如何确定全等三角形的对应关系
三角形的全等关系

三角形的全等关系三角形是初中数学中的一个基本概念,而全等关系是研究三角形的一个重要性质。
在数学中,全等关系指的是两个图形的所有对应的部分完全相等。
对于三角形而言,全等关系的研究能够帮助我们发现和证明一些三角形之间的性质。
本文将介绍三角形的全等关系,并探讨全等关系在证明三角形性质中的应用。
一、三角形的全等关系定义及判定方法三角形的全等关系定义如下:若两个三角形的三边和三角形内对应的三个角分别相等,则这两个三角形全等。
在判定两个三角形是否全等时,我们可以依据以下几种方法:1. SSS(边-边-边)准则:若两个三角形的三条边分别相等,则这两个三角形全等。
2. SAS(边-角-边)准则:若两个三角形的两边和夹角分别相等,则这两个三角形全等。
3. ASA(角-边-角)准则:若两个三角形的两角和对应边分别相等,则这两个三角形全等。
4. AAS(角-角-边)准则:若两个三角形的两角和某个对应边分别相等,则这两个三角形全等。
5. RHS(斜边-直角边-斜边)准则:若两个直角三角形的斜边和直角边分别相等,则这两个三角形全等。
二、全等关系在三角形证明中的应用全等关系在证明三角形性质中起到了重要的作用。
通过全等关系的应用,我们能够推导出许多有关三角形的结论。
1. 全等三角形的性质相等:若两个三角形全等,则它们的对应边相等,对应角相等,对应高、中线、角平分线等线段也分别相等。
2. 利用全等三角形证明三角形性质:在证明过程中,我们可以先找到一个全等的三角形,然后利用全等三角形的性质推导出所要证明的结论。
3. 利用全等三角形证明图形性质:全等三角形的性质不仅适用于三角形,还可以应用于其他图形的证明中。
比如,在证明一个四边形是矩形时,我们可以利用全等的直角三角形分别在四个角上构造出来。
三、实例演示接下来,我们通过实例演示全等关系的应用。
例1:已知△ABC与△DEF,已知AB=DE,AC=DF,∠A=∠D。
证明△ABC≌△DEF。
证明三角形全等的五种方法

证明三角形全等的五种方法
方法一:边边边(SSS)——三条边都对应相等的两个三角形全等。
三角形具有稳定性,三条边都确定了,整个三角形都可以固定下来了。
这样就具有了唯一性,而这样的两个三边都对应相等的三角形,自然就是全等的。
但是需要注意的是三个角都相等的两个三角形不能判定全等。
方法二:边角边(SAS)——两边和它们之间的夹角对应相等的两个三角形全等。
这个判定方式是课本上直接给出的,同一个角度的有很多,但是确定了夹这个角的两条边的长短,这个就被确定下来了,这是举不出反例的。
方法三:角边角(ASA)——两角和它们之间的夹边对应相等的两个三角形全等。
这个判定方式也是课本上直接给出的,一个角的边可以无限延长,两个角的夹边被确定以后,就无法延长了,另外两条边则肯定会有交点,这样肯定也能将三角形确定下来。
方法四:角角边(AAS)——两个角和其中一个角的对边对应相等的两个三角形全等。
这个判定方式是由方法三角边角衍生出来的,只要记住了方法三,这个方法就很好记了。
三角形的内角和是180,如果两个角都确定了的话,另外一个角度也可以确定下来,这样三个角都是固定的了,那条对边无论如何都是夹在其中两个角中间的,所以也就形成了“角边角”。
方法五:斜边直角边(HL)——斜边和一条直角边对应相等的两个三角形全等。
这个判定方式是利用了勾股定理,如果两条边都知道了,那么利用勾股定理很容易就可以确定第三条边了,这样利用方法一边边边,或者是方法二边角边,都是可以得出两个三角形全等的。
但是前提必须是两个直角三角形。
全等三角形的重难点

全等三角形的重难点一、确定全等三角形的对应关系在全等三角形中正确地找出对应顶点、对应边、对应角,是解决与全等三角形相关的问题的关键.全等三角形有许多对应的元素,怎样寻找这些对应元素呢?1.根据全等符号暗示的信息找对应符号语言是数学思维的载体,教材中说,“记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上”,此要求同学们在学习中要严格遵循,养成按对应顶点表示全等三角形的习惯,并且按“对应顶点记位置”的特点找全等三角形的对应边、对应角,达到无需看图也能迅速找出两个全等三角形的对应边和对应角的目的.例1 已知△ABC≌△BAD,如果AB=8,BD=9,AD=11,那么AC= .