判定四边形ABCD为平行四边形,故此选项不合题意;故选:C.点评:此题主要考查了平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.5.如果把分式中的m和n都扩大3倍,那么分式的值( )A.不变B.扩大3倍C.缩小3倍D.扩大9倍考点:分式的基本性质.分析:根据分式的分子分母都乘以或除以同一个不为0的整式,结果不变,可得答案.解答:如果把分式中的m和n都扩大3倍,那么分式的值不变,故选:A.点评:本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,结果不变.6.如图,平行四边形ABCD的对角线交于点O,且AB=7,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )A.32 B.28 C.16 D.46考点:平行四边形的性质.分析:由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线可作一个整体.解答:解:∵四边形ABCD是平行四边形,∴AB=CD=7,∵△OCD的周长为23,∴OD+OC=23﹣7=16,∵BD=2DO,AC=2OC,∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=32,故选A.点评:本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.7.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,则m的值为( ) A.1 B.1或﹣1 C.﹣1 D.0.5考点:一元二次方程的解;一元二次方程的定义.分析:根据一元二次方程的定义得到m﹣1≠0;根据方程的解的定义得到m2﹣1=0,由此可以求得m的值.解答:解:∵关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根是0,∴m2﹣1=0且m﹣1≠0,解得m=﹣1.故选:C.点评:本题考查了一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.8.为了早日实现“绿色太仓,花园之城”的目标,太仓对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是( )A.B.C. D.考点:由实际问题抽象出分式方程.分析:关键描述语是:“提前2天完成绿化改造任务”.等量关系为:原计划的工作时间﹣实际的工作时间=2.解答:解:若设原计划每天绿化(x)m,实际每天绿化(x+10)m,原计划的工作时间为:,实际的工作时间为:方程应该为:﹣=2.故选:A.点评:此题主要考查了由实际问题抽象出分式方程,列方程解应用题的关键步骤在于找相等关系.本题主要用到的关系为:工作时间=工作总量÷工作效率.9.若要使分式的值为整数,则整数x可取的个数为( )A.5个B.2个C.3个D.4个考点:分式的值;约分.分析:首先化简分式可得,要使它的值为整数,则(x﹣1)应是3的约数,即x﹣1=±1或±3,进而解出x的值.解答:解:∵,∴根据题意,得x﹣1=±1或±3,解得x=0或x=2或x=﹣2或x=4,故选D.点评:此题考查分式的值,此类题首先要正确化简分式,然后要保证分式的值为整数,则根据分母应是分子的约数,进行分析.10.在平面直角坐标系中,直角梯形AOBC的位置如图所示,∠OAC=90°,AC∥OB,OA=4,AC=5,OB=6.M、N分别在线段AC、线段BC上运动,当△MON的面积达到最大时,存在一种使得△MON周长最小的情况,则此时点M的坐标为( )A.(0,4)B.(3,4)C.(,4)D.(,3)考点:轴对称-最短路线问题;坐标与图形性质.分析:过点M作MP∥OA,交ON于点P,过点N作NQ∥OB,分别交OA、MP于两点Q、G,则S△MON=S△OMP+S△NMP=MP•QG+MP•NG=MP•QN,因为QN取得最大值是OB 时,△MON的面积最大值=OA•OB,设O关于AC的对称点D,连接DB,交AC于M,此时AM=3,从而求得M的坐标(3,4).解答:解:如图,过点M作MP∥OA,交ON于点P,过点N作NQ∥OB,分别交OA、MP于两点Q、G,则S△MON=S△OMP+S△NMP=MP•QG+MP•NG=MP•QN,∵MP≤OA,QN≤OB,∴当点N与点B重合,QN取得最大值OB时,△MON的面积最大值=OA•OB,设O关于AC的对称点D,连接DB,交AC于M,此时△MON的面积最大,周长最短,∵=,即=,∴AM=3,∴M(3,4).故选B.点评:本题考查了直角梯形的性质,坐标和图形的性质,轴对称的性质等,作出辅助线是本题的关键.二、填空题(本大题共8小题,每小题3分,共计24分)11.当x=﹣1时,分式的值为0.考点:分式的值为零的条件.分析:根据分式值为零的条件得x+1=0且x﹣2≠0,再解方程即可.解答:解:由分式的值为零的条件得x+1=0,且x﹣2≠0,解得:x=﹣1,故答案为:﹣1.点评:此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.12.,﹣的最简公分母是4x3y.考点:最简公分母.分析:确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.解答:解:,﹣的最简公分母是4x3y;故答案为:4x3y.点评:此题考查了最简公分母,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.13.如果菱形的两条对角线长为a和b,且a、b满足,那么菱形的面积等于12.考点:菱形的性质;非负数的性质:偶次方;非负数的性质:算术平方根.分析:由a、b满足,即可求得a与b的值,又由菱形的两条对角线长为a和b,根据菱形的面积等于对角线积的一半,即可求得答案.解答:解:∵a、b满足,∴,解得:a=4,b=6,∵菱形的两条对角线长为a和b,∴菱形的面积为:ab=12.故答案为:12.点评:此题考查了菱形的性质以及非负数的非负性.注意掌握菱形的面积等于对角线积的一半是关键.14.如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,则CD的长为6.考点:三角形中位线定理;平行四边形的性质.分析:根据三角形中位线等于三角形第三边的一半可得AB长,进而根据平行四边形的对边相等可得CD=AB.解答:解:∵EF是△ABD的中位线,∴AB=2EF=6,又∵AB=CD,∴CD=6.故答案为:6.点评:本题考查了三角形中位线定理及平行四边形的性质,熟练掌握定理和性质是解题的关键.15.如果分式方程无解,则m=﹣1.考点:分式方程的解.专题:计算题.分析:分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解答:解:方程去分母得:x=m,当x=﹣1时,分母为0,方程无解.即m=﹣1方程无解.点评:本题考查了分式方程无解的条件,是需要识记的内容.16.已知﹣=3,则代数式的值为﹣.考点:分式的化简求值.专题:计算题.分析:已知等式左边通分并利用同分母分式的减法法则计算,整理得到x﹣y=﹣3xy,原式变形后代入计算即可求出值.解答:解:∵﹣==3,即x﹣y=﹣3xy,∴原式===﹣,故答案为:﹣点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为.考点:菱形的性质;勾股定理.专题:几何图形问题.分析:根据菱形及矩形的性质可得到∠BAC的度数,从而根据直角三角函的性质求得BC 的长.解答:解:∵AECF为菱形,∴∠FCO=∠ECO,由折叠的性质可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又EC=AE,AB=AE+EB=3,∴EB=1,EC=2,∴BC=,故答案为:.