射频基础知识讲座

合集下载

射频识别RFIPPT课件讲课教案

射频识别RFIPPT课件讲课教案
• 因此,B类推挽电路必须具有两管交替工作 和输出波形合成两个功能。
典型应用电路
• 1、电路工作原理 • 2、功率传输
等效电路
符号含意
• v 1 是P点的电压,
• R s 是晶体管 VT 2 和VT 3 的导通电阻,

R2

VT

2
VT
3
两管发射极所接电阻(10 Ω ),
• R 1 是电感 L 1 的损耗电阻,
一、电感线圈的交变磁场
• 1、直线载流体的磁场强度H和磁感应强度B
• 磁场强度

H i (A/m)
• 磁感应强度 2a
B0rH
• 2、环形短圆柱形线圈的磁感应强度
Bz
0i1N1a2
2a2 r2
3 2
0Hz
环形短圆柱形线圈的磁场图
• 3、矩形线圈的磁感应强度
B
4
a2 0 2N 1b ai2b 2r2a22 1r2b22 1r2
电流 的大i1 小必须合理设计。
②应答器进入阅读器的能量场内
(M≠0)
• •
Q Q0 , i1 i1 ;
随着M的增大,R f 1 增加,Q

i
1
会下降;
• 因此,功率放大电路在空载设计好后,不
会因应答器的进入造成电子器件的损坏。
• 要 但使Q Lη 高越,小则则选Q频越L 的大作越用好变,差Q 。L 越小越好。
二、应答器线圈感应电压的计算
• 1、阅读器线圈和应答器线圈之间的耦合像变压器 耦合一样,初级线圈(阅读器线圈)的电流产生 磁通,该磁通在次级线圈(应答器线圈)产生感 应电压。因此,也有人称电感耦合方式为变压器 耦合方式。但这种耦合的初、次级是独立可分离 的,耦合通过空间电磁场实现。

射频(RF)基础知识

射频(RF)基础知识

●什么是RF?答:RF 即Radio frequency 射频,主要包括无线收发信机。

2. 当今世界的手机频率各是多少(CDMA,GSM、市话通、小灵通、模拟手机等)?答:EGSM RX: 925-960MHz, TX:880-915MHz;CDMA cellular(IS-95)RX: 869-894MHz, TX:824-849MHz。

3. 从事手机Rf工作没多久的新手,应怎样提高?答:首先应该对RF系统(如功能性)有个系统的认识,然后可以选择一些芯片组,研究一个它们之间的连通性(connectivities among them)。

● 4. RF仿真软件在手机设计调试中的作用是什么?答:其目的是在实施设计之前,让设计者对将要设计的产品有一些认识。

5. 在设计手机的PCB时的基本原则是什么?答:基本原则是使EMC最小化。

6. 手机的硬件构成有RF/ABB/DBB/MCU/PMU,这里的ABB、DBB和PMU等各代表何意?答:ABB是Analog BaseBand,DBB是Ditital Baseband,MCU往往包括在DBB芯片中。

PMU是Power Management Unit,现在有的手机PMU和ABB在一个芯片上面。

将来这些芯片(RF,ABB,DBB,MCU,PMU)都会集成到一个芯片上以节省成本和体积。

7. DSP和MCU各自主要完成什么样的功能?二者有何区别?答:其实MCU和DSP都是处理器,理论上没有太大的不同。

但是在实际系统中,基于效率的考虑,一般是DSP处理各种算法,如信道编解码,加密等,而MCU处理信令和与大部分硬件外设(如LCD等)通信。

8. 刚开始从事RF前段设计的新手要注意些什么?答:首先,可以选择一个RF专题,比如PLL,并学习一些基本理论,然后开始设计一些简单电路,只有在调试中才能获得一些经验,有助加深理解。

9. 推荐RF仿真软件及其特点?答:Agilent ADS仿真软件作RF仿真。

射频基础知识

射频基础知识

1、射频RF (Radio Frequency )是指频率较高,可用于发射无线电频率,一般常指几十到几百兆赫的频段,即VHF-UHF 频段。

2、由传输系统引导向一定方向传输的电磁波称为导行波。

3、传输线的几何长度(l )与其上传输电信号的波长(λ)之比l /λ ,称为传输线的相对长度或者叫电长度。

只要线的几何长度l 与其传输电信号的波长λ可以比拟时(通常为十分之一左右或以上),即可视为长线4、)。

(相应公式dB .1-V 1V lg 20R L += RL= -20log Γ VSWR=min max V V =Γ-Γ+11 5、确定移动通信工作频段可从以下几方面来考虑:①电波传播特性;②环境噪声及干扰的影响;③服务区范围、地形和障碍物影响以及建筑物的渗透性能;④设备小型化;⑤与已经开发的频段的干扰协调和兼容性;⑥用户需求及应用的特点。