【分析】一般情况下,在用符号≌表示两个三角形全等时,我们是把表示对应顶点的字母写在对应的位置上,根据这个规则可知:对应位置上的字母就是表示对应顶点的字母,对应位置上的字母表示的线段就是对应边,表示的角就是对应角.由题设已知中所给△ABC≌△BAD符号表示可知:AC与BD是对应边(如图1),所以AC=BD=9.例2 已知△ABC与△DEF全等,∠A=30°,∠B=50°,则∠D=().A.30°B.50°C.100°D.以上三种情况都有可能【分析】注意本题与上例的区别,题目只说△ABC与△DEF全等,并没有给出对应法则(即没有用全等关系的符号)表示,所以会出现三种可能,选择D.2.观察图形特征暗示的信息找对应①有公共边的,公共边是对应边;②有公共角的,公共角是对应角;③有对顶角的,对顶角是对应角;④两个三角形中,对应角所对的边是对应边,两个对应角的夹边是对应边;⑤两个三角形中,对应边所对的角是对应角,两条对应边的夹角是对应角;⑥两个三角形中,一对最长的边是对应边,一对最短的边是对应边;⑦两个三角形中,一对最大的角是对应角,一对最小的角是对应角.二、灵活选择运用判定方法三角形全等的证明有三条公理、一条推论以及直角三角形特有的斜边直角边公理.每个公理和推论都有自己的符号表示形式,如SAS、ASA、AAS、SSS、HL等,在学习中可以充分考虑已知条件和图形的结构特点,利用公理及推论的字母表示形式去寻找解题思路,培养解题能力.如:(1)已知条件中有两边对应相等时,找两边的夹角或第三边对应相等(SAS、SSS);(2)已知条件中有两角对应相等时,找两角的夹边或任何一组等角的对边相等(ASA、AAS);(3)已知条件中有一边和一角对应相等时,找夹等角的另一组边对应相等,或任何一组角对应相等(SAS、AAS).例3 如图2,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为: .你得到的一对全等三角形是: .【分析】本例是一道条件探索型试题,需从结论出发,执果索因,考虑要图中存在全等三角形,现已有哪些条件,逆推还需添加什么条件,同时本例又是一道开放性试题,答案不唯一,从图中也可以直观地看出可能有△ACE与△ADE,△ABC与△ABD,△BCE与△BDE三对三角形全等.若要△ACE≌△ADE,现已有AC=AD,又AE=AE(公共边),故还需添加CE=DE(从边的角度考虑用SSS)或∠CAE=∠DAE(从角的角度考虑,已有两边,考虑两边的夹角用SAS);若要△ABC≌△ABD,现已有AC=AD,又AB=AB(公共边),故还需添加BC=BD或∠CAB=∠DAB;当然由△ACE≌△ADE或△ABC≌△ABD,也可推得△BCE≌△BDE.故所添条件为:CE=DE,或∠CAE=∠DAE(∠CAB=∠DAB),或BC=BD.由此得到的一对全等三角形是:△ACE≌△ADE,或△ABC≌△ABD,或△BCE≌△BDE. 三、熟悉三角形全等的基本图形在全等三角形的学习中,有很多的基本图形,我们通过对两个全等三角形各种不同位置关系的观察分析,看出其中一个三角形是由另一个三角形经过平移、翻折、旋转变换后形成的,我们将常见的三角形全等的基本图形整理如下:1.平移型:图3的图形属于平移型图形.它们可看成是由对应相等的边在同一直线上移动所构成的,故该对应边的相等关系一般可由同一直线上的线段和或差而证得.2.对称型:图4属于对称型图形.它们的特征是可沿某一直线对折,且这直线两旁的部分能完全重合,重合的顶点就是全等三角形的对应顶点.3.旋转型:图5属于旋转型图形.它们可看成是以三角形的某一顶点为中心旋转所构成的,故一般有一对相等的角隐含在平行线、对顶角、某些角的和或差中.这些基本图形都是由三角形经过图形的运动得到的,只有熟悉了这些图形,才能学会从复杂的图形中分离出题目需要的基本图形,对今后解决有关问题是大有益处的.在具体解题时,如能抓住基本图形,就比较容易找到解决问题的途径和方法. 四、复杂图形拆分为基本图形当图形复杂时,我们可把不需要的线段、角隐藏,也可将图形分离、涂色等.图形分离就是面对一个较为复杂的图形时,我们从解题的需要出发,在保持图形中各元素(点、线、角等)相对位置不变的情况下,提取出原图形的一部分来分析问题的解决方法.分离出来的基本图形比原图形简捷,少了许多来自不相干的图形元素的干扰,看着简化后的图形,结合基本知识,诸多问题可迎刃而解.例4 如图6,已知AC=BC,CD=CE,∠ACB=∠DCE=60°,且B、C、E在同一直线上,求证:BD=AE.【分析】BD是△BED或△BCD的边,AE是△ABE或△ACE的边,显然△BED和△ABE不全等,故转而考虑△BCD和△ACE,将△BCD和△ACE涂色,特别关注这两个三角形,它们有BC=AC,CD=CE,尚需一个条件,即BC和CD的夹角与AC和CE的夹角是否相等.因∠BCD=60°+∠ACD=∠ACE,故△BCD≌△ACE,从而BD=AE.【点评】当我们利用全等三角形证明线段或角相等时,首先观察线段或角在哪两个可能全等的三角形中,将它们涂色后加以特别的关注,然后再分析等的这两个三角形中,已知什么条件,还缺少什么条件,想方设法证得所缺条件。
