2017-2018年普通高等学校招生全国统一考试数学试题文(全国卷3,包括解析)
2017年-2018年普通高等学校招生全国统一考试数学试题文(全国卷3,参考解析)

高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
绝密★启用前2017年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={1,2,3,4},B={2,4,6,8},则A ⋂B 中元素的个数为 A .1B .2C .3D .4【答案】B【解析】由题意可得:{}2,4A B =I .本题选择B 选项.2.复平面内表示复数z=i(–2+i)的点位于 A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】由题意:12z i =-- .本题选择B 选项.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】由折线图,7月份后月接待游客量减少,A 错误;本题选择A 选项.4.已知4sin cos 3αα-=,则sin 2α= A .79-B .29-C .29D .79【答案】A【解析】()2sin cos 17sin 22sin cos 19ααααα--===-- .本题选择A 选项.5.设x ,y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z =x -y 的取值范围是 A .[–3,0]B .[–3,2]C .[0,2]D .[0,3]【答案】B【解析】绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点()0,3A 处取得最小值033z =-=- . 在点()2,0B 处取得最大值202z =-= . 本题选择B 选项.6.函数f (x )=15sin(x +3π)+cos(x −6π)的最大值为A .65B .1C .35D .15【答案】A【解析】由诱导公式可得:cos cos sin 6233x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ , 则:()16sin sin sin 53353f x x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,函数的最大值为65.本题选择A 选项.7.函数y =1+x +2sin xx 的部分图像大致为A .B .C .D .【答案】D【解析】当1x =时,()111sin12sin12f =++=+>,故排除A,C,当x →+∞时,1y x →+,故排除B,满足条件的只有D,故选D.8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .2【答案】D【解析】若2N =,第一次进入循环,12≤成立,100100,1010S M ==-=-,2i =2≤成立,第二次进入循环,此时101001090,110S M -=-==-=,3i =2≤不成立,所以输出9091S =<成立,所以输入的正整数N 的最小值是2,故选D.9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π4【解析】如果,画出圆柱的轴截面11,2AC AB ==,所以3r BC ==,那么圆柱的体积是223314V r h πππ==⨯⨯=⎝⎭,故选B.10.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【答案】C11.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A 6B 3C 2D .13【答案】A【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离22d a a b==+,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a = ,63c e a ==,故选A.12.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12- B .13C .12D .1【答案】C二、填空题:本题共4小题,每小题5分,共20分。
2017年-2018年普通高等学校招生全国统一考试数学试题文(天津卷,含答案)

高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
绝密★启用前2017年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件A ,B 互斥,那么P (A ∪B )=P (A )+P (B ).·棱柱的体积公式V =Sh . 其中S 表示棱柱的底面面积,h 表示棱柱的高. ·球的体积公式34π3V R =.其中R 表示球的半径. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()A B C =U I (A ){2}(B ){1,2,4}(C ){1,2,4,6}(D ){1,2,3,4,6} (2)设x ∈R ,则“20x -≥”是“|1|1x -≤”的(A )充分而不必要条件(B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件 (3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 (A )45(B )35(C )25(D )15(4)阅读右面的程序框图,运行相应的程序,若输入N 的值为19,则输出N 的值为(A )0 (B )1(C )2(D )3(5)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为(A )221412x y -=(B )221124x y -=(C )2213x y -=(D )2213y x -= (6)已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << (7)设函数()2sin(),f x x x ωϕ=+∈R ,其中0,||πωϕ><.若5π11π()2,()0,88f f ==且()f x 的最小正周期大于2π,则 (A )2π,312ωϕ==(B )211π,312ωϕ==-(C )111π,324ωϕ==-(D )17π,324ωϕ== (8)已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是(A )[2,2]-(B)[2]-(C)[2,-(D)[-第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2018年普通高等学校招生全国统一考试数学试题文(全国卷3,含答案)-精选.pdf