1.8GHz 频段安排如下:1710~1725MHz 移动台发 1805~1820MHz 基站发(共15MHz ) 1745~1755MHz 移动台发1840~1850MHz 基站发(共10MHz )1710~1785MHz 移动台发1805~1880MHz 基站发6、“多址”(Multi Access )是指在多信道共用系统中,终端用户选择通信对象的传输方式,在陆地蜂窝移动通信系统中,用户可以通过选择“频道”、“时隙”或“PN 码”等多种方式进行选址,它们分别对应地被称为“频分(Frequency Division )多址”、“时分(Time Division )多址”和“码分(Code Division )多址”。

简称FDMA, TDMA 和CDMA.7、Pt (dBm )=10lg 1mW W )(m Pt8、No= KT B (W ) No (dBw )=-174 dBm + 10lgB (G121,C114)9、当编码器每20ms 取样一次,线性预测声域分析抽头为8时,输出260bit ,此时编码速率为260/20=13Kbits/s ,即为全速率信道。

《射频技术基础》课件

《射频技术基础》课件
工业领域:射频加热、射频焊接、射 频干燥等
军事领域:雷达、电子对抗、通信等
射频技术的发展历程
19世纪末,无线 电技术的诞生
20世纪初,无线 电技术的快速发展
20世纪中叶,射 频技术的广泛应用
21世纪初,射频 技术的创新与突破
03 射频技术基础知识
电磁波基础知识
电磁波:由电场和磁场相互激发产生的波
无线传感器网络中的射频技术
射频技术在无线传感器网 络中的应用
射频技术的特点和优势
射频技术的应用场景和案 例
射频技术在无线传感器网 络中的挑战和问题
物联网中的射频技术
射频识别 (RFID): 用于物品识别
和追踪
无线传感器网 络(WSN): 用于环境监测
和数据采集
近场通信 (NFC): 用于移动支付 和身份验证
射频技术在无线通信系统中的应用 实例
添加标题
添加题
添加标题
射频技术在无线通信系统中的发展 趋势
雷达系统中的射频技术
雷达系统:用于探测、跟踪和识别目标 射频技术:在雷达系统中用于发射和接收电磁波 应用实例:雷达系统中的射频技术用于探测、跟踪和识别目标 特点:射频技术在雷达系统中具有高精度、远距离、全天候等优点
调制:将信息信号转换为射 频信号的过程
解调方式:幅度解调、频率 解调、相位解调等
调制解调器的作用:实现射 频信号的调制和解调
射频信号的传输与接收:通 过天线进行传输和接收
射频信号的发射与接收
射频信号的发射:通过天线 将信号发射到空气中
射频信号的产生:通过振荡 器产生高频信号
射频信号的接收:通过天线 接收信号,并通过滤波器、
滤波器的类型:包括低通滤 波器、高通滤波器、带通滤 波器等

射频微波基础知识

射频微波基础知识

射频微波基础知识射频简称RF射频就是射频电流,它是一种高频交流变化电磁波的简称。

每秒变化小于1000次的交流电称为低频电流,大于10000次的称为高频电流,而射频就是这样一种高频电流。

有线电视系统就是采用射频传输方式的。

在电子学理论中,电流流过导体,导体周围会形成磁场;交变电流通过导体,导体周围会形成交变的电磁场,称为电磁波。

在电磁波频率低于100khz时,电磁波会被地表吸收,不能形成有效的传输,但电磁波频率高于100khz时,电磁波可以在空气中传播,并经大气层外缘的电离层反射,形成远距离传输能力,我们把具有远距离传输能力的高频电磁波成为射频,英文缩写:RF一、射频和微波技术基础知识1、什么是射频?射频(RF)是指无线通信系统中使用的电磁频率范围。