三角形全等之边角对应关系

三角形全等之边角对应关系
介绍
在几何学中,当两个三角形的对应边和对应角都相等时,我们称这两个三角形是全等的。
全等三角形在几何学中具有重要的性质和应用。
边角对应关系
全等三角形的边和角之间存在着一一对应的关系。
下面是全等三角形的边角对应关系:
- 对应边:两个全等三角形的对应边相等,即分别相等的边互为对应边。
- 对应角:两个全等三角形的对应角相等,即分别相等的角互为对应角。
应用举例
全等三角形的边角对应关系在解决几何题目中通常具有重要的应用。
以下是一些应用举例:
1. 通过边角对应关系可以求解未知边长或角度的问题。
已知两个全等三角形,如果其中一个的边长或角度已知,可以通过对应边或对应角的相等关系来求解另一个三角形的边长或角度。
2. 边角对应关系也可以用来证明两个三角形全等。
如果已知两个三角形的对应边和对应角相等,可以利用边角对应关系来证明这两个三角形是全等的。
3. 通过边角对应关系可以推导出其他几何性质。
全等三角形的边角对应关系可以用来证明其他几何定理或性质,例如角平分线定理、相似三角形的性质等。
总结
全等三角形的边角对应关系是几何学中重要的概念,它可以帮助我们解决几何问题,证明定理和推导其他几何性质。
了解和应用边角对应关系可以提高我们在几何学中的解题能力和理解能力。
以上是关于三角形全等之边角对应关系的简要介绍。
希望对您有所帮助!。
如何确定全等三角形的对应关系

如何确定全等三角形的对应关系
在说明三角形全等时,需要找出它们的对应边或对应角,那么,如何正确的找到全等三角形的对应边或角呢下面介绍三种方法希望对同学们有所帮助
一、字母顺序确定法
由于在表示两个全等三角形时,通常是把表示对应顶点的字母写在对应的位置上(同学们在证明三角形全等时也要注意应这样写),所以可以利用字母的顺序确定对应元素
例1已知△ABC≌△ADE,指出△ABC和△ADE的对应边、对应角
分析:先把两个三角形顶点的字母按照同样的顺序排成一排:A→B→C,A→D→E,然后按同样的顺序找出对应元素:(1)点A、A;B、D;C、E分别是对应点;(2)线段AB、AD;BC、DE;AC、AE分别是对应线段;(3)∠ABC、∠ADE;∠ACB、∠AED;∠CAB、∠EAD分别是对应角
二、图形特征确定法
(1)有公共边的,公共部分一定是对应边
如图1,△ADB和△ADC全等,则AD一定是两个三角形的对应边
(2)有公共角的,公共角一定是
对应角
如图2中,△ABD和△ACE全等,∠DAB和∠EAC是对应角(3)有对顶角的,对顶角一定是对应角
如图3中,∠1和∠2是对应角
(4)两个全等三角形的最大边(角)是对应边(角);最小的边(角)是对应边(角)
三、图形分解法
从复杂的图形中,找出全等三角形的对应部分比较困难,这时可把要证全等的两个三角形从复杂图形中分离出来,用不同颜色标出或另画,图形简单了就容易找出对应元素
如图4,点C是线段AB上一点,AC=MC=AM,BC=NC=BN,请说明:BM=AN
此题若作如图5的分离,则容易找出对应部分:AC,MC;NC,BC;∠CAN,∠MCB分别是△ACN和△MCB中的
对应边和对应角。
全等三角形的判定

全等三角形的判定全等三角形也叫做相似三角形,是在平面几何中十分重要的概念之一。
全等三角形的判定是指确定两个三角形是否全等的过程。
如果两个三角形的对应边长相等,并且对应角度也相等,那么这两个三角形就是全等的。
本文将介绍几种常见的全等三角形的判定方法。
第一种方法是SSS判定法,即边-边-边判定法。
这种方法是指当两个三角形的三条边的对应边长都相等时,这两个三角形就是全等的。
例如,如果三角形ABC的三条边AB、BC和CA分别与另一个三角形DEF的对应边DE、EF和FD相等,那么可以得出结论:三角形ABC与三角形DEF全等。