点评:根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC的长.18.关于x的方程:x+=c+的解是x1=c,x2=,x﹣=c﹣解是x1=c,x2=﹣,则x+=c+的解是x1=c,x2=+3.考点:分式方程的解.专题:计算题.分析:根据题中方程的解归纳总结得到一般性规律,所求方程变形后确定出解即可.解答:解:所求方程变形得:x﹣3+=c﹣3+,根据题中的规律得:x﹣3=c﹣3,x﹣3=,解得:x1=c,x2=+3,故答案为:x1=c,x2=+3点评:此题考查了分式方程的解,归纳总结得到题中方程解的规律是解本题的关键.三、解答题(本大题共8小题,共计66分)19.计算或化简:(1)计算:a﹣1﹣;(2)先化简(﹣)÷,再从(1)中m的取值范围内,选取一个你认为合适的m的整数值代入求值.考点:分式的化简求值.专题:计算题.分析:(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把m=0代入计算即可求出值.解答:解:(1)原式=﹣=﹣;(2)原式=•=•=,当m=0时,原式=﹣1.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.解方程(1)(x﹣5)2=2(5﹣x);(2)2x2﹣4x﹣6=0(用配方法).考点:解一元二次方程-因式分解法;解一元二次方程-配方法.分析:(1)先变形,再提公因式即可;(2)先把系数化为1,再配方法即可.解答:解:(1)整理得:(x﹣5)2+2(x﹣5)=0;(x﹣5)(x﹣5+2)=0,x﹣5=0或x﹣3=0,解得x1=5,x2=3;(2)把二次项系数化为1得,x2﹣2x﹣3=0,x2﹣2x=3,x2﹣2x+1=4,(x﹣1)2=4,x﹣1=±2;解得x1=﹣1,x2=3.点评:本题考查了解一元二次方程,用到的方法有:提公因式法和配方法,是常见题型,要熟练掌握.21.如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:(1)①根据关于y轴对称的点的横坐标互为相反数确定出点B的位置,然后连接AB 即可;②根据轴对称的性质找出点A关于直线x=3的对称点,即为所求的点D;(2)根据平行四边形的性质,平分四边形面积的直线经过中心,然后求出AC的中点,代入直线计算即可求出k值.解答:解:(1)①如图所示;②直线CD如图所示;(2)∵由图可知,AD=BC,AD∥BC,∴四边形ABCD是平行四边形.∵A(0,4),C(3,0),∴平行四边形ABCD的中心坐标为(,2),代入直线得,k=2,解得k=.点评:本题考查了利用旋转变换作图,利用轴对称变换作图,还考查了平行四边形的判定与性质,是基础题,要注意平分四边形面积的直线经过中心的应用.22.如图,线段AC是矩形ABCD的对角线,(1)请你作出线段AC的垂直平分线,交AC于点O,交AB于点E,交DC于点F(保留作图痕迹,不写作法)(2)求证:AE=AF.考点:矩形的性质;线段垂直平分线的性质;作图—基本作图.分析:(1)分别以A,C为圆心,以大于AC的长为半径画弧,然后连接即可;(2)首先证得△COF≌△AOE,然后由线段垂直平分线的性质,证得AF=CF,即可证得结论.解答:(1)解:如图:分别以A,C为圆心,以大于AC的长为半径画弧,然后连接即可;(2)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠OCF=∠OAE,在△OCF和△OAE中,,∴△COF≌△AOE(ASA),∴AE=CF,∵EF是AC的垂直平分线,∴AF=CF,∴AE=AF.点评:此题考查了矩形的性质、线段垂直平分线的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.23.某中学利用假期进行学校改造,先要加固1560平方米校舍,按计划进行6天后,由于熟练,每天能多做原来的25%,结果比计划提前了4天完成.你能知道他们原来每天能加固多少平方米校舍么?实际上加固校舍花了多少天时间?考点:分式方程的应用.分析:根据实际比计划提前了4天这一等量关系列出方程求解.解答:解:设原来每天加固x平方米,则熟练后每天加固(1+25%)x平方米,由题意得:=解得:x=60经检验x=60是方程的解,∴﹣4=22答:原来每天能加固60平方米校舍,实际上加固校舍花了22天时间.点评:本题考查了分式方程的应用,解题的关键是找到等量关系.24.阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则称这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形CA.平行四边形B.矩形C.菱形D.等腰梯形(2)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形ABCD 的和谐线,且AB=BC,请直接写出∠ABC的度数.考点:等腰梯形的性质;等腰直角三角形;平行四边形的性质;菱形的性质;矩形的性质.专题:新定义.分析:(1)有和谐四边形的定义即可得到菱形是和谐四边形;(2)首先根据题意画出图形,然后由AC是四边形ABCD的和谐线,可以得出△ACD是等腰三角形,从图1,图2,图3三种情况运用等边三角形的性质,正方形的性质和30°的直角三角形性质就可以求出∠ABC的度数.解答:解:(1)∵菱形的四条边相等,∴连接对角线能得到两个等腰三角形,∴菱形是和谐四边形;(2)解:∵AC是四边形ABCD的和谐线,∴△ACD是等腰三角形,在等腰Rt△ABD中,∵AB=AD,∴AB=AD=BC,如图1,当AD=AC时,∴AB=AC=BC,∠ACD=∠ADC∴△ABC是正三角形,∴∠ABC=60°.如图2,当AD=CD时,∴AB=AD=BC=CD.∵∠BAD=90°,∴四边形ABCD是正方形,∴∠ABC=90°;如图3,当AC=CD时,过点C作CE⊥AD于E,过点B作BF⊥CE于F,∵AC=CD.CE⊥AD,∴AE=AD,∠ACE=∠DCE.∵∠BAD=∠AEF=∠BFE=90°,∴四边形ABFE是矩形.∴BF=AE.∵AB=AD=BC,∴BF=BC,∴∠BCF=30°.∵AB=BC,∴∠ACB=∠BAC.∵AB∥CE,∴∠BAC=∠ACE,∴∠ACB=∠BAC=∠BCF=15°,∴∠ABC=150°,综上:∠ABC的度数可能是:60°90°150°.点评:此题考查了等腰直角三角形的性质,等腰三角形的性质、矩形的性质、正方形的性质,菱形的性质,此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.25.如图1,矩形ABCD中,点P从A出发,以3cm/s的速度沿边A→B→C→D→A匀速运动;同时点Q从B出发,沿边B→C→D匀速运动,当其中一个点到达终点时两点同时停止运动,设点P运动的时间为t s.△APQ的面积s(cm2)与t(s)之间函数关系的部分图象由图2中的曲线段OE与线段EF给出.(1)点Q运动的速度为1cm/s,a﹦6cm2;(2)若BC﹦3cm,①求t>3时S的函数关系式;②在图(2)中画出①中相应的函数图象.考点:二次函数综合题;动点问题的函数图象.专题:压轴题.分析:(1)根据点E时S最大,判断出2秒时点P运动至点B,点Q运动至点C,然后根据点P的速度求出AB,再根据3秒时,S=0判断出点P与点Q重合,然后根据追击问题的等量关系列出方程求出点Q的速度即可得解;(2)①求出3秒时点P、Q在点C重合,再求出点P到达点D的时间为5秒,到达点A 的时间为6秒,然后分3<t≤5时表示出PQ,然后根据三角形的面积公式列式整理即可;5<t≤6时,表示出AP、DQ,然后利用三角形的面积公式列式整理即可;②根据函数解析式作出图象即可.