解答: cos2 1 2sin 2
5.答案: B
27
1
. 故选 B.
99
解答:由题意 P 1 0.45 0.15 0.4 . 故选 B.
6.答案: C
解答:
f (x)
tan x
2
1 tan x
sin x
cos x
2
sin x
1
2
cos x
sin x cos x
2
2
sin x cos x
sin x cos x 1 sin 2x ,∴ f (x) 的周期
3
1
D ABC 体积最大值 VD ABC
9 3 (2 4) 18
3
42 3.
(2 3) 2
2 ,∴三棱锥
8
二、填空题
13.答案: 1 2
解答:
2a b (4,2) ,∵ c / /(2 a b) ,∴ 1 2
14.答案:分层抽样
4 0 ,解得
1
.
2
解答:由题意,不同龄段客户对其服务的评价有较大差异,故采取分层抽样法
该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样, 则最合适的抽样方法是 ________.
15.若变量 x,y 满足约束条件
2x y 3≥ 0,
x 2 y 4 ≥ 0 , 则 z x 1 y 的最大值是 ________.
x 2 ≤ 0.
3
16.已知函数 f x ln 1 x2 x 1 , f a 4 ,则 f a ________.
AM 的中点; ∴ OP / /MC ,∵ OP 在平面 PDB 内, MC 不在平面 PDB 内,∴ MC / / 平面 PDB .
2018年普通高等学校招生全国统一考试数学试题文(全国卷3含解析)

丰富丰富纷繁2018 年一般高等学校招生全国一致考试数学试题文(全国卷3)注意事项:1.答卷前,考生务势必自己的姓名和准考据号填写在答题卡上。
2.回答选择题时,选出每题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需变动,用橡皮擦洁净后,再选涂其余答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:此题共12 小题,每题 5 分,共 60 分.在每题给的四个选项中,只有一项为哪一项切合题目要求的.1.已知会合,,则A. B. C. D.【答案】 C【分析】剖析:由题意先解出会合A, 从而获得结果。
详解:由会合 A 得,所以故答案选 C.点睛:此题主要观察交集的运算,属于基础题。
2.A. B. C. D.【答案】 D【分析】剖析:由复数的乘法运算睁开即可。
应选 D.点睛:此题主要观察复数的四则运算,属于基础题。
3.中国古建筑借助榫卯将木构件连结起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右侧的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图能够是丰富丰富纷繁A.AB.BC.CD.D【答案】 A【分析】剖析:察看图形可得。
详解:观擦图形图可知,俯视图为故答案为 A.点睛:此题主要考擦空间几何体的三视图,观察学生的空间想象能力,属于基础题。
4.若,则A. B. C. D.【答案】 B【分析】剖析:由公式可得。
详解:故答案为 B.点睛:此题主要观察二倍角公式,属于基础题。
5.若某集体中的成员只用现金支付的概率为0.45 ,既用现金支付也用非现金支付的概率为0.15 ,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】 B【分析】剖析:由公式计算可得详解:设设事件 A 为只用现金支付,事件 B 为只用非现金支付,则因为所以应选 B.点睛:此题主要观察事件的基本关系和概率的计算,属于基础题。
2017年普通高等学校招生全国统一考试数学试题文(全国卷3,含答案)

绝密★启用前2017年普通高等学校招生全国统一考试(新课标Ⅲ)文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={1,2,3,4},B={2,4,6,8},则A⋂B中元素的个数为A.1 B.2 C.3 D.42.复平面内表示复数z=i(–2+i)的点位于A.第一象限B.第二象限C.第三象限D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos3αα-=,则sin2α=A .79-B .29-C . 29D .795.设x ,y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z =x -y 的取值范围是 A .[–3,0] B .[–3,2] C .[0,2] D .[0,3]6.函数f (x )=15sin(x +3π)+cos(x −6π)的最大值为 A .65B .1C .35D .157.函数y =1+x +2sin x x 的部分图像大致为 A . B .C .D .8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4C .π2D .π410.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .3B .3 C .3 D .13 12.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a = A .12- B .13 C .12 D .1二、填空题:本题共4小题,每小题5分,共20分。
2017年高考新课标Ⅲ卷文数试题解析(参考版)