第二种方法是SAS判定法,即边-角-边判定法。
这种方法是指当两个三角形的一对对应边和夹角都相等时,这两个三角形就是全等的。
例如,如果三角形ABC的一对对应边AB与DE相等,并且夹角BAC与夹角EDF相等,那么可以得出结论:三角形ABC与三角形DEF全等。
第三种方法是ASA判定法,即角-边-角判定法。
这种方法是指当两个三角形的一对对应角和对应边都相等时,这两个三角形就是全等的。
例如,如果三角形ABC的一对对应角∠BAC与∠EDF相等,并且对应边AB与DE相等,那么可以得出结论:三角形ABC与三角形DEF全等。
第四种方法是AAS判定法,即角-角-边判定法。
这种方法是指当两个三角形的两对对应角和一对对应边都相等时,这两个三角形就是全等的。
例如,如果三角形ABC的两对对应角∠ABC与∠DEF,∠ACB 与∠DFE相等,并且一对对应边BC与EF相等,那么可以得出结论:三角形ABC与三角形DEF全等。
除了以上四种常见的全等三角形判定法之外,还有一种特殊的方法——HL判定法,即斜边-直角边判定法。
这种方法只适用于直角三角形。
当两个直角三角形的一对斜边和直角边分别相等时,这两个三角形就是全等的。
例如,如果直角三角形ABC的斜边AC与DEF的斜边DF相等,并且直角边BC与直角边EF相等,那么可以得出结论:三角形ABC与三角形DEF全等。
全等三角形判定知识讲解

全等三角形判定一(SSS,ASA ,AAS )(基础)【要点梳理】要点一、全等三角形判定1——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“角边角”全等三角形判定2——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .要点三、全等三角形判定3——“角角边”1.全等三角形判定3——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”) 要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.【典型例题】类型一、全等三角形的判定1——“边边边”1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .举一反三:【变式】(2015•武汉模拟)如图,在△ABC和△DCB中,AB=DC,AC=DB,求证:△ABC≌△DCB.类型二、全等三角形的判定2——“角边角”2、如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是.(1)小明添加的条件是:AP=BP.你认同吗?(2)你添加的条件是,请用你添加的条件完成证明.举一反三:【变式】如图,AB∥CD,AF∥DE,BE=CF.求证:AB=CD.类型三、全等三角形的判定3——“角角边”3、已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.举一反三:【变式】如图,AD是△ABC的中线,过C、B分别作AD及AD的延长线的垂线CF、BE.求证:BE=CF.4、已知:如图,AC与BD交于O点,AB∥DC,AB=DC.(1)求证:AC与BD互相平分;(2)若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.【巩固练习】一、选择题1. 能确定△ABC≌△DEF的条件是()A.AB=DE,BC=EF,∠A=∠EB.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠DD.∠A=∠D,AB=DE,∠B=∠E2.(2015•杭州模拟)用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A. SSS B. SAS C.ASA D. AAS3.AD是△ABC的角平分线,作DE⊥AB于E,DF⊥AC于F,下列结论错误的是()A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF 4.(2016•黔西南州)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A .AB=DEB .AC=DFC .∠A=∠D D .BF=EC5. 