解答:解:(1)由图可知,2秒时点P运动至点B,点Q运动至点C,∵点P的速度为3cm/s,∴AB=3×=6cm,3秒时,S=0判断出点P与点Q重合,设点Q的速度为xcm/s,则3x+6=3×3,解得x=1,此时,BC=2×1=2cm,a=×6×2=6cm2,故答案为:1,6;(2)∵(6+3)÷3=3s,3÷1=3s,∴3秒时点P、Q在点C重合,点P到达点D的时间为:(6+3+6)÷3=5s到达点A的时间为:(6+3+6+3)÷3=6s,①若3<t≤5,则PQ=3t﹣t﹣6=2t﹣6,S=×(2t﹣6)×3=3t﹣9;若5<t≤6,则AP=(6+3+6+3)﹣3t=18﹣3t,DQ=(6+3)﹣t=9﹣t,S=×(18﹣3t)×(9﹣t)=t2﹣t+81;所以,S=;②函数图象如图2所示.点评:本题是二次函数综合题型,动点问题函数图象,主要利用了路程、速度、时间三者之间的关系,根据图2判断出2秒时点P、Q的位置是解题的关键,也是本题的难点,根据3秒时,点P、Q重合利用追击问题等量关系求出点Q的速度也很重要.26.如图①,在▱ABCD中,AB=13,BC=50,点P从点B出发,沿B﹣A﹣D﹣A运动.已知沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点B出发沿BC方向运动,速度为每秒5个单位长度.若P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).(2)过点Q作QR∥AB,交AD于点R,连结BR,如图②.在点P沿B﹣A﹣D运动过程中,是否存在线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分的情况?若存在,求出所有t的值;若不存在,请说明理由.(3)设点C、D关于直线PQ的对称点分别为C′、D′,在点P沿B﹣A﹣D运动过程中,当C′D′∥BC时,求t的值(直接写出结果)考点:相似形综合题.分析:(1)分情况讨论,当点P沿A﹣D运动时,当点P沿D﹣A运动时分别可以表示出AP的值;(2)分情况讨论,当0<t<1时,当1<t<时,当<t<时,利用三角形的面积相等建立方程求出其解即可;(3)分情况讨论当P在A﹣D之间或D﹣A之间时,如图⑥,根据轴对称的性质可以知道四边形QCOC′为菱形,根据其性质建立方程求出其解,当P在D﹣A之间如图⑦,根据菱形的性质建立方程求出其解即可.解答:解:(1)当点P沿A﹣D运动时,AP=8(t﹣1)=8t﹣8,当点P沿D﹣A运动时,AP=50×2﹣8(t﹣1)=108﹣8t;(2)当点P与点R重合时,AP=BQ,8t﹣8=5t,t=.当0<t≤1时,如图③.∵S△BPM=S△BQM,∴PM=QM.∵AB∥QR,∴∠PBM=∠QRM,∠BPM=∠MQR,在△BPM和△RQM中,∴△BPM≌△RQM(AAS).∴BP=RQ,∵RQ=AB,∴BP=AB∴13t=13,解得:t=1当1<t≤时,如图④.∵BR平分阴影部分面积,∴P与点R重合.∴t=.当<t≤时,如图⑤.∵S△ABR=S△QBR,∴S△ABR<S四边形BQPR.∴BR不能把四边形ABQP分成面积相等的两部分.综上所述,当t=1或时,线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分.(3)如图⑥,当P在A﹣D之间或D﹣A之间时,C′D′在BC上方且C′D′∥BC时,∴∠C′OQ=∠OQC.∵△C′OQ≌△COQ,∴∠C′OQ=∠COQ,∴∠CQO=∠COQ,∴QC=OC,∴50﹣5t=50﹣8(t﹣1)+13,或50﹣5t=8(t﹣1)﹣50+13,解得:t=7或t=.当P在A﹣D之间或D﹣A之间,C′D′在BC下方且C′D′∥BC时,如图⑦.同理由菱形的性质可以得出:OD=PD,∴50﹣5t+13=8(t﹣1)﹣50,解得:t=.∴当t=7,t=,t=时,点C、D关于直线PQ的对称点分别为C′、D′,且C′D′∥BC.点评:本题考查了平行四边形的性质的运用,菱形的性质的运用,全等三角形的判定及性质的运用,分类讨论的数学思想的运用,轴对称的性质的运用,三角形的面积公式的运用,解答时灵活运用动点问题的解答方法确定分界点是解答本题的关键和难点.。

江苏省苏州市2014-八年级下期中数学试卷

江苏省苏州市2014-八年级下期中数学试卷

2014-2015学年江苏省苏州市八年级(下)期末数学模拟试卷一、选择题(每题2分,共20分)1.若把分式中的x、y都扩大3倍,则分式的值()A.扩大3倍B.扩大9倍C.不变D.缩小到原来的2.如果点(3,﹣4)在反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,﹣6)C.(﹣2,6)D.(﹣3,﹣4)3.下列命题:①任何数的平方都大于0;②若a>1,b>1,则a+b>2;③同位角相等;④直角三角形的两个锐角互余,其中是真命题的有()A.1个B.2个C.3个D.4个4.两个相似多边形的面积比是9:16,其中较小多边形的周长为36cm,则较大多边形的周长为()A.48cm B.54cm C.56cm D.64cm5.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为()A.B.C.D.6.分式方程=有增根,则m的值为()A.0和3 B.1 C.1和﹣2 D.37.如图,正比例函数y=x与反比例函数y=的图象交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积为()A.1 B.2 C.3 D.48.如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.B.C.D.9.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.B.C.D.10.在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,则点C2坐标为()A.B.C.D.二、填空题(每题3分,共30分)11.当x=时,分式的值为零.12.反比例函数y=的图象的两个分支分别在第二、四象限,则m.13.若两个等边三角形的边长分别为a与3a,则它们的面积之比为.14.经验表明,长与宽的比为黄金比的物体一般都符合人们的审美观,一位建筑师在图纸上设计的某建筑物的窗户的高是3.24m,那么这个窗户的宽约是m.(注:通常建筑物的窗户的高度大于宽度,结果保留两位小数)15.一只小鸟自由自在地在空中飞行,然后随意落在如图所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是.16.命题“等腰三角形的两个底角相等”的逆命题是.17.如图,E是▱ABCD的边CD上一点,连接AE并延长交BC的延长线于点F,且AD=4,=,则CF的长为.18.如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B与点D在反比例函数y=(x>0)的图象上,则点C的坐标为.19.如图,已知反比例函数y=(k1>0),y=(k2<0).点A在y轴的正半轴上,过点A作直线BC∥x轴,且分别与两个反比例函数的图象交于点B和C,连接OC、OB.若△BOC的面积为,AC:AB=2:3,则k1=,k2=.20.如图所示,△ABC的面积为1,取BC边中点E作DE∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1,再取BE中点E1,作E1D1∥BF,E1F1∥EF得到四边形E1D1FF1,它的面积记作S2,照此规律作下去,S2013=.三、解答题(共50分)21.解方程:.22.已知a=﹣,求[﹣]的值.23.