它涵盖了广泛的频率范围,通常从3kHz(千赫)到300GHz(千兆赫)。

射频信号的特点是能够长距离传播并穿过障碍物,这使其成为各种通信应用的理想选择。

2、微波频率微波是射频频率的一个子集,频率范围为300MHz(兆赫)到300GHz。

虽然微波仍然是像射频一样的电磁波,但它们具有更短的波长,这在特定应用中提供了某些优势,例如高数据传输速率和精确成像能力。

二、射频和微波技术的应用1、无线通信射频和微波技术最突出的应用之一是在无线通信系统中。

从简单的无线电传输到复杂的蜂窝网络,射频技术使移动设备上的语音通话、短信、互联网浏览和视频流成为可能。

此外,Wi-Fi网络、蓝牙连接和其他无线协议依赖RF信号进行无缝数据交换。

2、卫星通信卫星通信严重依赖微波频率。

地球静止轨道或近地轨道卫星利用微波远距离传输电视信号、互联网数据和电话,确保在传统通信基础设施有限,或无法使用的偏远地区实现全球连接。

3、雷达系统微波雷达系统对各种应用至关重要,包括空中交通管制、天气监测和军事防御。

雷达使用微波脉冲来探测物体的存在、距离和速度,从而进行精确的跟踪和分析。

4、医疗应用射频和微波技术在医学领域有着重要的应用,例如磁共振成像(MRI)和微波消融。

射频基础知识

射频基础知识

36dBμv=-71dBm
如: 0dBμv=0-107= -107dBm
15dBμv=15-107= -92dBm
0dBm=0+107= 107dBμv
15dBm=15+107=122dBμv
射频基础知识培训
先把0dBμv化成(反对数)1μv=0.000001V, 并在50Ω负载上求出功率P=V*V/R 10log(0.000001)*(0.000001)/50=107dBm
射频基础知识培训
光端机中激光器输出光功率一般在0-5dBm,低于-5dBm告 警。接收光功率可达+5dBm,最小接收光功率一般在
-10dBm左右,低于此值便告警,但不等于不工作,低于此 值后输出噪声会大一些,这个门槛的设置是人为的,可 以按照不同的要求去设置,我们要求厂家设置在
-12dBm左右。
射频基础知识培训
G1——直放站施主天线增益(dBi)
G2——基站上行收天线增益(dBi)
LR——空间传输衰减(dB)
LR=32.4+20 log+(MHz)+20 logR(Km)
LS------衰落中值23d
射频基础知识培训

引入噪声= PNo-有效路径损耗
=10logKBT+NF+G-有效路径损耗
=10logKBT+NF+基站和直放站的输出功率差 式中:10logKBT---系统底噪声
射频基础知识培训
4、互调(交调)
由于器件的非线性,当两个或两个以上信号通过时, 信号间相互作用会产生其它信号,这些信号统称为互调 信号。
f= (M*f1 ±Nf2) 或 (Nf2 ± M*f1)
(M、N为整数)

射频基础知识资料课件

射频基础知识资料课件
WiFi技术实现
WiFi技术利用了射频技术中的无线局域网技术,通过无线方式连接设备到互联网。
工作流程
WiFi路由器通过无线方式与设备建立连接,设备通过浏览器或特定的应用程序向路由器发送请求。路由器将请求 发送到互联网上的目标服务器,服务器响应并将数据返回到路由器,再由路由器将数据发送到设备。
案例三:GPS定位原理及关键技术特点
射频信号可用于治疗某些疾病,如肿瘤、 心血管疾病等,也可用于医学影像和生理 信号采集。
02
射频基础知识
射频电路基础
01
02
03
射频电路组成
射频电路主要由天线、射 频前端、射频芯片和电源 管理模块等组成。
射频电路设计原则
射频电路设计需要遵循稳 定性、高效性、一致性和 可靠性等原则。
射频电路优化方法
射频技术的数字化和智能化
随着数字化和智能化技术的不断发展,射频技术也需要适 应数字化和智能化的趋势,实现更高效、更灵活、更智能 的无线通信。
射频技术发展面临的挑战
01 02
传输损耗和干扰问题
随着无线通信技术的发展,射频信号需要传输更远的距离,同时需要处 理更多的干扰问题,如何提高传输效率和抗干扰能力是射频技术面临的 重要挑战。
射频基础知识资料课件
目录
• 射频基础概念 • 射频基础知识 • 射频技术原理 • 射频技术应用 • 射频技术发展趋势与挑战 • 射频技术应用案例
01
射频基础概念
射频定义
01
射频(Radio Frequency,RF) 定义为一种电磁波,其频率在一 定范围内,常用的单位是赫兹( Hz)。
02
射频信号是指通过调制或其他方 式加载了信息的电磁波,常用于 无线通信和传输数据。