某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( )A.带①去B.带②去C.带③去D.①②③都带去6.如图,∠1=∠2,∠3=∠4,下面结论中错误的是( )A .△ADC ≌△BCDB .△ABD ≌△BAC C .△ABO ≌△CDOD .△AOD ≌△BOC二、填空题7.(2014秋•石林县校级月考)如图,AC=AD ,BC=BD ,则△ABC≌△ ;应用的判定方法是(简写) .8. 在△ABC 和△'''A B C 中,∠A =44°,∠B =67°,∠'C =69°,∠'B =44°,且AC = ''B C ,则这两个三角形_________全等.(填“一定”或“不一定”)9. 已知,如图,AB ∥CD ,AF ∥DE ,AF =DE ,且BE =2,BC =10,则EF =________.10. 如图,AB∥CD,AD∥BC,OE =OF ,图中全等三角形共有______对.11.(2016•通州区一模)在学习“用直尺和圆规作射线OC ,使它平分∠AOB”时,教科书介绍如下:*作法:(1)以O 为圆心,任意长为半径作弧,交OA 于D ,交OB 于E ;(2)分别以D ,E 为圆心,以大于DE 的同样长为半径作弧,两弧交于点C ;(3)作射线OC .则OC 就是所求作的射线.小明同学想知道为什么这样做,所得到射线OC 就是∠AOB 的平分线.小华的思路是连接DC 、EC ,可证△ODC ≌△OEC ,就能得到∠AOC=∠BOC .其中证明△ODC ≌△OEC 的理由是 .12. 已知:如图,∠B =∠DEF ,AB =DE ,要说明△ABC ≌△DEF ,(1)若以“ASA ”为依据,还缺条件(2)若以“AAS ”为依据,还缺条件三、解答题13.阅读下题及一位同学的解答过程:如图,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C .那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD ≌△COB .证明:在△AOD 和△COB 中,⎪⎩⎪⎨⎧∠=∠=∠=∠),(),(),(对顶角相等已知已知COB AOD OB OA C A∴ △AOD ≌△COB (ASA ).问:这位同学的回答及证明过程正确吗?为什么?14. 已知如图,E 、F 在BD 上,且AB =CD ,BF =DE ,AE =CF ,求证:AC 与BD 互相平分.15. 已知:如图, AB ∥CD, OA = OD, BC 过O 点, 点E 、F 在直线AOD 上, 且∠E =∠F. 求证:EB=CF.全等三角形判定二(SAS )(基础)要点一、全等三角形判定4——“边角边”1. 全等三角形判定4——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.要点二、判定方法的选择已知条件可选择的判定方法一边一角对应相等SAS AAS ASA两角对应相等ASA AAS两边对应相等SAS SSS要点三、如何选择三角形证全等1.可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;2.可以从已知出发,看已知条件确定证哪两个三角形全等;3.由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;4.如果以上方法都行不通,就添加辅助线,构造全等三角形.要点四、全等三角形证明方法1.证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2.证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明. 4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.类型一、全等三角形的判定4——“边角边”1、在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:△EBC≌△FCB.2、如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.举一反三:【变式】(2014•雁塔区校级模拟)如图,由∠1=∠2,BC=DC、AC=EC,最后推出△ABC≌△EDC 的根据是()A.SAS B. ASA C. AAS D. SSS类型二、全等三角形的性质和判定综合3、(2014•如东县模拟)如图1,已知△ABC的六个元素,则图2甲、乙、丙三个三角形中和图1△ABC全等的图形是()A.