小峰与小月进行跳绳比赛,在相同的时间内,小峰跳了100个,小月跳了110个,如果小月比小峰每分钟多跳20个,试求出小峰每分钟跳绳多少个.24.如图,在△ABC中,AD平分∠BAC,交BC于点D,BE⊥AD,交AD的延长线于点E,BF=EF.求证:EF∥AC.25.为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户四份用水15度,交水费22.5元,五月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户六月份的水费支出不少于60元,但不超过90元,求该用户六月份的用水量x的取值范围.26.如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m≠0)的图象在第一象限交于点C,CD垂直于x轴,垂足为D,若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数与反比例函数的解析式;(3)在x>0的条件下,根据图象说出反比例函数的值大于一次函数值的x的取值范围.27.在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3、,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.(1)写出点M坐标的所有可能的结果;(2)求点M在直线y=x上的概率;(3)求点M的横坐标与纵坐标之和是偶数的概率.28.在▱ABCD中,点E从点B开始沿BC方向向C点运动,如图①所示,连接AE交BD于点O,得到△AOD与△BOE始终相似.(1)当E点运动到何处时,△AOD与△BOE的相似比为2:1?(2)当E点运动到何处时,△AOD与△BOE全等?(3)若E点到达C点后,继续沿着BC的方向向右运动,如图②所示,这时AE与CD的交点为F,且△ADF∽△ECF.试说明:当E点运动到某一点,使△ADF与△ECF全等时,点F在CD的什么位置?并求出这时△AOD与△BOE的相似比.(4)在图②中,=的值是否一定?若一定,请求出这个值;若不一定,请说明理由.29.已知,如图1,矩形ABCD中,AD=6,DC=8,矩形EFGH的三个顶点E、G、H分别在矩形ABCD的边ABCD的边AB、CD、DA上,AH=2,连接CF.(1)如图1,当四边形EFGH为正方形时,求AE的长和△FCG的面积;(2)如图2,设AE=x,△FCG的面积=S1,求S1与x之间的函数关系式与S1的最大值;(3)在(2)的条件下,如果矩形EFGH的顶点F始终在矩形ABCD内部,连接BF,记△BEF的面积为S2,△BCF的面积为S3,试说明6S1+3S2﹣2S3是常数.2014-2015学年江苏省苏州市八年级(下)期末数学模拟试卷参考答案与试题解析一、选择题(每题2分,共20分)1.若把分式中的x、y都扩大3倍,则分式的值()A.扩大3倍B.扩大9倍C.不变D.缩小到原来的考点:分式的基本性质.分析:根据分式的分子分母都乘以或除以同一个不为0的数分式的值不变,可得答案.解答:解:若把分式中的x、y都扩大3倍,则分式的值不变,故选:C.点评:本题考查了分式的基本性质,利用了分式的性质.2.如果点(3,﹣4)在反比例函数y=的图象上,那么下列各点中,在此图象上的是()A.(3,4)B.(﹣2,﹣6)C.(﹣2,6)D.(﹣3,﹣4)考点:反比例函数图象上点的坐标特征.分析:将(3,﹣4)代入y=即可求出k的值,再根据k=xy解答即可.解答:解:因为点(3,﹣4)在反比例函数y=的图象上,k=3×(﹣4)=﹣12;符合此条件的只有C:k=﹣2×6=﹣12.故选C.点评:本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.3.下列命题:①任何数的平方都大于0;②若a>1,b>1,则a+b>2;③同位角相等;④直角三角形的两个锐角互余,其中是真命题的有()A.1个B.2个C.3个D.4个考点:命题与定理.分析:根据非负数的性质对①进行判断;根据不等式的性质对②进行判断;根据平行线的性质对③进行判断;根据三角形内角和定理和互余的定义对④进行判断.解答:解:何数的平方都大于或等于0,所以①错误;若a>1,b>1,则a+b>2,所以②正确;两直线平行,同位角相等,所以③错误;直角三角形的两个锐角互余,所以④正确.故选B.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.两个相似多边形的面积比是9:16,其中较小多边形的周长为36cm,则较大多边形的周长为()A.48cm B.54cm C.56cm D.64cm考点:相似多边形的性质.分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.解答:解:两个相似多边形的面积比是9:16,面积比是周长比的平方,∴大多边形与小多边形的相似比是4:3.∴相似多边形周长的比是4:3.设大多边形的周长为x,则有=,解得:x=48.即大多边形的周长为48cm.故选A.点评:本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,面积之比等于相似比的平方.5.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为()A.B.C.D.考点:列表法与树状图法.专题:计算题;压轴题;数形结合.分析:列举出所有情况,看在同一辆车的情况数占总情况数的多少即可.解答:解:设3辆车分别为A,B,C,共有9种情况,在同一辆车的情况数有3种,所以坐同一辆车的概率为,故选A.点评:考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到在同一辆车的情况数是解决本题的关键.6.分式方程=有增根,则m的值为()A.0和3 B.1 C.1和﹣2 D.3考点:分式方程的增根;解一元一次方程.专题:计算题.分析:根据分式方程有增根,得出x﹣1=0,x+2=0,求出即可.解答:解:∵分式方程=有增根,∴x﹣1=0,x+2=0,∴x1=1,x2=﹣2.两边同时乘以(x﹣1)(x+2),原方程可化为x(x+2)﹣(x﹣1)(x+2)=m,整理得,m=x+2,当x=1时,m=1+2=3;当x=﹣2时,m=﹣2+2=0,当m=0,方程无解,∴m=3.故选:D.点评:本题主要考查对分式方程的增根,解一元一次方程等知识点的理解和掌握,理解分式方程的增根的意义是解此题的关键.7.如图,正比例函数y=x与反比例函数y=的图象交于A、C两点,过点A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积为()A.1 B.2 C.3 D.4考点:反比例函数与一次函数的交点问题.分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,点A,C关于原点对称,则△ABC的面积为△AOB面积的2倍,即S=|k|.解答:解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|,依题意有S△ABC=2S△AOB=2××|k|=1.故应选为A.点评:此题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.8.如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.B.C.D.考点:位似变换.分析:根据位似变换的性质得出△ABC的边长放大到原来的2倍,FO=a,CF=a+1,CE=(a+1),进而得出点B的横坐标.解答:解:∵点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.点B的对应点B′的横坐标是a,∴FO=a,CF=a+1,∴CE=(a+1),∴点B的横坐标是:﹣(a+1)﹣1=﹣(a+3).