绝密★启用前2017年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={1,2,3,4},B={2,4,6,8},则A ⋂B 中元素的个数为 A .1B .2C .3D .4【答案】B【解析】由题意可得:{}2,4A B = .本题选择B 选项.2.复平面内表示复数z=i(–2+i)的点位于 A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】由题意:12z i =-- .本题选择B 选项.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】由折线图,7月份后月接待游客量减少,A错误;本题选择A选项.4.已知4sin cos3αα-=,则sin2α=A.79- B.29-C.29D.79【答案】A【解析】()2sin cos17sin22sin cos19ααααα--===--.本题选择A选项.5.设x,y满足约束条件3260x yxy+-≤⎧⎪≥⎨⎪≥⎩,则z=x-y的取值范围是A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]【答案】B【解析】绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点()0,3A 处取得最小值033z =-=- . 在点()2,0B 处取得最大值202z =-= . 本题选择B 选项.6.函数f (x )=15sin(x +3π)+cos(x −6π)的最大值为A .65B .1C .35D .15【答案】A【解析】由诱导公式可得:cos cos sin 6233x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ , 则:()16sin sin sin 53353f x x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,函数的最大值为65.本题选择A 选项.7.函数y =1+x +2sin xx 的部分图像大致为 A . B .C .D .【答案】D【解析】当1x =时,()111sin12sin12f =++=+>,故排除A,C,当x →+∞时,1y x →+,故排除B,满足条件的只有D,故选D.8.执行下面的程序框图,学@科网为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .2【答案】D【解析】若2N =,第一次进入循环,12≤成立,100100,1010S M ==-=-,2i =2≤成立,第二次进入循环,此时101001090,110S M -=-==-=,3i =2≤不成立,所以输出9091S =<成立,所以输入的正整数N 的最小值是2,故选D.9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π4【解析】如果,画出圆柱的轴截面11,2AC AB ==,所以32r BC ==,那么圆柱的体积是2233124V r h πππ⎛⎫==⨯⨯= ⎪ ⎪⎝⎭,故选B.10.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【答案】C11.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .63B .33C .23D .13【答案】A【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离222abd a a b==+,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a = ,63c e a ==,故选A.12.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12- B .13C .12D .1【答案】C二、填空题:本题共4小题,每小题5分,共20分。
全国III卷2018年高考数学一题多解含17年高考试题2017103013

4、已知函数 f(x)=│x+1│–│x–2│. (1)求不等式 f(x)≥1 的解集;
6
fx
围. (2)若不等式
x x m 的解集非空,求 m 的取值范
2
【答案】(1) x x 1 ;(2)
5 -,
4
【解析】
x2 f (x)
3, x 1 2x 1, 1
3, x 2
当x
1 时, f (x) 1 无解;
设g x ex 1 e x 1
,则
gx e e e
1e
1
21
x
,
x1
x1
x1
x1
e
x1
e
当g
x
0 时, x 1 ;当 x 1 时, g
x
0 ,函数 g x 单调递减;
当 x 1 时, g
x
0 ,函数 g x 单调递增,
当 x 1 时,函数 g x 取得最小值,为 g 1
2.
设h x
x
22
x ,当 x 1 时,函数 h x 取得最小值,为 1,
1.所以
-1
2
解法三: 构造函数法:
x x2 f (x)
3, 1
2x 1, 1
3, x 2
画出 f(x)=│x+1│–│x–2│的图象和 g(x) 1 图象 两图像交点的横坐标为 x 1
7
所以不等式的解集为{x | x 1}.
得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象
的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.
2、【2017 年高考数学全国三卷理 12】12.在矩形 ABCD 中,AB=1,AD=2,动点 P 在以点 C 为
2017—2018年全国高考理科数学试题(附答案)(卷三及卷一)