射频基础知识

射频基础知识

射频基础知识第⼀部分射频基本概念第⼀章常⽤概念⼀、特性阻抗特征阻抗是微波传输线的固有特性,它等于模式电压与模式电流之⽐。

对于TEM波传输线,特征阻抗⼜等于单位长度分布电抗与导纳之⽐。

⽆耗传输线的特征阻抗为实数,有耗传输线的特征阻抗为复数。

在做射频PCB板设计时,⼀定要考虑匹配问题,考虑信号线的特征阻抗是否等于所连接前后级部件的阻抗。

当不相等时则会产⽣反射,造成失真和功率损失。

反射系数(此处指电压反射系数)可以由下式计算得出:z1⼆、驻波系数驻波系数式衡量负载匹配程度的⼀个指标,它在数值上等于:由反射系数的定义我们知道,反射系数的取值范围是0~1,⽽驻波系数的取值范围是1~正⽆穷⼤。

射频很多接⼝的驻波系数指标规定⼩于1.5。

三、信号的峰值功率解释:很多信号从时域观测并不是恒定包络,⽽是如下⾯图形所⽰。

峰值功率即是指以某种概率出现的尖峰的瞬态功率。

通常概率取为0.1%。

四、功率的dB表⽰射频信号的功率常⽤dBm、dBW表⽰,它与mW、W的换算关系如下:dBm=10logmWdBW=10logW例如信号功率为x W,利⽤dBm表⽰时其⼤⼩为五、噪声噪声是指在信号处理过程中遇到的⽆法确切预测的⼲扰信号(各类点频⼲扰不是算噪声)。

常见的噪声有来⾃外部的天电噪声,汽车的点⽕噪声,来⾃系统内部的热噪声,晶体管等在⼯作时产⽣的散粒噪声,信号与噪声的互调产物。

六、相位噪声相位噪声是⽤来衡量本振等单⾳信号频谱纯度的⼀个指标,在时域表现为信号过零点的抖动。

理想的单⾳信号,在频域应为⼀脉冲,⽽实际的单⾳总有⼀定的频谱宽度,如下页所⽰。

⼀般的本振信号可以认为是随机过程对单⾳调相的过程,因此信号所具有的边带信号被称为相位噪声。

相位噪声在频域的可以这样定量描述:偏离中⼼频率多少Hz处,单位带宽内的功率与总信号功率相⽐。

例如晶体的相位噪声可以这样描述:七、噪声系数噪声系数是⽤来衡量射频部件对⼩信号的处理能⼒,通常这样定义:单元输⼊信噪⽐除输出信噪⽐,如下图:对于线性单元,不会产⽣信号与噪声的互调产物及信号的失真,这时噪声系数可以⽤下式表⽰:Pno 表⽰输出噪声功率,Pni 表⽰输⼊噪声功率,G 为单元增益。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