故选D.点评:此题主要考查了位似变换的性质,根据已知得出FO=a,CF=a+1,CE=(a+1),是解决问题的关键.9.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.B.C.D.考点:菱形的性质;勾股定理.分析:根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.解答:解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,∴S菱形ABCD==×6×8=24cm2,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=cm,故选D.点评:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.10.在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,则点C2坐标为()A.B.C.D.考点:相似三角形的判定与性质;坐标与图形性质;正方形的性质.分析:证明△DOA∽△ABA1,则可求出A1B,由△ABA1∽△A1B1A2,可得出B1A2,从而可得出第一、第二、第三个正方形的边长,过点DE作x轴的平行线,过点C2作C2F⊥DE于点F,在Rt△DC2F 中求出DF,C2F,从而可得出C2坐标.解答:解:∵OD=2,OA=1,∴AD==,∵∠BAA1+∠OAD=90°,∠ODA=∠BAA1,∴∠BAA1=∠ODA,∴△DOA∽△ABA1,∴=,即=,解得:BA1=,∴CA1=CB+BA1=,由△ABA1∽△A1B1A2,可得=,即=,解得:B1A2=,∴C1A2=CB1+B1A2=,过点DE作x轴的平行线,过点C2作C2F⊥DE于点F,则易得∠C2DF=∠ODA,∴sin∠C2DF=sin∠ODA===,解得:C2F=,∴tan∠C2DF=tan∠ODA===,解得:DF=,∴可得C2的横坐标为,纵坐标为+2=.即点C2的坐标为(,).故选D.点评:本题考查了相似三角形的判定与性质,解答本题的关键是根据相似三角形的对应边成比例,求出前三个正方形的边长,有一定难度,注意耐心思考.二、填空题(每题3分,共30分)11.当x=1时,分式的值为零.考点:分式的值为零的条件.分析:分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.解答:解:x2﹣1=0,解得:x=±1,当x=﹣1时,x+1=0,因而应该舍去.故x=1.故答案是:1.点评:本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.反比例函数y=的图象的两个分支分别在第二、四象限,则m<5.考点:反比例函数的性质.分析:根据反比例函数的性质可得m﹣5<0,再解不等式即可.解答:解:∵反比例函数y=的图象的两个分支分别在第二、四象限,∴m﹣5<0,解得:m<5,故答案为:<5.点评:此题主要考查了反比例函数的性质,关键是掌握反比例函数y=的性质:(1)反比例函数y=xk(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.13.若两个等边三角形的边长分别为a与3a,则它们的面积之比为1:9.考点:相似三角形的判定与性质;等边三角形的性质.分析:根据相似三角形的性质即可推出面积比等于边长平方的比,据此求出答案.解答:解:∵两个等边三角形的边长分别为a与3a,∴两个等边三角形为相似三角形,∴面积比等于边长的平方的比即为1:9.故答案为1:9.点评:本题主要考查相似三角形的判定和性质,关键在于掌握相似三角形的面积比与相似比的关系.14.经验表明,长与宽的比为黄金比的物体一般都符合人们的审美观,一位建筑师在图纸上设计的某建筑物的窗户的高是3.24m,那么这个窗户的宽约是 2.00m.(注:通常建筑物的窗户的高度大于宽度,结果保留两位小数)考点:黄金分割.分析:设这个窗户的宽为xm,根据窗户的宽与高的比为黄金比,列出比例式:=,解此比例即可.解答:解:设这个窗户的宽为xm,根据题意,得=,解得x≈2.00.即这个窗户的宽约是2.00m.故答案为2.00.点评:本题主要考查了黄金分割的定义:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值≈0.618叫做黄金比.本题以生活中的问题为模型,提出了生活中存在的相等关系,可以转化为方程解决,难度适中.15.一只小鸟自由自在地在空中飞行,然后随意落在如图所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是.考点:几何概率.分析:确定黑色方格的面积在整个方格中占的比例,根据这个比例即可求出小鸟停在黑色方格中的概率.解答:解:图上共有15个方格,黑色方格为5个,小鸟最终停在黑色方格上的概率是,即.故答案为:.点评:此题主要考查了几何概率的求法,用到的知识点为:概率=相应的面积与总面积之比.16.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.考点:命题与定理.分析:先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.解答:解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.点评:根据逆命题的概念来回答:对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.17.如图,E是▱ABCD的边CD上一点,连接AE并延长交BC的延长线于点F,且AD=4,=,则CF的长为2.考点:相似三角形的判定与性质;平行四边形的性质.分析:由四边形ABCD是平行四边形,即可得BC=AD=4,AB∥CD,继而可证得△FEC∽△FAB,由相似三角形的对应边成比例,即可求得答案.解答:解:∵四边形ABCD是平行四边形,∴BC=AD=4,AB∥CD,∴△FEC∽△FAB,∴==,∴=,∴CF=BC=×4=2.故答案为:2.点评:此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.18.如图,矩形ABCD的边AB与y轴平行,顶点A的坐标为(1,2),点B与点D在反比例函数y=(x>0)的图象上,则点C的坐标为(3,6).考点:反比例函数图象上点的坐标特征.分析:设B、D两点的坐标分别为(1,y)、(x,2),再根据点B与点D在反比例函数y=(x>0)的图象上求出xy的值,进而可得出C的坐标.解答:解:∵四边形ABCD是矩形,顶点A的坐标为(1,2),∴设B、D两点的坐标分别为(1,y)、(x,2),∵点B与点D在反比例函数y=(x>0)的图象上,∴y=6,x=3,∴点C的坐标为(3,6).故答案为:(3,6).点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy为定值是解答此题的关键.19.如图,已知反比例函数y=(k1>0),y=(k2<0).点A在y轴的正半轴上,过点A作直线BC∥x轴,且分别与两个反比例函数的图象交于点B和C,连接OC、OB.若△BOC的面积为,AC:AB=2:3,则k1=2,k2=﹣3.考点:反比例函数系数k的几何意义.专题:压轴题.分析:根据反比例函数系数的几何意义可得,|k1|+|k2|的值以及|k1|:|k2|的值,然后联立方程组求解得到|k1|与|k2|的值,然后即可得解.解答:解:∵△BOC的面积为,∴|k1|+|k2|=,即|k1|+|k2|=5①,∵AC:AB=2:3,∴|k1|:|k2|=2:3②,①②联立,解得|k1|=2,|k2|=3,∵k1>0,k2<0,∴k1=2,k2=﹣3.