甲乙B.丙C.乙丙D.乙举一反三:【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.【巩固练习】一、选择题1.在△ABC 中,∠B=∠C,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )A. ∠AB. ∠BC. ∠CD. ∠B 或∠C2.(2015•莆田)如图,AE ∥DF ,AE=DF ,要使△EAC ≌△FDB ,需要添加下列选项中的( )A .AB=CDB . EC=BFC . ∠A=∠D D . AB=BC3.(2016•东城区一模)如图,有一池塘,要测池塘两端A ,B 间的距离,可先在平地上取一个不经过池塘可以直接到达点A 和B 的点C ,连接AC 并延长至D ,使CD=CA ,连接BC 并延长至E ,使CE=CB ,连接ED .若量出DE=58米,则A ,B 间的距离为( )A .29米B .58米C .60米D .116米4.如图,AB 、CD 、EF 相交于O ,且被O 点平分,DF =CE ,BF =AE ,则图中全等三角形的对数共有( )A. 1对B. 2对C. 3对D. 4对5.如图,将两根钢条'AA ,'BB 的中点O 连在一起,使'AA ,'BB 可以绕着点O 自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△OAB≌△''OA B 的理由是( )A.边角边B.角边角C.边边边D.角角边6.如图,已知AB⊥BD 于B ,ED⊥BD 于D ,AB =CD ,BC =ED ,以下结论不正确的是( )A.EC⊥ACB.EC=ACC.ED +AB =DBD.DC =CB二、填空题7.如图,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,则∠DCB=_________.8.(2016春•灵石县期末)如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带第块去配,其依据是根据定理(可以用字母简写)9.(2015•齐齐哈尔)如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是.(只填一个即可)10.如图,AC=AD,CB=DB,∠2=30°,∠3=26°,则∠CBE=_______.11.如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=_______.12.已知,如图,AB=CD,AC=BD,则△ABC≌,△ADC≌ .三、解答题13.(2015•重庆校级三模)如图已知,AB∥DC,AB=DC,AE=CF.求证:△ABF≌△CDE.14.(2016•曲靖)如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.【课后作业】1.(2020•徐州)若一个三角形的两边长分别为3cm、6cm,则它的第三边的长可能是()A.2cm B.3cm C.6cm D.9cm2.(2020•大连)如图,△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是()A.50°B.60°C.70°D.80°3.(2020•永州)如图,已知AB=DC,∠ABC=∠DCB,能直接判断△ABC≌△DCB的方法是()A.SAS B.AAS C.SSS D.ASA4.(2020秋•滦南县期末)如图,已知AC=DB,下列四个条件:①∠A=∠D;②∠ABD=∠DCA;③∠ACB=∠DBC;④∠ABC=∠DCB.其中能使△ABC≌△DCB的有()A.1个B.2个C.3个D.4个5.(2020秋•天河区期末)如图,AE∥DF,AE=DF.添加下列的一个选项后.仍然不能证明△ACE≌△DBF的是()A.AB=CD B.EC=BF C.∠E=∠F D.EC∥BF6.(2020•齐齐哈尔)如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是.(只填一个即可)7.(2020秋•花都区期末)如图,D、C、F、B四点在同一条直线上,BC=DF,AC⊥BD于点C,EF⊥BD于点F,如果要添加一个条件,使△ABC≌△EDF,你添加的条件是(注:只需写出一个条件即可).8.(2020•无锡)如图,已知AB∥CD,AB=CD,BE=CF.求证:(1)△ABF≌△DCE;(2)AF∥DE.9.(2020•温州)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE,求证:△ABC≌△DCE.。