绝密★启用前2017年普通高等学校招生全国统一考试 全国卷3理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x <1},B ={x |31x <},则( ) A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为( ) A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( )A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为( ) A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .168.右面程序框图是为了求出满足3n−2n>1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则( )A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前2017年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={1,2,3,4},B={2,4,6,8},则A ⋂B 中元素的个数为( ) A .1B .2C .3D .4【答案】B2.复平面内表示复数z=i(–2+i)的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】由题意:12z i =-- .本题选择B 选项.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( ) A .月接待游客逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A【解析】由折线图,7月份后月接待游客量减少,A 错误; 本题选择A 选项. 4.已知4sin cos 3αα-=,则sin 2α=( ) A .79-B .29-C . 29D .79【答案】A5.设x ,y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z =x -y 的取值范围是( ) A .[–3,0]B .[–3,2]C .[0,2]D .[0,3]【答案】B【解析】绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点()0,3A 处取得最小值033z =-=- . 在点()2,0B 处取得最大值202z =-= . 本题选择B 选项.6.函数f (x )=15sin(x +3π)+cos(x −6π)的最大值为( )A .65B .1C .35D .15【答案】A【解析】由诱导公式可得:cos cos sin 6233x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ , 则:()16sin sin sin 53353f x x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ , 函数的最大值为65. 本题选择A 选项. 7.函数y =1+x +2sin xx 的部分图像大致为( )A BD .C D 【答案】D8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .2【答案】D9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .πB .3π4C .π2D .π4【解析】如果,画出圆柱的轴截面,11,2AC AB ==,所以r BC ==,那么圆柱的体积是223124V r h πππ⎛==⨯⨯= ⎝⎭,故选B.10.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( )A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【答案】C【解析】根据三垂线逆定理,平面内的线垂直平面的斜线,那也垂直于斜线在平面内的射影,A.若11A E DC ⊥,那么11D E DC ⊥,很显然不成立;B.若1A E BD ⊥,那么BD AE ⊥,显然不成立;C.若11A E BC ⊥,那么11BC B C ⊥,成立,反过来11BC B C ⊥时,也能推出11BC A E ⊥,所以C 成立,D.若1A E AC ⊥,则AE AC ⊥,显然不成立,故选C.11.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A .3B .3C .3D .13【答案】A【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a = ,3c e a ==,故选A. 12.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =( )A .12-B .13C .12D .1【答案】C二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量(2,3),(3,)a b m =-=,且a ⊥b ,则m = . 【答案】2【解析】由题意可得:2330,2m m -⨯+=∴=.14.双曲线22219x y a -=(a >0)的一条渐近线方程为35y x =,则a = . 【答案】5【解析】由双曲线的标准方程可得渐近线方程为:3y x a=±,结合题意可得:5a =.15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c 。
已知C =60°,b c =3,则A =_________.【答案】75°【解析】由题意:sin sin b cB C=,即s i n 2s i n 3b C Bc === ,结合b c < 可得45B = ,则18075A B C =--=.16.设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是__________.【答案】1(,)4-+∞三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)设数列{}n a 满足123(21)2n a a n a n +++-=.(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和. 【答案】(1)122-=n a n ;(2)122+n n【解析】(1)∵123(21)2n a a n a n +++-=,①18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率。
(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率. 【答案】(1)53;(2)51【解析】(1)需求量不超过300瓶,即最高气温不高于C 25,从表中可知有54天, ∴所求概率为539054==P . (2)Y 的可能值列表如下:低于C20:100445022506200-=⨯-⨯+⨯=y ;)25,20[:300445021506300=⨯-⨯+⨯=y ;不低于C 25:900)46(450=-⨯=y ∴Y 大于0的概率为519016902=+=P . 19.(12分)如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.【答案】(1)详见解析;(2)1x x ⨯⨯-+=⨯⨯-+=22222222)22()22(2222222 解得2=x ,∴点E 是BD 的中点,则ACE B ACE D V V --=,∴1=--ACEB ACED V V .20.(12分)在直角坐标系xOy 中,曲线y =x 2+mx –2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. 【答案】(1)不会;(2)详见解析21.(12分)已知函数()f x =ln x +ax 2+(2a +1)x .(1)讨论()f x 的单调性;(2)当a ﹤0时,证明3()24f x a≤--. 【答案】(1)当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,则)(x f 在)21,0(a-单调递增,在),21(+∞-a单调递减;(2)详见解析(二)选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)=0,M 为l 3与C 的交点,求M 的极径. 【答案】(1)224x y -=;(2)5【解析】(1)直线1l 的普通方程为(2)y k x =-, 直线2l 的普通方程为2x ky =-+, 消去k 得 224x y -=,即C 的普通方程为224x y -=.(2)3l化为普通方程为x y +=,联立224x y x y ⎧+=⎪⎨-=⎪⎩ 得22x y ⎧=⎪⎪⎨⎪=-⎪⎩ , ∴222182544x y ρ=+=+=, ∴3l 与C 的交点M23.[选修4—5:不等式选讲](10分)已知函数()f x =│x +1│–│x –2│.(1)求不等式()f x ≥1的解集;(2)若不等式()f x ≥x 2–x +m 的解集非空,求实数m 的取值范围.【答案】(1)[1,)+∞;(2)5(,]4-∞。