故答案为:2,﹣3.点评:本题考查了反比例函数系数的几何意义,过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积就等于|k|,根据题意得到两个关于反比例函数系数的方程是解题的关键.20.如图所示,△ABC的面积为1,取BC边中点E作DE∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1,再取BE中点E1,作E1D1∥BF,E1F1∥EF得到四边形E1D1FF1,它的面积记作S2,照此规律作下去,S2013=.考点:相似三角形的判定与性质.专题:规律型.分析:根据三角形中位线定理可求出S1的值,进而可得出S2的值,找出规律即可得出S2013的值.解答:解:∵E是BC的中点,ED∥AB,∴DE是△ABC的中位线,∴DE=AB,∴S△DCE=S△ABC.同理,S△BEF=S△ABC.∴S1=S△ABC﹣S△DCE﹣S△BEF=×S△ABC,同理求得S2=×S△ABC,…Sn=×,S2013×S△ABC=,故答案为:.点评:本题考查了三角形中位线定理、等边三角形的性质.三角形的中位线平行于第三边,并且等于第三边的一半.三、解答题(共50分)21.解方程:.考点:解分式方程.专题:方程思想.分析:观察可得最简公分母是(x﹣2)(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘(x﹣2)(x+3),得10﹣2(x+3)=(x+3)(2﹣x),整理得:x2+3x﹣10=0解得x1=﹣5,x2=2.检验:当x=﹣5时,(x﹣2)(x+3)=14≠0.当x=2时,(x﹣2)(x+3)=0,是增根.∴原方程的解为:x=﹣5.点评:本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.22.已知a=﹣,求[﹣]的值.考点:分式的化简求值.专题:计算题.分析:原式中括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.解答:解:原式=[﹣]•=•=﹣,当a=﹣时,原式=2.点评:此题考查了分式方程化简求值,熟练掌握运算法则是解本题的关键.23.小峰与小月进行跳绳比赛,在相同的时间内,小峰跳了100个,小月跳了110个,如果小月比小峰每分钟多跳20个,试求出小峰每分钟跳绳多少个.考点:分式方程的应用.分析:首先设小峰每分钟跳绳x个,则小月每分钟跳绳(x+20)个,根据题意可得等量关系:小峰跳了100个的时间=小月跳了110个的时间,根据等量关系列出方程,再解即可.解答:解:设小峰每分钟跳绳x个,由题意得:=解得:x=200,经检验x=200是分式方程的解.答:小峰每分钟跳绳200个.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意分式方程不要忘记检验.24.如图,在△ABC中,AD平分∠BAC,交BC于点D,BE⊥AD,交AD的延长线于点E,BF=EF.求证:EF∥AC.考点:三角形中位线定理;等腰三角形的判定与性质.专题:证明题.分析:根据等边对等角可得∠BEF=∠EBF,再根据等角的余角相等求出∠EAF=∠AEF,然后根据角平分线的定义可得∠EAF=∠CAD,从而得到∠AEF=∠CAD,再根据内错角相等,两直线平行证明即可.解答:证明:∵BF=EF,∴∠BEF=∠EBF,∵BE⊥AD,∴∠EAF+∠EBF=∠AEF+∠BEF,∴∠EAF=∠AEF,∵AD平分∠BAC,∴∠EAF=∠CAD,∴∠AEF=∠CAD,∴EF∥AC.点评:本题考查了等腰三角形的判定与性质,平行线的判定,角平分线的定义,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.25.为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户四份用水15度,交水费22.5元,五月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户六月份的水费支出不少于60元,但不超过90元,求该用户六月份的用水量x的取值范围.考点:一元一次不等式组的应用.专题:应用题.分析:(1)根据某用户四份用水15度,交水费22.5元,五月份用水30度,交水费50元,分别求出a和b即可;(2)根据“该用户六月份的水费支出不少于60元,但不超过90元”列一元一次不等式组求解即可.解答:解:(1)根据题意得:a=22.5÷15=1.5;b=(50﹣20×1.5)÷(30﹣20)=2;(2)根据题意列不等式组得:60≤20×1.5+2(x﹣20)≤90,解得:35≤x≤50,即该用户六月份的用水量x的取值范围为35≤x≤50.点评:本题考查一元一次不等式组的实际应用,难度适中,解题关键是根据题意准确列出不等式组.26.如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m≠0)的图象在第一象限交于点C,CD垂直于x轴,垂足为D,若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数与反比例函数的解析式;(3)在x>0的条件下,根据图象说出反比例函数的值大于一次函数值的x的取值范围.考点:反比例函数与一次函数的交点问题.分析:(1)根据OA=OB=OD=1和各坐标轴上的点的特点易得到所求点的坐标;(2)将A、B两点坐标分别代入y=kx+b,可用待定系数法确定一次函数的解析式,由C点在一次函数的图象上可确定C点坐标,将C点坐标代入y=可确定反比例函数的解析式.(3)由函数的图象即可得出反比例函数的值大于一次函数值的x的取值范围.解答:解:(1)∵OA=OB=OD=1,∴点A、B、D的坐标分别为A(﹣1,0),B(0,1),D(1,0);(2)∵点A、B在一次函数y=kx+b(k≠0)的图象上,∴,解得,∴一次函数的解析式为y=x+1.∵点C在一次函数y=x+1的图象上,且CD⊥x轴,∴点C的坐标为(1,2),又∵点C在反比例函数y=(m≠0)的图象上,∴m=2;∴反比例函数的解析式为y=.(3)由函数的图象可知当0<x<1时反比例函数的值大于一次函数值;点评:本题主要考查用待定系数法求函数解析式,过某个点,这个点的坐标应适合这个函数解析式.27.在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3、,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.(1)写出点M坐标的所有可能的结果;(2)求点M在直线y=x上的概率;(3)求点M的横坐标与纵坐标之和是偶数的概率.考点:列表法与树状图法;一次函数图象上点的坐标特征.分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,注意要不重不漏;(2)注意点M在直线y=x上,即点M的横、纵坐标相等,求得符合要求的点的个数,利用概率公式求解即可求得答案;(3)依据题意先用列表法分析所有等可能的出现结果,然后根据概率公式即可求出该事件的概率.解答:解:(1)∵1 2 31 (1,1)(1,2)(1,3)2 (2,1)(2,2)(2,3)3 (3,1)(3,2)(3,3)∴点M坐标的所有可能的结果有九个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3).(2)P(点M在直线y=x上)=P(点M的横、纵坐标相等)==.(3)∵1 2 31 2 3 42 3 4 53 4 5 6∴P(点M的横坐标与纵坐标之和是偶数)=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.。