级联增益=2*4=8倍
10*log(8)=9dB
级联增益=3+6=9dB
射频的一些基本概念
• dBm ▽是一个功率的单位 ▽10*log(功率/mW) ▽1W=10*log(1W/1mW) =10*log(1000) =30dBm
射频基础知识讲座
• 内容:
➢基站射频系统的基本组成及架构 ➢射频的一些基本概念 ➢射频电路的基本功能部件 ➢射频设计需要的基本技能
基站射频系统的基本组成及架构
▼ 基站射频系统主要分成两部分 发射(下行)及接收(上行)
▼ 发射(基站到手机)的功能有: ◇对信号进行调制 ◇再混频到所需要的频率 ◇对信号进行放大 ◇经天线发送到空中 最后信号经空中传播后到达手机
基站射频系统的基本组成及架构
▼接收(从手机到基站)的主要功能有: ◇通过天线从空中接收手机发射过来的信号 ◇对接收到的信号进行放大 ◇并把信号混频到较低频率 ◇对信号进行数模变换 ◇把数字信号送给后续基带的处理(如解调等)。
基站射频系统的基本组成及架构
数字通讯系统框图
基站射频系统的基本组成及架构
输入取样
中间级放大
温温度度传传感感器器 前向取样 反向取样
采样输出
功放功能框图
基站射频系统的基本组成及架构
• 天馈子系统(RFE+天线)
把功放输出的射频信号送至发射到空中 接收手机发射的空中信号
基站射频系统的基本组成及架构
天 馈 子 系 统
基站射频系统的基本组成及架构
LPA
DUP
RFE
TRx
DIV
基站射频系统的基本组成及架构
收发信机(TRX): 有TX、RX、FS三个子模块 TX: 发射链路 RX: 接收链路 FS: 提供本振
基站射频系统的基本组成及架构 TX前向功能框图
TX_IN TX-LO1
SAW Filter TX-LO2
dB SAW Filter
dB
TX_OUT
SAW Filter
信道
DIF
TRX
编码
(基带处
DUP
PA
(WAL
理,成形,滤
小信号放大
FRE
SH)
波,DAC变换)
频综
我们基站发射的信号流向
基站射频系统的基本组成及架构
基带处 理,解调等来自RX (小信号放大)RX
LNA (低噪放)
DUP
LNA
RFE DIV
我们基站接收的信号流向
基站射频系统的基本组成及架构
• 收发信机(TRX) • 功放(PA) • 天馈子系统(RFE+天线)
Band Class10
Band Class11
Band Class12
TX Freq.(MHz) 824~849 1850~1910 872~915 887~889 893~901 915~925 1750-1780 450~457.5 411.7~420.0 451.3~460.0 479~483.5 1920~1980 776~794 1710~1785 880~915 806~824 896~901 410~420 450~460 870~876
RFC M
95 RFE功能框图
基站射频系统的基本组成及架构
BTM
RPT
DIV
LNA1
ANT
RSM
LNA0
DUP
LPA
PVD
TSM
RMM
3G RFE功能示意框图
• 内容:
➢基站射频系统的基本组成及架构 ➢射频的一些基本概念 ➢射频电路的基本功能部件 ➢射频设计需要的基本技能
射频的一些基本概念
• 频率 ▽基站及手机的通讯是通过无线电 波来实现 ▽每一个无线系统都会占用一定的 频谱资源 ▽国际上有一个通用的频谱分配标 准,但各国又有不同。
TPTL控 制 信 号
基站射频系统的基本组成及架构
优选蓝色字体标识的器件
DUP/DIV
LNA
RSM
RES-PI0
RF SAW
LC-LPF0
AMP0
IF SAW1
AMP1
RES-PI1
AMPL
Gali-4
FS
RES-PIL
DATT0 AMP2
DATT1 AMP3
RES-PI2
IF SAW2
RES-PI3
AMP4
LC-LPF1
RX单板
MATCHED CIRCUIT
ADC
ST-K6
RX反向功能框图
基站射频系统的基本组成及架构
CLK,DATA,LE,LD
LMX2306
CLK,DATA,LE,LD
DIF
LMX2306
参考频率输入
LPF LPF
93.36MHz VCO
12MHz VCXO
CLK,DATA,LE,LD
射频的一些基本概念
• 频率
美国的频谱分配
射频的一些基本概念
• 频率
目前世界 上分配给 CDMA的 频谱资源
Band class Band Class 0 Band Class 1 Band Class 2 Band Class 3
Band Class 4 Band Class 5
Band Class 6 Band Class 7 Band Class 8 Band Class 9
TX Freq.(MHz) 869~894 1930~1990 917~960 832~834 838~846 860~870 1840-1870 460~467.5 421.7~430.0 461.3~470.0 489~493.5 2110~2170 746~764 1805~1880 925~960 851~869 935~940 420~430 460~470 915~921
RFE功能示意框图
基站射频系统的基本组成及架构
天 线1
BT M注 入 获 取
R FCM
LNA
4分
路器
TE ST TR X
天 线0
BTM 注入 获取
反射功 率检测
双 工滤 波器
发射 功 率检 测
功 率监 测单 元
(可 选 ) (可 选 )
RFC M
L NA
4分 路器
TE ST TR X
H PA
TRX
射频的一些基本概念
• 频率 ▽大部分射频器件都有一个工作 频率范围 ▽在高频系统中,对器件的分布 参数需考虑。
射频的一些基本概念
• dB dBm
dB=10*log(A/B) (增益单位) 便



2倍
4倍

级联倍数=2*4=8倍




2倍
4倍

10*log(2)=3dB
10*log(4)=6dB
SA8026
LPF
RF VCO
图2 FS单板逻辑框图
FS功能框图
LPF
TX IF
再生参考频率
LPF
LPF
TX RF RX0 RF RX1 RF
基站射频系统的基本组成及架构
• 功放(PA) 把射频信号放大至所需功率。
基站射频系统的基本组成及架构
RF IN
第一级放大
衰减 器
末前级放大
末级放大
环行器
RF OUT
相关文档
最新文档