八年级数学上册三角形的判定

八年级数学上册三角形的判定一、全等三角形的判定方法。
1. SSS(边边边)- 内容:三边对应相等的两个三角形全等。
- 示例:在△ABC和△DEF中,如果AB = DE,BC = EF,AC = DF,那么△ABC≌△DEF。
- 应用场景:当已知三角形三边的长度时,可直接利用SSS判定两个三角形全等。
例如,在建筑工程中,确定两个三角形结构是否完全相同,可以测量三边长度,若三边对应相等则全等。
2. SAS(边角边)- 内容:两边和它们的夹角对应相等的两个三角形全等。
- 示例:在△ABC和△DEF中,AB = DE,∠A=∠D,AC = DF,那么△ABC≌△DEF。
- 应用场景:当已知三角形的两边及其夹角时,用SAS判定全等。
比如在测量池塘两端距离时,可以构造这样的三角形关系,通过测量夹角和两边来确定全等关系,进而得出池塘两端的距离。
3. ASA(角边角)- 内容:两角和它们的夹边对应相等的两个三角形全等。
- 示例:在△ABC和△DEF中,∠A =∠D,AB = DE,∠B=∠E,那么△ABC≌△DEF。
- 应用场景:当已知三角形的两角及其夹边时,运用ASA判定。
在地图测绘中,确定两个三角形区域相似性时,如果知道两角及其夹边的信息,可以判定全等。
4. AAS(角角边)- 内容:两角和其中一角的对边对应相等的两个三角形全等。
- 示例:在△ABC和△DEF中,∠A =∠D,∠B =∠E,BC = EF,那么△ABC≌△DEF。
- 应用场景:当已知三角形的两个角和其中一个角的对边时,可使用AAS判定全等。
在光学中,光线反射形成的三角形关系,有时可以利用AAS来确定全等关系。
5. HL(斜边、直角边)(只适用于直角三角形)- 内容:斜边和一条直角边对应相等的两个直角三角形全等。
- 示例:在Rt△ABC和Rt△DEF中,∠C =∠F = 90°,AB = DE,AC = DF,那么Rt△ABC≌Rt△DEF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何确定全等三角形的对应关系
在说明三角形全等时,需要找出它们的对应边或对应角,那么,如何正确的找到全等三角形的对应边或角呢?下面介绍三种方法.希望对同学们有所帮助.
一、字母顺序确定法
由于在表示两个全等三角形时,通常是把表示对应顶点的字母写在对应的位置上(同学们在证明三角形全等时也要注意应这样写),所以可以利用字母的顺序确定对应元素.
例1已知△ABC ≌△ADE ,指出△ABC 和△ADE 的对应边、对应角.
分析:先把两个三角形顶点的字母按照同样的顺序排成一排:A →B →C ,A →D →E ,然后按同样的顺序找出对应元素:(1)点A 、A ;B 、D ;C 、E 分别是对应点;(2)线段AB 、AD ;BC 、DE ;AC 、AE 分别是对应线段;(3)∠ABC 、∠ADE ;∠ACB 、∠AED ;∠CAB 、∠EAD 分别是对应角.
二、图形特征确定法
(1)有公共边的,公共部分一定是对应边.
如图1,△ADB 和△ADC 全等,则AD 一定是两个三角形的对应边
.
(2)有公共角的,公共角一定是对应角.
如图2中,△ABD 和△ACE 全等,∠DAB 和∠EAC 是对应角.
(3)有对顶角的,对顶角一定是对应角.
如图3中,∠1和∠2是对应角
.
(4)两个全等三角形的最大边(角)是对应边(角);最小的边(角)是对应边(角).
三、图形分解法
从复杂的图形中,找出全等三角形的对应部分比较困难,这时可把要证全等的两个三角形从复杂图形中分离出来,用不同颜色标出或另画,图形简单了就容易找出对应元素.
如图4,点C 是线段AB 上一点,AC =MC =AM ,BC =NC =BN ,请说明:BM =AN
.
此题若作如图5的分离,则容易找出对应部分:AC ,MC ;NC ,BC ;∠CAN ,∠MCB 分别是△ACN 和△MCB 中的对应边和对应角
.。