江苏省苏州市2014—2015学年第二学期初二数学期终复习专题 反比例函数与几何综合

江苏省苏州市2014—2015学年第二学期初二数学期终复习专题 反比例函数与几何综合

2014—2015学年第二学期初二数学期终复习专题反比例函数与几何综合一、反比例函数的定义函数ky x=(k 为常数,0k ≠)叫做反比例函数,其中k 叫做比例系数,x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.二、反比例函数的图象反比例函数ky x=(k 为常数,0k ≠)的图象由两条曲线组成,每条曲线随着x 的不断增大(或减小)越来越接近坐标轴,反比例函数的图象属于双曲线.反比例函数k y x =与ky x=-(0k ≠)的图象关于x 轴对称,也关于y 轴对称.三、反比例函数的性质反比例函数ky x=(k 为常数,0k ≠)的图象是双曲线; 当0k >时,函数图象的两个分支分别位于第一、三象限内,它们关于原点对称,在每一个象限内,y 随x 的增大而减小;当0k <时,函数图象的两个分支分别位于第二、四象限内,它们关于原点对称,在每一个象限内,y 随x 的增大而增大.注意:⑴反比例函数ky x=(0k ≠)的取值范围是0x ≠.因此,①图象是断开的两条曲线,画图象时,不要把两个分支连接起来. ②叙述反比例函数的性质时,一定要加上“在每一个象限内”,如当0k >时,双曲线ky x=的两支分别在一、三象限,在每一个象限内,y 随x 的增大而减小.这是由于0x ≠,即0x >或0x <的缘故.如果笼统地叙述为0k <时,y 随x 的增大而增大就是错误的.⑵由于反比例函数中自变量x 和函数y 的值都不能为零,所以图象和x 轴、y 轴都没有交点,但画图时要体现出图象和坐标轴无限贴近的趋势. ⑶在画出的图象上要注明函数的解析式.四、反比例函数解析式的求法课标要求知识点睛反比例函数的解析式(0)ky k x=≠中,只有一个系数k ,确定了k 的值,也就确定了反比例函数的解析式.因此,只需给出一组x 、y 的对应值或图象上一点的坐标,利用待定系数法,即可确定反比例函数的解析式. 五、比例系数k 的几何意义过反比例函数()0ky k x=≠,图象上一点()P x y ,,做两坐标轴的垂线,两垂足、原点、P 点组成一个矩形,矩形的面积S x y xy k =⋅==.六、相似三角形1.成比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么,这四条线段叫做成比例线段,简称比例线段。

苏科版八年级数学下册2014-2015学年第二学期期中试卷含答案

苏科版八年级数学下册2014-2015学年第二学期期中试卷含答案

苏科版2014-2015学年第二学期初二年级数学学科期中考试试卷含答案一、选择题:(本大题共8小题,每小题2分,共16分.) 1. 若分式32x -有意义,则x 的取值范围是 ( ) A .x ≠2 B .x >2 C .x >0且 x ≠2 D .x <2 2. 能判定四边形ABCD 为平行四边形的是 ( ) A .AB ∥CD ,AD =BC B .∠A =∠B , ∠C =∠D C .AB =CD ,AD =BCD .AB =AD , CB =CD3. 已知点M (-2,3)在双由线y =kx上,则下列各点一定不在该双曲线上的是( ) A .(3,-2) B .(-2,-3) C .(2,-3) D .(-3,2)4. 代数式45x ,42x y+, 122++πx ,52,1b ,12x x +中,是分式的有( )A .2个B .3个C .4个D .5个 5. 若分式xyx y+中的x 和y 都扩大2倍,那么分式的值( ) A .扩大4倍 B .扩大2倍 C .不变 D .缩小2倍6. 反比例函数6y x =与3y x=在第一象限的图象如图所示,作一条平行于x 轴的直线分别交双曲线于A 、B 两点,连接OA 、OB ,则△AOB 的面积为( )A.32错误!未找到引用源。

B.2C.3D.1第6题 第8题7. 当 m = 时,分式22m m --的值为零. A .m=2 B .2m =- C .2m =± D .20m m =±≠且考场号______________ 座位号____________ 班级__________ 姓名____________ 成绩____________ ————————————————————————装订线————————————————————————————B二、填空题:(本大题共10小题,每小题2分,共20分.) 9. 点(2,a )在反比例函数6y x=图象上,则a = . 10.如图,在菱形ABCD 中,∠ABC =60°,AC =4,则菱形ABCD 的周长是___________. 11.若关于x 的方程222x mx x++--=2有增根,则增根x=_______.m =_______.第10题 第12题 第15题12.如图, ABCD 中, AD =5, AB =3,AE 平分∠BAD 交BC 边于点E ,则EC =_______.13.已知y kx =(0k >)与2y x=交于点11(,)A x y 、22(,)B x y ,则123x y = . 14.若点()13y -,、()22y -,、()31y ,在反比例函数3y x-=的图像上,则y 1、y 2、y 3的大小关系是 .(用>连接)15.如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,2),点B 与点D 在反比例函数y 6x=(x >0)的图象上,则点C 的坐标为_______. 16.三角形的三条中位线长分别是3cm ,4cm ,5cm ,那么这个三角形的周长是_____ cm ,面积是_______ cm 2.17.已知一次函数5y x =-+和反比例函数3y x-=交于点A (a ,b ),则11a b+=.18.如图, ABCD 中, 对角线AC 与BD 相交于点E ,∠AEB =45°,BD =2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为________________.第18题三、解答题:(本大题共9题,共64分)19.化简:(1)111xx x---(2)231124aa a+⎛⎫+÷⎪--⎝⎭20.解方程:(1).23611x x=--(2)221211239yy y y y-+=-+--21.先化简311x xxx⎛⎫-⎪-+⎝⎭·21xx-,再从1、-1、01四个数中选取你认为满意的数求分式的值.22.已知:如图,平行四边形ABCD的对角线AC、BD交于点O,点E、F在直线AC上,且AE=CF,求证:四边形EBFD是平行四边形.第22题第23题第24题23.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC 于点D,已知AB=10,BC=15,MN=3.(1)求证:BN=DN;(2)求△ABC的周长.24.已知:如图,一次函数y1=k1x+b与反比例函数y2=2kx的图象交于点A(4,m)和B(n,-2),与y轴交于点C.P是反比例函数图象上的点,PE垂直于x轴,△OPE的面积是8 .(1)求一次函数和反比例函数的解析式.(2)根据函数图象可知,求当y1>y2时,x的取值范围.25.如图:四边形ABCD中,AD//BC,AD=9cm,BC=6cm,点P、Q分别从点A、C同时出发,点P 以2cm/s 的速度由点A 向点D 运动,点Q 以1cm/s 的速度由点C 向点B 运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014—2015学年度第二学期期中考试试卷
八年级数学
2015.04
本试卷由填空题、选择题和解答题三大题组成,共28题,满分130分.考试用时120分钟.
注意事项:
l、答题前,考生务必将学校、姓名、考场号、座位号、考试号填写在答题卷相应的位置上.
2、答题必须用0.5mm黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.
3、考生答题必须在答题卷上,答在试卷和草稿纸上一律无效.
一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.
1.分式的值为0时,x的值是
A.0 B.1 C.-1 D.-2
2.下列事件中,属于不可能事件的是
A.明天某地区早晨有雾
B.抛掷一枚质地均匀的骰子,向上一面的点数是6
C.一个不透明的袋子中有2个红球和1个白球,从中摸出1个球,该球是黑球D.明天见到的第一辆公交车的牌照的末位数字将是偶数
3.已知平行四边形ABCD中,B=4 A,则C=
A.180 B.36 C.72 D.144
4.下列计算错误的是
A. B. C. D.
5.已知四边形ABCD中,A=B=C=90,如果添加一个条件,
即可推出该四边形是正方形,那么这个条件可以是
A.D=90 B.AB=CD C.AD=BC D.BC=CD
6.已知:菱形ABCD中,对角线AC与BD相交O.E是BC中点E,AD=6,则OE的长为
A.6 B.4 C.3 D.2
7.若双曲线与直线y=2x+1的一个交点的横坐标为-1,则k的值为
A.-1 B.1 C.-2 D.2
8.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中说法正确的有
A.4个 B.3个 C.2个 D.1个
9.函数y=mx+n与y=,其中m≠0,n≠0,那么它们在同一坐标系中的图象可能是
10.如图,将矩形ABCO放在直角坐标系中,其中顶点B 的坐标为(10, 8,E是BC边上一点,:博△ABE沿AE折叠,点B刚好与OC边
上点D重合,过点E的反比例函数y=的图象与边AB交于点F, 则线段AF的长为
A. B. 2 C. D.
二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上
11.已知反比例函数y= (m为常数的图象在一、三象限,则m的取值范围为▲ .
12.分式方程的解为x= ▲ .
13.某学校计划开设A,B,C,D四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门.为了了解各门课程的选修人数,现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C课程的学生有▲ 人.
14.如图,在矩形ABCD中,AB=3,BC=5,以点B为圆心,BC长为半径画弧,交边AD于点E,则AE·ED= ▲ .
15.已知,则的值是▲ .
16.如图,点O是菱形ABCD两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为▲ .
17.如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分ACD交BD于点E,则DE= ▲ .
18.如图,△OAC和△BAD都是等腰直角三角形, A CO=ADB=90,反比例函
数y=在第一象限的图象经过点B,若OA2-AB2=6,则k的值为▲ .
三、解答题:(本大题共10小题,共76分.把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.
19.(本题满分8分,每小题4分约分:
(1 ; (2 .
20.(本题满分5分解方程:
21.(本题满分6分先化简,再求值:,其中x=.
22.(本题满分6分下面是小明和同学做“抛掷质地均匀的硬币试验”获得的数据.
(1填写表中的空格;
(2画出折线统计图;
(3当试验次数很大时,“正面朝上”的频率在▲ 附近摆动.
23.(本题满分7分如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.
(1求证:△ABM≌△DCM;
(2判断四边形MENF是什么特殊四边形,并证明你的结论;
24.(本题满分6分如图,已知点A、B的坐标分别为(0,0,(4,0,将△ABC绕点A按逆时针方向旋转90°得到△AB′C'.
(1画出AAB'C';
(2写出点C′,的坐标▲ ;
(3线段BB′的长为▲ .
25.(本题满分6分给出下列命题:
命题l:直线y=x与双曲线y=有一个交点是(1,1;
命题2:直线y=8x与双曲线y=有一个交点是(,4;
命题3:直线y=27x与双曲线y=有一个交点是(,9;
命题4:直线y=64x与双曲线y=有一个交点是(,16;
(1请你阅读、观察上面命题,猜想出命题n(n为正整数;
(2请验证你猜想的命题n是真命题.
26.(本题满分10分如图,点P是正方形ABCD边AB上一点(不与点A,B重合,连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PE,PE交边BC于点F,连接BE,DF.
(1求证:ADP=EPB;
(2求CBE的度数;
(3当点P是AB的中点且AB=2,则BF的长为▲ .
27.(本题满分10分如图,在直角坐标系中,O为坐标原点.已知反比例函数
y=的图象经过点A(2,m,过点A作AB上x轴于点B,且△A OB的面积为.(1则m= ▲ ,k= ▲ ;
(2点C(x,y在该反比例函数的图象上,求当1≤x≤3时函数值y的取值范围;
(3过原点O的直线l与该反比例函数的图象交于P、Q两点,试根据图象直接写出
线段PQ长度的最小值.
28.(本题满分12分已知,矩形ABCD中.AB=4cm,BC=8cm,对角线AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.
(1如图1,连接AF、CE,试证明:四边形AFCE为菱形;
(2求AF的长;
(3如图2,动点P以每秒5cm的速度自A→F→B→A运动、同时点Q以每秒4cm 的速度自C→D→E→C运动,当点P到达A点时两点同时停止运动. 若运动t秒后,以A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.。

相关文档
最新文档